

JireStar/JireStar ACPI

64-Bit CPU Single Chip Notebook Solution

Preliminary Data Book

Revision: 1.0 912-2000-015 February 28, 1997

Copyright

Copyright © 1997, OPTi Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of OPTi Inc., 888 Tasman Drive, Milpitas, CA 95035.

Disclaimer

OPTi Inc. makes no representations or warranties with respect to the design and documentation herein described and especially disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, OPTi Inc. reserves the right to revise the design and associated documentation and to make changes from time to time in the content without obligation of OPTi Inc. to notify any person of such revisions or changes.

Trademarks

OPTi and OPTi Inc. are registered trademarks of OPTi Inc. All other trademarks and copyrights are the property of their respective holders.

OPTi Inc.

888 Tasman Drive Milpitas, CA 95035 Tel: (408) 486-8000

Fax: (408) 486-8001 WWW: http://www.opti.com/

888 Tasman Drive Milpitas, CA 95035 (408) 486-8000 Fax: (408) 486-8001

Revision Document

Product Name: FireStar / FireStar ACPI (82C700) Single-Chip Notebook Solution

Document Title: Preliminary Data Book (#912-2000-015) Revision 1.0

Date: February 28, 1997

Scope

This document provides the revisions that have been incorporated in Revision 1.0 of the 82C700 Preliminary Data Book, #912-2000-015 since Revision 0.2 dated May 8, 1996.

The data book includes details regarding FireStar ACPI (hence the name change of the data book) and denotes, where appropriate, if the discussion is applicable only to FireStar ACPI.

Revision History (0.2 to 1.0)

Section 1.0 Features

- Figure 1-1 FireStar System Block Diagram
 - Designated PCI bus
 - Modified address line
 - Changed name of CPU (was designated as 64-Bit 586 CPU - FireStar supports both 586- and 686-class)
- · Removed Unified Memory Interface (totally)
- · Added ACPI Implementation bullet

Section 2.0 Overview

· No changes

Section 3.0 Signal Definitions

3.1 Terminology/Nomenclature Conventions

· No changes

3.2 Signal Descriptions

Summary the major changes made to the pin function assignments:

- Removed Boundary Scan Signal functions (all except TMS)
- · Removed UMA interface functions
- Changed three of the VCC_CPU power pins to CPU_CORE (AB19, H22, K5) in preparation for future 2.5V CPU interface

Summary of the general format changes made:

- Expanded greatly on detailing of individual signal descriptions
- Designated in "Pin No." column of description tables which pins are used as strap option selection pins
- Clearly specified which PIO pins could be programmed as outputs only (PIO0 through PIO5) in description tables
- Adjusted pin diagram (Figure 3-1), alphabetical pin crossreference list (Table 3-2) and the signal descriptions accordingly with the pin modifications listed in Table 1 (of this document

Table 1 (of this document) lists the actual pin modifications between data book 0.2 and 1.0 (alphabetically).

OPTi Inc. makes no representations or warranties with respect to the design and documentation herein described and especially disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, OPTi Inc. reserves the right to revise the design and associated documentation and to make changes from time to time in the content without obligation of OPTi Inc. to notify any person of such revisions or changes.

Revision Document

Table 1 FireStar Pin Modifications

Data Book Rev. 0.2 Signal Name	Pin No.	Data Book Rev. 1.0 Signal Name
BWE#+RAS4	P4	BWE#
CAS0#	B10	CAS0#+SDDQM0#
CAS1#	C10	CAS1#+SDDQM1#
CAS2#	D10	CAS2#+SDDQM2#
CAS3#	A11	CAS3#+SDDQM3#
CAS4#	B11	CAS4#+SDDQM4#
CAS5#	C11	CAS5#+SDDQM5#
CAS6#	D11	CAS6#+SDDQM6#
CAS7#	A12	CAS7#+SDDQM7#
CDOE#	P1	CDOE#+PIO0
CMD#+PCICLK3	AB20	CMD#+DIRTY+PCICLK3
DWE#	E10	DWE#+SDWE#
EADS#	T4	EADS#+WB/WT#
GNT3#+UMAGNT#	AC18	GNT3#
IRQSER+SOUT#	AE18	IRQSER+SDCKE+SOUT#
32KHZ	C7	OSC32
PWRGD+TRST#	H26	PWRGD
RAS0#	E12	RAS0#+SDCS0#
RAS1#+PIO5	E13	RAS1#+SDCS1#+PIO5
RAS2#+PIO4	B12	RAS2#+SDCS2#+PIO4
RAS3#+MA12	C12	RAS3#+SDCS3#+MA12
RSVD	E22	RAS4#+MA12
REQ3#+UMAREQ#	AD18	REQ3#
тск	A8	SDCAS#
TMS	D7	SDRAS#
SEL#/ATB#+PIO14	AC20	SEL#/ATB#+SDCKE+PIO14
TAG0	E9	TAG0+CAS0#
TAG1+START#	D9	TAG1+CAS1#+START#
TAG2+START#	C9	TAG2+CAS2#+START#
TAG3+SBOFF#	В9	TAG3+CAS3#+SBOFF#
TAG4	A9	TAG4+CAS4#+SDCKE
TAG5	D8	TAG5+CAS5#+DWE#
TAG6	C8	TAG6+CAS6#+SDCAS#
TAG7	В8	TAG7+CAS7#+SDRAS#
TDI	B7	RSVD
TDO	A7	SDCKE (FS ACPI, RSVD in non-ACPI ver.)
RSVD	AB5	TMS
VCC_CPU	H22	VCC_CORE
VCC_CPU	K5	VCC_CORE
VCC_CPU	AB19	VCC_CORE
W/R#	AA5	W/R#+INV

3.3 Programmable I/O Pins

- · Added note in opening text:
 - "Any signal that can potentially be programmed as a PIO pin will function as a PIO pin only if the corresponding CPU register is programmed to a non-zero value."
- Table 3-3 PIO Functions
 - Misc. Outputs Group 3h
 Added functions: FAN, PCTLL, ATCLK/2
 - IDE Controller Outputs Group 4h
 Added functions: DDACK0-0#, DDACK0-1#,
 DDACK1-0#, DDACK1-1#
 - ACPI Inputs Group 7h New group added to table
- Table 3-6 Register Programmable PIO Pins
 - Added corresponding pin names in register titles for easier reading

3.4 Strap Selected Options

- Table 3-7 Strap Options
 - Added corresponding pin number to table
 - Added BOFF# strap option
 - Combined RTCAS and A20M# into one strap option, RTCAS:A20M#
 - Added PCICLK0 strap option
 - Added RSVD strap option (preparation for 2.5V CPU interface future revision)
- Table 3-8 Strap Option Readback Registers
 - New table

Section 4.0 Functional Description

Major revisions to the functional description section include:

- Removed UMA Support (was Section 4.9)
- Added new section on ACPI Implementation (currently Section 4.16)
- Rearranged IDE Interface section for better flow and provided more details on emulated bus master mode
- Added SDRAM detection algorithm in DRAM Controller section
- Pulled all clock information into one section (System Clocks, Section 4.4)

Section 5.0 Register Descriptions

• Added the following notes to opening text:

- Notes: 1. Bits/registers that are new or have changed (between Data Book Rev 0.2 and Data Book Rev 1.0), are underlined and denoted with a change bar in the margin.
 - 2. All bits/registers are read/write and their default value is 0 unless otherwise specified.
 - 3. All reserved bits/registers MUST be written to 0 unless otherwise specified.

In this portion of the revision document, the tables that correspond to the register tables in the data book will specify either:

- a. No change,
- reference only the bits/registers that are new or changed, and if any
- default changes

SYSCFG Register Space 5.1

· No changes to opening text.

Table 5-5 SYSCFG 00h-FFh

Loc.	Register Name	Revision
00h	Byte Merge/Prefetch & Sony Cache Module Control Register	No change
01h	DRAM Control Register 1	No change
02h	Cache Control Register 1	Bits [7,6]
03h	Cache Control Register 2	No change
04h	Shadow RAM Control Register 1	Added text to foot- notes 2 and 3
05h	Shadow RAM Control Register 2	No change
06h	Shadow RAM Control Register 3	No change
07h	Tag Test Register	No change
08h	CPU Cache Control Register	Bits [4,2]
09h	System Memory Function Register	No change
0Ah	DRAM Hole A Address Decode Register	No change
0Bh	DRAM Hole B Address Decode Register	No change
0Ch	DRAM Hole Higher Address	Bits [7,5,4]
0Dh	Clock Control Register	Bits [7:4]
0Eh	PCI Master Burst Control Register 1	Bits [7:4]
0Fh	PCI Master Burst Control Register 2	Bits [7,5:3,1,0]
10h	Miscellaneous Control Register 1	No change
11h	Miscellaneous Control Register 2	Bits [4,3,1]

Loc.	Register Name	Revision
12h	Refresh Control Register	Bits [7,0]
13h	Memory Decode Control Register	No change
14h	Memory Decode Control Register 2	No change
15h	PCI Cycle Control Register 1	No change
16h	Dirty/Tag RAM Control Register	Bits [7,5], new foot- note, default changed
17h	PCI Cycle Control Register 2	Bit [5]
18h	Interface Control Register	Bit [6]
	FS ACPI	Bits [7,3,1]
19h	Memory Decode Control Register 3	Bits [3:0]
1Ah	Memory Shadow Control Register 1	No change
1Bh	Memory Shadow Control Register 2	No change
1Ch	EDO DRAM Control Register	No change
1Dh	Miscellaneous Control Register 3	Bits [6,2]
1Eh	Control Register	Bits [6,4,2]
1Fh	EDO Timing Control Register	Bits [5,2,1]
20h	DRAM Burst Control Register	Bits [7,5]
21h	PCI Concurrency Control Register	Bit [0], default changed
22h	Inquire Cycle Control Register	Bits [7,5]
23h	Pre-Snoop Control Register	Bits [6,3:1]
24h	Asymmetric DRAM Configuration Register	No change
25h	GUI Memory Location Register	Bits [7:3,2,0]
26h	UMA Control Register 1	Bits [7,5,4,2:0]
27h	Miscellaneous Control Register 4	Bits [6,5,3,2:0]
28h	SDRAM Control Register 1	Bits [7:0]
29h	SDRAM Control Register 2	Bits [7:0]
2Ah	PCI-to-DRAM Control Register 1	Bits [7:0]
2Bh	PCI-to-DRAM Control Register 2	Bits [7:0]
2Ch	CPU-to-DRAM Buffer Control Register	Bits [6,5,3,1], new footnote
2Dh	Miscellaneous Control Register 5	Added text to footnote
2Eh	UMA Control Register 2	Bits [7:4,1,0]
2Fh	UMA Control Register 3	Bits [7:0], footnote
30h- 37h	Reserved	No change
38h	NMI Trap Enable Register 1	No change
39h	NMI Trap Enable Register 2	No change
3Ah	NMI Trap Enable Register 3	No change
3Bh	NMI Trap Enable Register 4	No change
3Ch	NMI Trap Enable Register 5	No change
3Dh- 3Fh	Reserved	No change

Revision Document

Table 5-5 SYSCFG 00h-FFh (cont.)

Loc.	Register Name	Revision
40h	PMU Control Register 1	Bit [7]
41h	DOZE_TIMER Register	No change
42h	If AEh[7] = 0: Clock Source Register 1	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Clock Source Register 1 A	New bits available "If AEh[7] = 1"
43h	PMU Control Register 2	No change
44h	LCD_TIMER Register	No change
45h	DSK_TIMER Register	No change
46h	KBD_TIMER Register	No change
47h	If AEh[7] = 0: GNR1_TIMER Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR5_TIMER Register	New bits available "If AEh[7] = 1"
48h	If AEh[7] = 0: GNR1 Base Address Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR5_Timer Base Address Register	New bits available "If AEh[7] = 1"
49h	If AEh[7] = 0: GNR1 Control Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR5_Timer Control Register	New bits available "If AEh[7] = 1"
4Ah	Chip Select 0 Base Address Register	No change
4Bh	Chip Select 0 Control Register	No change
4Ch	Chip Select 1 Base Address Register	No change
4Dh	Chip Select 1 Control Register	No change
4Eh	If AEh[7] = 0: Idle Reload Event Enable Register 1	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Idle Reload Event Enable Register 1A	New bits available "If AEh[7] = 1"
4Fh	IDLE_TIMER Register	No change
50h	PMU Control Register 3	No change
51h	Beeper Control Register	No change
52h	Scratchpad Register 1	No change
53h	Scratchpad Register 2	No change
54h	Power Control Latch Register 1	No change
55h	Power Control Latch Register 2	No change
56h	Reserved	No change
57h	PMU Control Register 4	Bits [3,2], default changed
58h	PMU Event Register 1	No change
59h	PMU Event Register 2	No change

Loc.	Register Name	Revision
5Ah	If AEh[7] = 0: PMU Event Register 3	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: PMU Event Register 3A	New bits available "If AEh[7] = 1"
5Bh	If AEh[7] = 0: PMU Event Register 4	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: PMU Event Register 4A	New bits available "If AEh[7] = 1"
5Ch	PMI SMI Source Register 1	No change
5Dh	If AEh[7] = 0: PMI SMI Source Register 2	No change
	If AEh[7] = 1: PMI SMI Source Register 2A	Bit [3]
5Eh	Reserved	No change
5Fh	PMU Control Register 5	No change
60h	R_Timer Count Register	No change
61h	Debounce Register	No change
62h	IRQ Doze Register 1	No change
63h	Idle Time-Out Select Register 1	No change
64h	INTRGRP IRQ Select Register 1	No change
65h	Doze Register	No change
66h	PMU Control Register 6	Bits [3:1]
67h	PMU Control Register 7	No change
68h	Clock Source Register 2	No change
69h	R TIMER Register	No change
6Ah	RSMGRP IRQ Register 1	No change
6Bh	Resume Source Register	Bits [6,5]
6Ch	Scratchpad Register 3	No change
6Dh	Scratchpad Register 4	No change
6Eh	Scratchpad Register 5	No change
6Fh	Scratchpad Register 6	No change
70h	GNR1 Base Address Register 1	No change
71h	GNR1 Control Register 1	No change
72h	GNR1 Control Register 2	No change
73h	GNR2 Base Address Register 1	No change
74h	GNR2 Control Register 1	No change
75h	GNR2 Control Register 2	No change
76h	If AEh[7] = 0: Doze Reload Select Register 1	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Doze Reload Select Register 1A	New bits available "If AEh[7] = 1"
77h	Doze Reload Select Register 2	No change
78h	Doze Reload Select Register 3	No change
79h	PMU Control Register 8	Bits [2,1]
7Ah	GNR3 Base Address Register 1	No change
7Bh	GNR3 Control Register 1	No change

Table 5-5 SYSCFG 00h-FFh (cont.)

Loc.	Register Name	Revision
7Ch	GNR3 Control Register 2	No change
7Dh	GNR4 Base Address Register 1	No change
7Eh	GNR4 Control Register 1	No change
7Fh	GNR4 Control Register 2	No change
80h	ICW1 Shadow Register for INTC1	No change
81h	ICW2 Shadow Register for INTC1	No change
82h	ICW3 Shadow Register for INTC1	No change
83h	ICW4 Shadow Register for INTC1	No change
84h	DMA In-Progress Register	No change
85h	OCW2 Shadow Register for INTC1	No change
86h	OCW3 Shadow Register for INTC1	No change
87h	Reserved	No change
88h	ICW1 Shadow Register for INTC2	No change
89h	ICW2 Shadow Register for INTC2	No change
8Ah	ICW3 Shadow Register for INTC2	No change
8Bh	ICW4 Shadow Register for INCT2	No change
8Ch	Reserved	No change
8Dh	OCW2 Shadow Register for INTC2	No change
8Eh	OCW3 Shadow Register for INTC2	No change
8Fh	Reserved	No change
90h	Timer Channel 0 Low Byte Register: A[7:0]	No change
91h	Timer Channel 0 High Byte Register: A[15:8]	No change
92h	Timer Channel 1 Low Byte Register: A[7:0]	No change
93h	Timer Channel 1 High Byte Register: A[15:8]	No change
94h	Timer Channel 2 Low Byte Register: A[7:0]	No change
95h	Timer Channel 2 High Byte Register: A[15:8]	No change
96h	Write Counter High/Low Byte Latch	No change
97h	Reserved	No change
98h	RTC Index Shadow Register	No change

Loc.	Register Name	Revision
99h	Interrupt Request Register for INCT1	No change
9Ah	Interrupt Request Register for INCT2	No change
9Bh	3F2h + 3F7h Shadow Register	No change
9Ch	372h + 377h Shadow Register	No change
9Dh- 9Eh	Reserved	No change
9Fh	Port 064h Shadow Register	No change
A0h	Feature Control Register 1	No change
A1h	Feature Control Register 2	No change
A2h	If AEh[7] = 0: IRQ Doze Register 2	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: IRQ Doze Register 2A	New bits available "If AEh[7] = 1"
A3h	Idle Time-Out Select Register 2	No change
A4h	INTRGRP IRQ Select Register 2	No change
A5h	Thermal Management Register 1	No change
A6h	Thermal Management Register 2	No change
A7h	Thermal Management Register 3	No change
A8h	Thermal Management Register 4	No change
A9h	Thermal Management Register 5	No change
AAh	Thermal Management Register 6	No change
ABh	Power Control Latch Register 3	No change
ACh	Reserved	No change
ADh	Feature Control Register 3	No change
AEh	GNR_ACCESS Feature Register 1	No change
AFh- B0h	Reserved	No change
B1h	RSMGRP IRQ Register 2	No change
B2h	If AEh[7] = 0: Clock Source Register 3	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Clock Source Register 3A	New bits available "If AEh[7] = 1"
B3h	Chip Select Cycle Type Register	No change
B4h	HDU_TIMER Register	No change
B5h	COM1_TIMER Register	No change
B6h	COM2_TIMER Register	No change
B7h	If AEh[7] = 0: GNR2_TIMER Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR6_TIMER Register	New bits available "If AEh[7] = 1"
B8h	If AEh[7] = 0: GNR2 Base Address Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR6 Base Address Register	New bits available "If AEh[7] = 1"

Revision Document

Table 5-5 SYSCFG 00h-FFh (cont.)

Loc.	Register Name	Revision
B9h	If AEh[7] = 0: GNR2 Control Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR6 Control Register	New bits available "If AEh[7] = 1"
BAh	Chip Select 2 Base Address Register	No change
BBh	Chip Select 2 Control Register	No change
BCh	Chip Select 3 Base Address Register	No change
BDh	Chip Select 3 Control Register	No change
BEh	If AEh[7] = 0: Idle Reload Event Enable Register 2	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Idle Reload Event Enable Register 2A	New bits available "If AEh[7] = 1"
BFh	Chip Select Granularity Register	No change
C0h- D4h	Reserved	No change
D5h	X Bus Positive Decode Register	Bits [7:0], new foot- note
D6h	PMU Control Register 9	No change
D7h	Access Port Address Register 1	No change
D8h	If AEh[7] = 0: PMU Event Register 5	Added parameter "If AEh[7] = 0" and bits [7:0]
	If AEh[7] = 1: PMU Event Register 5A	New bits available "If AEh[7] = 1"
D9h	PMU Event Register 6	No change
DAh	Power Management Event Status Register	No change
DBh	If AEh[7] = 0: Next Access Event Generation Register 1	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Next Access Event Generation Register 1A	New bits available "If AEh[7] = 1"
DCh	If AEh[7] = 0: PMU SMI Source Register 1	No change
	If AEh[7] = 1: PMU SMI Source Register 1A	Bit 0
DDh	PMU SMI Source Register 2	No changed
	FS ACPI	Bit 7
DEh	If AEh[7] = 0: Current Access Event Generation Register 1	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Current Access Event Generation Register 1A	New bits available "If AEh[7] = 1"
DFh	If AEh[7] = 0:Activity Tracking Register 1	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1:Activity Tracking Register 1A	New bits available "If AEh[7] = 1"

Loc.	Register Name	Revision
E0h	If AEh[7] = 0: Activity Tracking Register 2	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Activity Tracking Register 2A	New bits available "If AEh[7] = 1"
E1h	If AEh[7] = 0: GNR3 Base Address Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR7 Base Address Register	New bits available "If AEh[7] = 1"
E2h	If AEh[7] = 0: GNR3 Control Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR7 Control Register	New bits available "If AEh[7] = 1"
E3h	If AEh[7] = 0: GNR4 Base Address Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR8 Base Address Register	New bits available "If AEh[7] = 1"
E4h	If AEh[7] = 0: GNR4 Control Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR8 Control Register	New bits available "If AEh[7] = 1"
E5h	GNR_ACCESS Feature Register 2	Bit [6]
E6h	If AEh[7] = 0: Clock Source Register 4	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: Clock Source Register 4A	New bits available "If AEh[7] = 1"
E7h	If AEh[7] = 0: GNR3_TIMER Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR7_TIMER Register	New bits available "If AEh[7] = 1"
E8h	If AEh[7] = 0: GNR4_TIMER Register	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: GNR8_TIMER Register	New bits available "If AEh[7] = 1"
E9h	If AEh[7] = 0: PMU Event Register 7	Added parameter "If AEh[7] = 0"
	If AEh[7] = 1: PMU Event Register 7A	New bits available "If AEh[7] = 1"
EAh	If AEh[7] = 0: PMU SMI Source Register 3	No change
	If AEh[7] = 1: PMU SMI Source Register 3A	Bits [1,0]
EBh	Access Port Address Register 2	No change
ECh	Write Trap Register 1	No change
EDh	Write Trap Register 2	No change
EEh	Power Control Latch Register 4	No change
EFh	Hot Docking Control Register 1	No change
F0h	Hot Docking Control Register 2	No change
F1h	Low Order Start Address for ROM Window	No change

Table 5-5 SYSCFG 00h-FFh (cont.)

Loc.	Register Name	Revision
F2h	High Order Start Address for ROM Window	No change
F3h	Thermal Management Register 7	No change
F4h	Thermal Management Register 8	No change
F5h	PMU Event Register 8	No change
	FS ACPI	Bits [7,6]
F6h	DMA Doze Reload Register 1	No change
F7h	DMA Doze Reload Register 2	No change
F8h	Compact ISA Control Register 1	No change

Loc.	Register Name	Revision
F9h	Compact ISA Control Register 2	No change
FAh	Compact ISA Control Register 3	Bits [7,6]
FBh	DMA Idle Reload Register	No change
FCh	IDE Power Management Assignment Register 1	Bits [7,6,3,2]
FDh	IDE Power Management Assignment Register 2	Bits [7,6,3,2]
FEh	GPCS# Global Control Register	No change
FFh	Reserved	No change

5.2 PCIDV0 Register Space

• Modified opening text slightly, removed reference to 82C701.

Table 5-6 PCIDV0 00h-FFh

Loc.	Register Name	Revision
00h	Vendor Identification Register - Byte 0	No change
01h	Vendor Identification Register - Byte 1	No change
02h	Device Identification Register - Byte 0	No change
03h	Device Identification Register - Byte 1	No change
04h	Command Register - Byte 0	Changed reference from 82C701 to 82C700 in bits [3:0]
05h	Command Register - Byte 1	No change
06h	Status Register - Byte 0	No change
07h	Status Register - Byte 1	Changed reference from 82C701 to 82C700 in bits [3:2]
08h	Revision Identification Register	Default changed
09h	Class Code Register - Byte 0	No change
0Ah	Class Code Register - Byte 1	No change
0Bh	Class Code Register - Byte 2	No change
0Ch	Reserved	No change
0Dh	Master Latency Timer Register	No change
0Eh	Header Type Register	No change
0Fh	Built-In Self-Test (BIST) Register	No change
10h- 2Bh	Reserved	No change

Loc.	Register Name	Revision
2Ch- 2Dh	Subsystem Vendor ID	New register
2Eh- 2Fh	Subsystem ID	New register
30h- 3Fh	Reserved	No change
40h	Memory Control Register - Byte 0	Bit [5]
41h	Memory Control Register - Byte 1	No change
42h	Memory Control Register - Byte 2	New register
43h	Internal Project Revision - Reserved	New register
44h	Data Path Register 1	Bits [6:5]
45h	Data Path Control Register 2	Bits [5,4,2,0]
46h	Data Path Control Register 3	No change
47h	Data Path Control Register 4	Bits [6:3], new foot- note
48h	Data Path Control Register 5	New register
49h- 4Bh	Reserved	No change
4Ch	MCACHE Control Register	New register
4Dh	Delay Adjustment Register	New register
4Eh	SDRAM Control Register	New register
4Fh- FFh	Reserved	No change

Revision Document

5.3 PCIDV1 Register Space

- Modified opening text slightly
- Added additional table (PCIDV1 table is now 5-8)

Table 5-8 PCIDV1 00h-FFh

Loc.	Register Name	Revision	
00h	Vendor Identification Register - Byte 0	No change	
01h	Vendor Identification Register - Byte 1	No change	
02h	Device Identification Register - Byte 0	No change	
03h	Device Identification Register - Byte 1	No change	
04h	Command Register - Byte 0	No change	
05h	Command Register - Byte 1	No change	
06h	Status Register - Byte 0	No change	
07h	Status Register - Byte 1	No change	
08h	Revision Identification Register	Default changed	
09h	Class Code Register - Byte 0	No change	
0 A h	Class Code Register - Byte 1	No change	
0Bh	Class Code Register - Byte 2	No change	
0Ch	Reserved	No change	
0Dh	Master Latency Timer Register	No change	
0Eh	Header Type Register	No change	
0Fh	Built-In Self-Test (BIST) Register	No change	
10h- 2Bh	Reserved	No change	
2Ch- 2Dh	Subsystem Vendor ID	New register	
2Eh- 2Fh	Subsystem ID	New register	
30h- 40h	Reserved	No change	
41h	Keyboard Controller Select Register	Bit [3]	
42h	Reserved	No change	
43h	Feature Control Register	No change	
44h- 45h	Reserved	No change	
46h	PCI Control Register B - Byte 0	No change	
47h	PCI Control Register B - Byte 1	No change	
48h	Strap Option Readback Register - Byte 0	No change	
49h	Strap Option Readback Register - Byte 1	Bits [4:0], new footnote	
4Ah	ROM Chip Select Register 1	No change	
4Bh	ROM Chip Select Register 2	No change	
4Ch- 4Dh	Reserved	No change	
4Eh	Miscellaneous Control Register 1	Bits [7:4]	
	FS ACPI	Bits [5,4]	

Loc.	Register Name	Revision
4Fh	Miscellaneous Control Register 2	Bit [7,2], new
	Ĭ	footnote
	FS ACPI	Bit [7]
50h- 51h	Reserved	No change
52h	Miscellaneous Controller Register 3	Bit [2]
	FS ACPI	Bits [4,3]
53h	Miscellaneous Controller Register 4	Bits [7:1]
54h	IRQ Driveback Address Register - Byte 0: Address Bits [7:0]	No change
55h	IRQ Driveback Address Register - Byte 1: Address Bits [15:8]	No change
56h	IRQ Driveback Address Register - Byte 2: Address Bits [23:16]	No change
57h	IRQ Driveback Address Register - Byte 3: Address Bits [31:24]	No change
58h	DRQ Remap Base Address Register - Byte 0: Address Bits [7:0]	No change
59h	DRQ Remap Base Address Register - Byte 1: Address Bits [15:8]	No change
5Ah	DRQ Remap Base Address Register - Byte 2: Address Bits [23:16]	No change
5Bh	DRQ Remap Base Address Register - Byte 3: Address Bits [31:24]	No change
5Ch	DMA Channel Selector Register	No change
5Dh	Reserved	No change
5Eh	IRQ Scheme Management Register	No change
5Fh	SYSCFG Base Select Register	No change
60h	IRQ Driveback Data Register - Byte 0: Data Bits [7:0]	No change
61h	IRQ Driveback Data Register - Byte 1: Data Bits [15:8]	No change
62h	IRQ Driveback Data Register - Byte 2: Data Bits [23:16]	No change
63h	IRQ Driveback Data Register - Byte 3: Data Bits [31:24]	No change
64h	PCI Master Control Register 1	No change
	FS ACPI	Bit [1]
65h	PCI Master Control Register 2	No change
	FS ACPI	Bit [6]
66h	Reserved	No change
67h	Miscellaneous Control Register 5	Bits [1,0]
68h	PCICLK Control Register 1	No change

Table 5-8 PCIDV1 00h-FFh (cont.)

Loc.	Register Name	Revision
69h	PCICLK Control Register 2	No change
6Ah	PCICLK Skew Adjust Register for PCICLK 0, 1, 2	No change
6Bh	PCICLK Skew Adjust Register for PCICLK 3, 4, 5	No change
6Ch- 6Fh	Reserved	No change
70h	Leakage Control Register - Byte 0	Bits [1:0]
71h	Leakage Control Register - Byte 1	Bits [7:0]
72h	Leakage Control Register - Byte 2	Bits [7:4,1]
73h	Leakage Control Register - Byte 3	Bits [5:4]
74h	Leakage Control Register - Byte 4	Bits [3:0]
75h	Leakage Control Register - Byte 5	Bits [7:2]
	FS ACPI	Bits [3:2]
76h	Hot Docking Leakage Control Register	New register
77h- 7Fh	Reserved	No change
80h	PIO0 Pin (CDOE#) Function Register	No change
81h	PIO1 Pin (TAGWE#) Function Register	No change
82h	PIO2 Pin (ADSC#) Function Register	No change
83h	PIO3 Pin (ADV#) Function Register	No change
84h	PIO4 Pin (RAS2#) Function Register	No change
85h	PIO5 Pin (RAS1#) Function Register	No change
86h	PIO6 Pin (CLKRUN#) Function Register	No change
87h	PIO7 Pin (REQ1#) Function Register	No change
88h	PIO8 Pin (REQ2#) Function Register	No change
89h	PIO9 Pin (DDRQ0) Function Register	No change
8Ah	PIO10 Pin (IRQ1) Function Register	No change
8Bh	PIO11 Pin (IRQ8#) Function Register	No change
8Ch	PIO12 Pin (IRQ12) Function Register	No change
8Dh	PIO13 Pin (IRQ14) Function Register	No change
8Eh	PIO14 Pin (SEL#/ATB#) Function Register	No change
8Fh	PIO15 Pin (RSTDRV) Function Register	No change
90h	PIO16 Pin (SA16) Function Register	No change
91h	PIO17 Pin (SA17) Function Register	No change
92h	PIO18 Pin (IO16#) Function Register	No change
93h	PIO19 Pin (M16#) Function Register	No change
94h	PIO20 Pin (SBHE#) Function Register	No change
95h	PIO21 Pin (SMRD#) Function Register	No change
96h	PIO22 Pin (SMWR#) Function Register	No change
97h	PIO23 Pin (ROMCS#) Function Register	No change

Loc.	Register Name	Revision
98h	PIO24 Pin (KBDCS#) Function Register	No change
99h	PIO25 Pin (DRQA) Function Register	No change
9Ah	PIO26 Pin (DRQB) Function Register	No change
9Bh	PIO27 Pin (DRQC) Function Register	No change
9Ch	PIO28 Pin (DRQD) Function Register	No change
9Dh	PIO29 Pin (DRQE) Function Register	No change
9Eh	PIO30 Pin (DRQF) Function Register	No change
9Fh	PIO31 Pin (DRQG) Function Register	No change
A0h	Logic Matrix Register 1	No change
A1h	Logic Matrix Register 2	No change
A2h	Logic Matrix Register 3	No change
A3h	Logic Matrix Register 4	No change
A4h	Logic Matrix Register 5	No change
A5h	Logic Matrix Register 6	No change
A6h	Logic Matrix Register 7	No change
A7h	Logic Matrix Register 8	No change
A8h	PIO Pin Current State Register 1	No change
A9h	PIO Pin Current State Register 2	No change
AAh		
ABh	PIO Pin Current State Register 4	No change
ACh- ADh	Reserved	No change
AEh	DBE# Select Register 1	No change
AFh	DBE# Select Register 2	No change
B0h	IRQA Interrupt Selection Register	No change
B1h	IRQB Interrupt Selection Register	No change
B2h	IRQC Interrupt Selection Register	No change
B3h	IRQD Interrupt Selection Register	No change
B4h	IRQE Interrupt Selection Register	No change
B5h	IRQF Interrupt Selection Register	No change
B6h	IRQG Interrupt Selection Register	No change
B7h	IRQH Interrupt Selection Register	No change
B8h	PCI Interrupt Selection Register 1	No change
B9h	PCI Interrupt Selection Register 2	No change
BAh	Serial IRQ Control Register 1	No change
BBh	Serial IRQ Control Register 2	No change
BCh- BFh	Reserved	No change
C0h	DMA Channels A and B Selection Register	No change
C1h	DMA Channels C and D Selection Register	No change
C2h	DMA Channel E Selection Register	No change
C3h	DMA Channels F and G Selection Register	No change

Revision Document

Table 5-8 PCIDV1 00h-FFh (cont.)

Loc.	Register Name	Revision	
C4h- CFh	Reserved No change		
Note:	PCIDV1 D0h through EEh pertain oversion. Otherwise they are reserv	•	
D0h	FS ACPI: PM1_BLK Base Address Register - Byte 0: Address Bits [7:0]	New register	
D1h	FS ACPI: PM1_BLK Base Address Register - Byte 1: Address Bits [15:8]	New register	
D2h	FS ACPI: PM2_BLK Base Address Register - Byte 0: Address Bits [7:0]	New register	
D3h	FS ACPI: PM2_BLK Base Address Register -Byte 1: Address Bits [15:8]	New register	
D4h	FS ACPI: P_BLK Base Address Register - Byte 0: Address Bits [7:0]	New register	
D5h	FS ACPI: P_BLK Base Address Register - Byte 1: Address Bits [15:8]	New register	
D6h	FS ACPI: GPE0_BLK Base Address Register - Byte 0: Address Bits [7:0]	New register	
D7h FS ACPI: GPE0_BLK Base Address Register - Byte 0: Address Bits [15:8]		New register	
D8h	FS ACPI: ACPI Source Control Register - Byte 0	New register	
D9h	FS ACPI: ACPI Source Control Register - Byte 1	New register	
DAh	FS ACPI: ACPI Source Status Register - Byte 0	New register	
DBh	FS ACPI: ACPI Source Status Register - Byte 1	New register	
DCh	FS ACPI: ACPI Event Resume Control Register - Byte 0	New register	
DDh FS ACPI: ACPI Event Resume C Register - Byte 1		New register	
DEh- DFh	Reserved	New register	

Loc.	Register Name	Revision
E0h	FS ACPI: SLP_TYP Control Register - Byte 0	New register
E1h	FS ACPI: SLP_TYP Control Register - Byte 1	New register
E2h	FS ACPI: SLP_TYP Control Register - Byte 2	New register
E3h	FS ACPI: SLP_TYP Control Register - Byte 3	New register
E4h	FS ACPI: SLP_TYP Control Register - Byte 4	New register
E5h	FS ACPI: SLP_TYP Control Register - Byte 5	New register
E6h	FS ACPI: SLP_TYP Control Register - Byte 6	New register
E7h	FS ACPI: SLP_TYP Control Register - Byte 7	New register
E8h	FS ACPI: Power Control Latch Set Register	New register
E9h	Reserved	New register
EAh	FS ACPI: Power Control Readback Register - Byte 0	New register
EBh	FS ACPI: Power Control Readback Register - Byte 1	New register
ECh	FS ACPI: Power Control Readback Register - Byte 2	New register
EDh	FS ACPI: Power Control Readback Register - Byte 3	New register
EEh	FS ACPI: ACPI Thermal Control Register	New register
EFh- FDh	Reserved	No change
FEh	Stop Grant Cycle Generation Register	No change
FFh	Parity Error Cycle Generation Register	No change

5.4 IDE Register Space

5.4.1 IDE Configuration Registers

• No change in opening text

Table 5-9 PCIIDE 00h-47h

Loc	Register Name	Revision	
00h	Vendor ID Register - Byte 0	No change	
01h	Vendor ID Register - Byte 1 No change		
02h			
03h	Device ID Register - Byte 1	No change	
04h	Command Register - Byte 0	No change	
05h	Command Register - Byte 1	No change	
06h	Status Register - Byte 0	No change	
07h	Status Register - Byte 1	No change	
08h	Revision ID Register	No change	
09h	Class Code Register - Byte 0	No change	
0Ah	Class Code Register - Byte 1	No change	
0Bh	Class Code Register - Byte 2	No change	
0Ch- 0Dh	Reserved	No change	
0Eh	Header Type Register	No change	
0Fh	Built-In Self-Test Register	No change	
10h- Primary IDE Command Block Base Clarified 13h Address Register		Clarified default	
14h- 17h	Primary IDE Control Block Base Address Register	Clarified default	
18h- 1Bh	Secondary IDE Command Block Base Address Register Clarified def		
1Ch- 1Fh	Secondary IDE Control Block Base Address Register	Clarified default	
20h- 23h	Bus Master IDE Base Address Register	Default changed	
24h- 2Bh	Reserved	No change	
2Ch- 2Dh	Subsystem Vendor ID	New register	
2Eh- 2Fh	Subsystem ID	New register	
30h- 3Ah	Reserved	No change	
3Ch	Interrupt Line Register	Default changed	
3Dh	Interrupt Pin Register	No change	
3Eh- 3Fh	Reserved	No change	
40h	IDE Initialization Control Register	No change	
41h	Reserved	No change	

Loc	Register Name	Revision	
42h	IDE Enhanced Feature Register	No change	
	FS ACPI: IDE Enhanced Feature Register	Bit [6]	
43h	IDE Enhanced Mode Register	No change	
Note: T	ne registers differ for FireStar and FS A	CPI from 44h.	
FireSta	•		
44h	Emulated Bus Master Register	No change	
45h	IDE Interrupt Selection Register	No change	
FireSta	ACPI		
44h	FS ACPI: Ultra DMA Configuration Register 1	New register	
45h	FS ACPI: Ultra DMA Configuration Register 2	New register	
46h	FS ACPI: Emulated IDE Configuration Register	New location	
47h	FS ACPI: IDE Interrupt Selection Register	New location	

5.4.2 IDE I/O Registers

No changes

5.5 I/O Registers

- Changed title of Table 5-13
- Added ACPI I/O registers

5.6 Register Space Summary

Updated with changes made to SYSCFG and PCICFG registers

Revision Document

Section 6.0 Electrical Ratings

· Changed section title

6.1 Absolute Maximum Ratings

· No changes

6.2 DC Characteristics

· Modified table, now have one DC table as opposed to four

6.3-6.7 AC Characteristics

No changes made to the AC characteristic for the individual modules

6.8 AC Timing Diagrams

· No changes

Section 7.0 Test Mode Information

New section to data book

Section 8.0 Mechanical Package Outline

No changes

Table of Contents

1.0	Features				
2.0	0 Overview				
3.0	Sigi	Signal Definitions			
	3.1	Termir	nology/Nomenclature Conventions	4	
	3.2		Descriptions		
		3.2.1	CPU Interface Signals Set		
		3.2.2	DRAM and PCI Interface Signals Set	15	
		3.2.3	IDE Interface Signal Set	19	
		3.2.4	ISA Interface Signal Set	21	
		3.2.5	Test Mode Selection Pins	32	
		3.2.6	Power and Ground Pins	32	
	3.3	Progra	ammable I/O Pins	33	
	3.4	Strap	Selected Options	39	
4.0	Fun	ctional	I Description	41	
	4.1	Buses	and Concurrency	41	
		4.1.1	Cycles Originating from CPU	41	
			4.1.1.3 Cycles Destined for a Docking Station ISA Bus Device		
		4.1.2	Concurrent Bus Operation	43	
	4.2	Interm	odule Communications	43	
		4.2.1	Read: CPU < DRAM or L2 Cache	43	
		4.2.2	Write: CPU > DRAM or L2 Cache	43	
		4.2.3	Cache Write Hit - Write Cycles from CPU to L2 Cache		
		4.2.4	L2 Cache Inquiries from PCI		
	4.3	Reset	Logic	4 4	

4.4	System Clocks		
	4.4.1	CPU and FireStar Clocks	45
	4.4.2	PCI Bus Clocks	45
		4.4.2.1 PCI Clock Generation	
	4.4.3	ISA Bus Clocks	48
	4.4.4	Clock Control	48
	4.4.5	L2 Cache Clock Control	48
4.5	Cache	Cache Subsystem	
	4.5.1	CPU Burst Mode Control	49
		4.5.1.1 Cyrix Linear Burst Mode Support	49
	4.5.2	Cache Cycle Types	50
	4.5.3	Cache Operation	50
		4.5.3.1 L2 Cache Read Hit	50
		4.5.3.2 L2 Cache Write Hit Cycle	52
		4.5.3.3 L2 Cache Read Miss	53
		4.5.3.4 L2 Cache Write Miss	53
		4.5.3.5 Write Policies	53
		4.5.3.6 Tag Compare Table	55
		4.5.3.7 Tag and Dirty RAM Implementations	56
		4.5.3.8 Cache Initialization	58
		4.5.3.9 Write Back Cache with DMA/ISA Master/PCI Master Operation	58
	4.5.4	Shadow ROM and BIOS Cacheability	62
		4.5.4.1 Cacheability and Write Protection	63
		4.5.4.2 Remapping of Reset Vector to Shadow DRAM	66
	4.5.5	SRAM Support	67
		4.5.5.1 SRAM Requirements	67
		4.5.5.2 Pipelined Synchronous SRAM Support	67
		4.5.5.3 Sony SONIC-2WP (Cache Module) Support	70
4.6	DRAM	l Controller	71
	4.6.1	FPM and EDO DRAM Support	71
		4.6.1.1 DRAM Type Detection Algorithm	72
	4.6.2	EDO Support	74
	4.6.3	SDRAM Support	76
		4.6.3.1 SDRAM Commands	76
		4.6.3.2 SDRAM Initialization	76

		4.6.3.3	Unbuffered DIMMs	
		4.6.3.4	SDRAM Detection Algorithm	
	4.6.4		Buffering	
		4.6.4.1	CPU-to-DRAM Deep Buffer	
		4.6.4.2	PCI-to-DRAM Deep Buffer	
	4.6.5	J	nming the DRAM Parameters	
		4.6.5.1	Drive Strengths	
		4.6.5.2 4.6.5.3	Number of DRAM banks DRAM Size	
	4.6.6		Cycles	
		4.6.6.1	DRAM Write Cycle	
		4.6.6.2 4.6.6.3	DRAM Write Cycle DRAM Refresh Logic	
	407		y	
	4.6.7		DMA/Master Cycles	
	4.6.8	DRAM H	Hole Control	93
4.7	CPU Pipelining Control			94
4.8	PCI Bu	s Interfac	ce	97
	4.8.1	PCI Mas	ster Cycles	97
		4.8.1.1	System Memory Access	97
		4.8.1.2	X-1-1-1 Support on PCI Master Cycles	97
		4.8.1.3	Non-Local Memory Access	97
		4.8.1.4	PCI Master Pre-Snoop	98
	4.8.2	PCI Slav	ve Cycles	99
		4.8.2.1	CPU Master Cycles	99
		4.8.2.2	PCI Byte/Word Merge	
		4.8.2.3	ISA Master Cycles	99
	4.8.3	PCI A rb	itration	106
4.9	ISA Bu	ıs Interfac	ce	107
	4.9.1	Data Bu	us Conversion/Data Path Control Logic	107
	4.9.2	Special	Cycles	108
		4.9.2.1	System ROM BIOS Cycles	108
		4.9.2.2	System Shutdown/Halt Cycles	108

	4.9.3	Local ISA Support Options	109
		4.9.3.1 No ISA Bus Configuration	109
		4.9.3.2 Minimum ISA Bus Configuration	109
		4.9.3.3 Reduced ISA Bus Configuration	110
		4.9.3.4 Full ISA Bus Configuration	
		4.9.3.5 Compact ISA Support	
		4.9.3.6 Compact ISA Interface	112
	4.9.4	Additional ISA Features	
		4.9.4.1 PCI Positive Decode for ISA	
		4.9.4.2 Remote ISA Support	117
	4.9.5	PC98 Support Features	118
	4.9.6	Interrupt Support	119
		4.9.6.1 ISA IRQ Implementation	119
		4.9.6.2 PCI PCIRQx# Implementation	121
		4.9.6.3 PCI IRQ Driveback Implementation	
		4.9.6.4 Intel Serial IRQ Implementation	
		4.9.6.5 Compaq Serial IRQ Implementation	123
4.10	Interna	al Integrated Peripherals Controller	125
	4.10.1	IPC Configuration Programming	125
	4.10.2	IPC Register Programming	126
		4.10.2.1 Initialization Command Words	
		4.10.2.2 Operational Command Words	127
		4.10.2.3 Interrupt Controller Shadow Registers	128
	4.10.3	DMA Controller Programming Registers	128
	4.10.4	Timer Programming Registers	131
		4.10.4.1 Shadow Registers To Support Timer	132
	4.10.5	Writing/Reading I/O Port 070h	132
		4.10.5.1 RTC Index Shadow Register	132
	4.10.6	IRQ8 Polarity	133
	4.10.7	Fast GATEA20 and Reset Emulation	133
4.11	Integra	ated Local Bus Enhanced IDE Interface	135
	4.11.1	Performance and Power	
	4.11.2	Bus Mastering IDE Controller	135
		4.11.2.1 Isolation of Drives	
		4.11.2.2 IDE Control Pinout Options	136
		4.11.2.3 Dedicated Secondary IDE Interface	138

	4.11.3	Programming the IDE Controller	
		4.11.3.1 Enabling Access to IDE I/O Space	
		4.11.3.2 Disabling Access to IDE I/O Space	
	4.11.4	Programming Timing Information	
	7.11.7	4.11.4.1 Enabling Common Timing for All Drives	
		4.11.4.2 Enabling Independent Timing	
		4.11.4.3 Programming and Drive Placement Tips:	
	4.11.5	Bus Mastering Support Overview	151
	4.11.6	Physical Region Descriptor Table	152
		4.11.6.1 Physical Region Descriptor	152
		4.11.6.2 Bus Master IDE Registers	153
		4.11.6.3 Standard Programming Sequence for Bus Mastering Operations	154
		4.11.6.4 Programming the IDE Interrupt Routing	157
	4.11.7	Emulated Bus Mastering Mode	158
		4.11.7.1 Setup	
		4.11.7.2 Operation	158
4.12	Type F	DMA Support	159
4.13	Distribu	uted DMA Overview	160
4.13	Distribu	Distributed DMA Protocol	
4.13			160
4.13		Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview	160 160
4.13		Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology	160 160 160
4.13		Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview	160 160 160
4.13		Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology	160 160 160 160
4.13	4.13.1	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection	160 160 160 164
4.13	4.13.1 4.13.2	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support	160 160 160 164 164
4.13	4.13.1 4.13.2	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers 4.13.3.2 DMA Channel Selector Register	
4.13	4.13.1 4.13.2	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers	
4.13 4.14	4.13.1 4.13.2 4.13.3	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers 4.13.3.2 DMA Channel Selector Register	
	4.13.1 4.13.2 4.13.3	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers 4.13.3.2 DMA Channel Selector Register 4.13.3.3 System Configuration Registers	
	4.13.1 4.13.2 4.13.3	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers 4.13.3.2 DMA Channel Selector Register 4.13.3.3 System Configuration Registers	
	4.13.1 4.13.2 4.13.3 IRQ Dri 4.14.1	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers 4.13.3.2 DMA Channel Selector Register 4.13.3.3 System Configuration Registers veback Overview Driveback Cycle Format	
	4.13.1 4.13.2 4.13.3 IRQ Dri 4.14.1 4.14.2	Distributed DMA Protocol 4.13.1.1 Introduction 4.13.1.2 Protocol Overview 4.13.1.3 Distributed DMA Protocol Terminology 4.13.1.4 DMA Channel Selection Hardware Distributed DMA Support Software Distributed DMA Support 4.13.3.1 PCI Configuration Registers 4.13.3.2 DMA Channel Selector Register 4.13.3.3 System Configuration Registers veback Overview Driveback Cycle Format Edge vs Level Mode, IRQ Polarity	

4.15	Power M	Management	171
	4.15.1	Power Management Unit (PMU)	172 183 183
	4.15.2	System Power Control	187
	4.15.3	Doze Mode	190 192 195
	4.15.4	CPU Thermal Management Unit	198 198
	4.15.5	Suspend and Resume	
	4.15.6	Chip-Level Power Conservation Features	206 208
	4.15.7	Context Save Feature	208
	4.15.8	Resume Event	209
	4.15.9	Power Control Latch 4.15.9.1 Power Control Pins 4.15.9.2 Hardware Considerations 4.15.9.3 Programming 4.15.9.4 Resume Recovery Time 4.15.9.5 PPWR[1:0] Suspend Auto Toggle Feature	212 212 212 214
	4.15.10	Programmable Chip Select Feature	

4.16	ACPI In	nplementation	.217
	4.16.1	Register Level Interface	.217
	4.16.2	Base Address Selection	218
		4.16.2.1 PM1 Register Block	
		4.16.2.2 PM2 Register Block	
		4.16.2.3 Processor Register Block	
	4.40.0	4.16.2.4 General Purpose Bits	
	4.16.3	FireStar IRQ Driveback Feature	
	4.16.4	Power Control	
		4.16.4.1 PPWR Control Register	
	4.16.5	ACPI-to-EPMI Mapping, Muxing	
	4.16.6	Temperature Trip Points	
		4.16.6.1 Fan Control	
	4.16.7	New PIO Pin Options	.237
4.17	System	Management Interrupt (SMI)	.239
	4.17.1	SMI Operation and Initialization	.240
		4.17.1.1 Loading Initial SMM Code and Data	
		4.17.1.2 Run-Time SMI Address Relocation	.242
	4.17.2	SMI Event Generation	
		4.17.2.1 Time-out Event Generation of SMI	
		4.17.2.2 Access Event Generation of SMI	
		4.17.2.3 Interrupt Event Generation of SMI	
	4.17.3	Enabling of Events to Generate SMI	
	4.17.3	4.17.3.1 PMI#25 Triggers	
	4.17.4	Servicing an SMI	
	7.17.7	4.17.4.1 PMI Source Register Details	
		4.17.4.2 EPMI Pin PMI Sources	
	4.17.5	I/O SMI Trap Indication	.250
	4.17.6	Trapping with NMI Instead of SMM	.251
4.18	Utility F	Registers	.252
4.19	Hot Do	cking Feature	.253
	4.19.1	Initialization Procedure:	

5.0	Reg	gister Descriptions	257
	5.1	SYSCFG Register Space	259
		5.1.1 System Configuration Register Index/Data Programmable	259
	5.2	PCIDV0 Register Space	299
	5.3	PCIDV1 Register Space	303
	5.4	IDE Register Space	333
		5.4.1 IDE Configuration Registers	333
		5.4.2 IDE I/O Registers	340
		5.4.3 Bus Master IDE Registers	
	5.5	I/O Register Space	349
		5.5.1 ISA-Compatible I/O Registers	
		5.5.2 ACPI I/O Registers	352
	5.6	Register Space Summary	357
6.0	Elec	ctrical Ratings	365
	6.1	Absolute Maximum Ratings	365
	6.2	DC Characteristics	365
	6.3	Data Buffer Controller Module AC Characteristics (66MHz - Pre	eliminary)366
	6.4	CPU Interface Module AC Characteristics (66MHz - Preliminary	v)366
	6.5	DRAM Controller Module AC Characteristics (66MHz - Prelimin	nary)367
	6.6	PCI Controller Module AC Characteristics (66MHz - Preliminary	y)368
	6.7	ISA Controller Module AC Characteristics (66MHz - Preliminary	y)369
	6.8	AC Timing Diagrams	•
7.0	Test	st Mode Information	
8.0		chanical Package Outlines	
J.U	IAIC	viiailivai I avrage vullilles	

ا م4	pendi	k A.Coi	mpact ISA Specification	377
	A .1	Compa	act ISA Overview	377
	A .2	Compa	act ISA Cycle Definition	378
		A.2.1	Memory Cycle	378
		A.2.2	I/O Cycle	381
		A .2.3	DMA on the CISA/ISA Bus	382
		A.2.4	DACK# Cycle	382
		A.2.5	Configuration Cycle	384
	A .3	Interrup	pt and DMA Request Drive-Back	386
		A .3.1	Interrupt Requests	386
		A .3.2	DMA Requests	386
	A .4	Perforr	mance Control	387
	A .5	Compa	atibility and Host Responsibilities	388
	A .6	Shared	d Speaker Signal Support (Optional)	388
		A .6.1	Initial Synchronization	388
		A .6.2	SPKR Sharing During Active Mode	389
		A .6.3	SPKR Sharing During Stop Clock Mode	390
		A .6.4	Audio Output Circuit Recommendations	390
	A .7	Automa	atic Voltage Threshold Detection	390

Page xxiv 912-200

List of Figures

igure 1-1	FireStar System Block Diagram	1
igure 2-1	FireStar Logic Modules	3
Figure 3-1	Pin Diagram	5
Figure 3-2	Programmable Logic Matrix	36
igure 4-1	Multiple ISA Bus Support	42
igure 4-2	Typical CPU and FireStar Clock Distribution	45
igure 4-3	System Clock Generation	46
igure 4-4	L2 Cache Read Hit Cycle - Sync SRAMs	51
igure 4-5	Write Hit Burst Cycle for Writeback Mode - Sync SRAM	52
igure 4-6	Internal Tag Comparator Block Diagram	55
igure 4-7	32Kx9 Combined Tag/Dirty RAM Implementation	57
igure 4-8	32Kx8 Combined Tag/Dirty RAM Implementation	57
igure 4-9	32Kx8 and 32Kx8 Combined Tag/Dirty RAM Implementation (Separate Devices)	57
igure 4-10	ISA DMA/Master Read (L1 cache with non-modified line)	60
igure 4-11	ISA DMA/Master Read (L1 cache with modified line)	61
igure 4-12	ISA DMA/Master Write (L1 cache with modified line)	62
igure 4-13	FPM DRAM Connectivity	71
igure 4-14	ISA Master Synchronization	92
igure 4-15	CPU 32-Bit Read from PCI	100
igure 4-16	CPU 32-Bit Write to PCI	101
igure 4-17	CPU 64-Bit Read from PCI	102
igure 4-18	ISA Master Read from PCI	103
igure 4-19	ISA Master Write to PCI	104
igure 4-20	ISA Master Read from ISA Slave	105
igure 4-21	ISA Master Write to ISA Slave	106
igure 4-22	Minimum ISA Bus Configuration	109
igure 4-23	Reduced ISA Bus Configuration	110
igure 4-24	Full ISA Bus Configuration	111
igure 4-25	Compact ISA Support (available for all configurations)	111
igure 4-26	Connections with Keyboard Emulation Disabled	134
igure 4-27	IDE Interface Using Individual TTL	137
igure 4-28	IDE Interface Using Zero-TTL	137
igure 4-29	PIO Mode Configuration	142
igure 4-30	PIO Mode Cycle Timing	142
igure 4-31	IDE Interface Primary Channel Programming Flow Chart	146
igure 4-32	Master IDE Configuration	151
Figure 4-33	Multi-Word DMA Transfer Mode	151
igure 4-34	Single-Word DMA Transfer Mode	151
igure 4-35	Physical Region Descriptor Table Entry	152
igure 4-36	Bus Master IDE Operation	156

List of Figures (cont.)

Figure 4-37	IRQ Driveback Cycle High Priority Request	167
Figure 4-38	Activity Monitoring Block Diagram	171
Figure 4-39	Dual Doze Mode Operation Example	191
Figure 4-40	External Temperature Sensor Circuit	
Figure 4-41	FireStar SLP_TYP Power Control Scheme Example	225
Figure 4-42	Insertion Times	253
Figure 4-43	HDI Input Deasserted Within Time-out Period	254
Figure 4-44	HDI Input Not Deasserted Within Time-out Period (SMI generated on time-out)	254
Figure 6-1	Setup Timing Waveform	370
Figure 6-2	Hold Timing Waveform	371
Figure 6-3	Output Delay Timing Waveform	371
Figure 6-4	Float Delay Timing Waveform	372
Figure 8-1	432-Pin Ball Grid Array (BGA)	375
Figure A-1	Compact ISA Memory Cycle Operation, Fast CISA Timing*	379
Figure A -2	Compact ISA Memory Cycle Operation, Standard ISA Timing*	380
Figure A -3	Compact ISA I/O Cycle Operation	381
Figure A -4	Compact ISA DACK# Cycle Operation	383
Figure A -5	Compact ISA Configuration Cycle Operation	385
Figure A -6	Compact ISA Interrupt and DMA Request Drive-Back Cycle	387
Figure A -7	Synchronizing to ATCLK at 1st ALE	388
Figure A-8	Shared SPKBOLIT Signal Management	389

List of Tables

Table 1	FireStar Pin Modifications	iv
Table 3-1	Signal Definitions Legend	∠
Table 3-2	Alphabetical Pin Cross-Reference List	6
Table 3-3	PIO Functions	33
Table 3-4	Gate Level PIO Functions	36
Table 3-5	Gate Matrix Programming Registers	37
Table 3-6	Register Programmable PIO Pins	38
Table 3-7	Strap Options	39
Table 3-8	Strap Option Readback Registers	40
Table 4-1	Cycle Decode	41
Table 4-2	Resume Recovery Control Bits	44
Table 4-3	PCICLK Outputs Programming Registers	47
Table 4-4	ATCLK Frequency Control Register Bits	
Table 4-5	Burst Modes	49
Table 4-6	Burst Mode Control Register Bit	50
Table 4-7	Register Bits Associated with Write Policies	53
Table 4-8	Tag Compare Table	55
Table 4-9	Tag/Dirty RAM Control Register Bits	56
Table 4-10	Test Mode Selection/Control Bits	58
Table 4-11	DMA/Master Read Cycle Summary	59
Table 4-12	DMA/Master Write Cycle Summary	59
Table 4-13	Shadow ROM and BIOS Cacheability / Write Protection Control Bits	63
Table 4-14	Cacheability Methods	65
Table 4-15	SYSCFG 08h[0]	65
Table 4-16	Reset Vector to Shadow DRAM Register Bit	66
Table 4-17	L2 Cache Signal Set	67
Table 4-18	Data SRAM Synchronous Configurations - Typical	67
Table 4-19	SRAM Cycle Lengths	67
Table 4-20	Tag and Data SRAM Speed Requirements	67
Table 4-21	Register Bits Associated with SRAM Support	68
Table 4-22	Cache Module Register Support	70
Table 4-23	SRAM Comparisons	70
Table 4-24	DRAM Detection Register Bits	72
Table 4-25	EDO Associated Register Bits	74
Table 4-26	SDRAM Cycle Lengths	76
Table 4-27	SDRAM Configuration Registers	77
Table 4-28	DRAM Buffering Related Registers/Bits	81
Table 4-29	Drive Strength Control Bits	82
Table 4-30	RAS Selection Bits	82
Table 4-31	DRAM Configuration Related Register Bits	83

Table 4-32	Programming Size Registers	84
Table 4-33	CPU Address to Memory Row/Column Address Map	84
Table 4-34	CPU Address to Memory Row/Column Address Map	85
Table 4-35	DRAM Cycle Lengths	88
Table 4-36	DRAM Operation Programming Bits	89
Table 4-37	Refresh Logic Register Bits	91
Table 4-38	DRAM Hole Control Related Registers	93
Table 4-39	NA# Generation Control	94
Table 4-40	PCI Master Access Bits	97
Table 4-41	Pre-Snoop Control Register Bits	98
Table 4-42	Byte/Word Merge Feature Register Bits	99
Table 4-43	Delay Back-to-Back ISA Cycle Register Bit	107
Table 4-44	Registers Associated with ROMCS#	108
Table 4-45	Compact ISA Control Registers	112
Table 4-46	Scratchpad Registers Used for CISA Configuration Cycles	114
Table 4-47	PCI Positive Decode Ranges for ISA Devices	115
Table 4-48	I/O Address Range 070-07Fh Accesses	118
Table 4-49	PC98 I/O Address Space	118
Table 4-50	IRQ Programmable Register Bits	119
Table 4-51	PCI Interrupt Selection Registers	121
Table 4-52	IRQ Driveback Address Registers	
Table 4-53	FireStar ACPI Interrupt Sharing Control Bit	122
Table 4-54	Intel Serial IRQ Control Bits	123
Table 4-55	Compaq Serial IRQ Control Bits	124
Table 4-56	Internal IPC Configuration Bits.	125
Table 4-57	INTC1 Initialization Command Words	126
Table 4-58	INTC2 Initialization Command Words	126
Table 4-59	INTC1 and INTC2 Operational Command Words	127
Table 4-60	Interrupt Controller Shadow Register Index Values	
Table 4-61	DMA Address and Count Registers	128
Table 4-62	DMA Control and Status Registers	128
Table 4-63	DMAC1 Control and Status Bits	129
Table 4-64	DMAC2 Control and Status Bits	130
Table 4-65	DMA Commands	130
Table 4-66	Timer Control and Status Registers	131
Table 4-67	Timer Control Bits	
Table 4-68	Timer Support Shadow Registers	
Table 4-69	RTC Index Register - I/O Port 070h (WO)	
Table 4-70	RTC Index Shadow Register - Index 98h (RO)	
Table 4-71	IRQ8 Polarity Bit - SYSCFG 50h	
Table 4-72	Fast GATEA20 and Reset Emulation Related I/O Port Registers	133

Table 4-73	Keyboard Emulation Disable Bit	134
Table 4-74	IDE Pin Programming Registers	135
Table 4-75	General IDE Control Line Assignment	137
Table 4-76	Control Line Assignment for two IDE Cables (No-ISA Mode)	138
Table 4-77	Enabling/Disabling Access to IDE I/O Space Registers	139
Table 4-78	IDE Interface Control Registers	140
Table 4-79	IDE Timing Control "Common Timing"	143
Table 4-80	IDE Timing Control "Independent Timing"	144
Table 4-81	Independent Timing Selection Options for Primary Channel	147
Table 4-82	16-Bit Timing Parameters with 33MHz PCI Bus	148
Table 4-83	16-Bit Timing Parameters with 25MHz PCI Bus	149
Table 4-84	Physical Region Descriptor Table Entry	152
Table 4-85	Bus Master IDE Registers	153
Table 4-86	DMA Mode Programming Bits	154
Table 4-87	IDE Interrupt Routing Chart	157
Table 4-88	IDE Interrupt Selection Registers	157
Table 4-89	Emulated Bus Master Control Registers	158
Table 4-90	Type DMA Control Register Bits	159
Table 4-91	DMA Channel Selector Register	161
Table 4-92	DMA Remap Scheme - Generic for all DMA Channels	161
Table 4-93	Complete Remap Scheme, Channels 0-3	162
Table 4-94	Complete Remap Scheme, Channels 4-7	162
Table 4-95	Selectable DMA Channel Support	164
Table 4-96	Hardware DMA Remapper	164
Table 4-97	Access Trap Address Register Bits	165
Table 4-98	PMU Registers Associated with DMA Trap	165
Table 4-99	DMA Channel Selector Register	166
Table 4-100	PMU Register Bits Associated with DMA Trap	166
Table 4-101	Information Provided on a Driveback Cycle	167
Table 4-102	Information Provided on a Optional Data Phase 2 of IRQ Driveback Cycle	168
Table 4-103	IRQ Driveback Control and Monitor Registers	169
Table 4-104	PCI IRQ Driveback Trap Bits	
Table 4-105	Timer Control Bits	172
Table 4-106	Time Interval Choices Applicable to _TIMER Settings	173
Table 4-107	Timer Clock Source Selection Registers	173
Table 4-108	Timer Registers	174
Table 4-109	ACCESS Events and their Enabling Bit Locations	
Table 4-110	PMU Control Registers	177
Table 4-111	GPCS Access Register Bits	179
Table 4-112	General Purpose Access Registers	
Table 4-113	Activity Tracking Registers	

Table 4-114	Idle Reload Source Registers	184
Table 4-115	External PMI Source Summary	185
Table 4-116	EPMI Programming Registers	185
Table 4-117	Power Management Event Status	186
Table 4-118	Register Bits Associated with STPCLK# Feature	188
Table 4-119	SMI Generation on DOZE Time-Out	190
Table 4-120	Dual Doze Mode Operation Example Setup/Link Registers	191
Table 4-121	Register Bits that Select Doze Mode Reset Events	192
Table 4-122	PCI Bus Doze Reset Registers	194
Table 4-123	Hardware and Software Doze Mode Registers	196
Table 4-124	Thermal Management Registers	199
Table 4-125	SMI Generation on Cool-down Clocking Entry/Exit Registers	201
Table 4-126	Suspend Control Register Bits	203
Table 4-127	Suspend Mode Power Saving Feature Related Bits	204
Table 4-128	Leakage Control Registers	206
Table 4-129	0V CPU Suspend and Stopping IPC Clock Register Bits	208
Table 4-130	Context Save Mode Programming Register Bit	208
Table 4-131	EPMI/IRQ Resume Event Related Register Bits	209
Table 4-132	SUS/RES and RINGI Resume Event Related Register Bits	211
Table 4-133	Power Control Register Bits	212
Table 4-134	Resume Recovery and Suspend Auto Toggle Register Bits	214
Table 4-135	Programmable Chip Select Registers	215
Table 4-136	GPCS# Control Bits	216
Table 4-137	Register Block Overview	217
Table 4-138	PCIDV1 ACPI Related Registers	218
Table 4-139	PM1_BLK Register Set	223
Table 4-140	PM2_BLK Register Set	226
Table 4-141	P_BLK Register Set	227
Table 4-142	GPE0_BLK Register Set	228
Table 4-143	Information provided on Data Phase 1 of IRQ Driveback Cycle	230
Table 4-144	Information provided on Data Phase 2 of IRQ Driveback Cycle	230
Table 4-145	PPWR Control Registers	231
Table 4-146	PPWR Power Control Defaults	232
Table 4-147	Recommended PPWR Control Assignments	233
Table 4-148	Recommended ACPI0-11 Mapping	235
Table 4-149	ACPI Source Control Register	235
Table 4-150	ACPI Thermal Control Register	236
Table 4-151	ACPI PIO Pin Options	237
Table 4-152	SMI Sources	239
Table 4-153	SMRAM Access Control Bits	241
Table 4-154	Software SMI Enable Register Bits	242

Table 4-155	Current and Next Access Registers	243
Table 4-156	INTRGRP IRQ Select Register Bits	245
Table 4-157	DMA DRQ Trap SMI Register Bits	245
Table 4-158	SMI Event Enable Registers	246
Table 4-159	SMI Service Registers	248
Table 4-160	I/O SMI Trap Indication Registers	250
Table 4-161	NMI Trap Enable Bits	251
Table 4-162	Utility Registers	252
Table 4-163	Hot Docking Control Register Bits	255
Table 5-1	Register Locations and Access Mechanisms	257
Table 5-2	CONFIG_ADDRESS Example	258
Table 5-3	Device Number Decode	258
Table 5-4	SYSCFG Base Select Register	259
Table 5-5	SYSCFG 00h-2Fh	259
Table 5-6	SYSCFG 30h-FFh (Power Management)	276
Table 5-7	PCIDV0 00h-FFh	299
Table 5-8	PCIDV1 00h-FFh	303
Table 5-9	PCIIDE 00h-47h	333
Table 5-10	Primary IDE I/O Registers	340
Table 5-11	Secondary IDE I/O Registers	343
Table 5-12	Bus Master IDE Registers	345
Table 5-13	Bus Master IDE Register Formats	346
Table 5-14	ISA-Compatible I/O Register Map	349
Table 5-15	Offset from PM1_BLK Base Address (PCIDV1 D0h-D1h)	352
Table 5-16	Offset from PM2_BLK Base Address (PCIDV1 D2h-D3h)	354
Table 5-17	Offset from P_BLK Base Address (PCIDV1 D4h-D5h)	355
Table 5-18	Offset from GPE0_BLK Base Address (PCIDV1 D6h-D7h)	356
Table 5-19	SYSCFG 00h-FFh Register Summary	
Table 5-20	PCIDV0 00h-FFh Register Summary	360
Table 5-21	PCIDV1 00h-FFh Register Summary	361
Table 5-22	PCIIDE 00h-47h Register Summary	364
Table 7-1	FireStar Mode Selection	373
Table 7-2	NAND Tree Test Mode Pins	374
Table A-1	Compact ISA (CISA) Interface Signals	377
Table A -2	Common MAD Bit Usage	378
Table A -3	MAD Bits During Memory Cycles	378
Table A -4	MAD Bits During I/O Cycles	
Table A -5	MAD Bits During DMA Acknowledge Cycles	
Table A -6	MAD Bits During Stop Clock Configuration Cycles	
Table A -7	IRQ/DRQ Drive Back Cycle	
Table A -8	SPKR Sharing During Active Mode	

Page xxxii 912-2000-015
Revision: 1.0

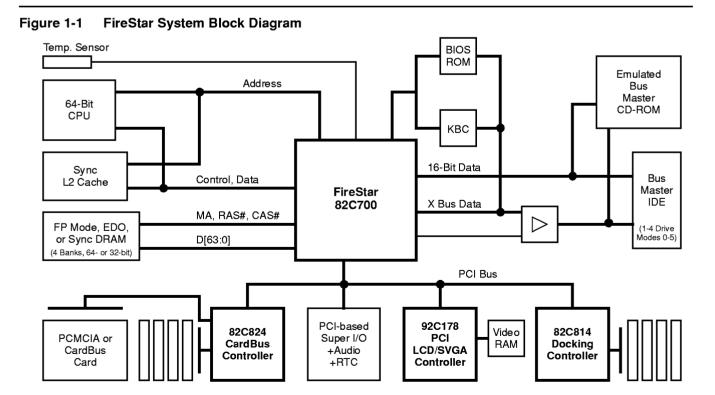
FireStar – 64-Bit CPU Single Chip Notebook Solution

1.0 Features

PCI Bus

- PCI supports sustained X-1-1-1... bursts, even to DRAM through an innovative mechanism. PCI operation can be concurrent with CPU/L2 cache and IDE operations.
- PCI clock generation eliminates the need for external PCI clock buffers in many designs and allows the PCI bus to be effectively power-managed.
- 3.3V or 5.0V PCI is supported on the FireStar PCI bus. If FireStar is configured for 3.3V operation, 5.0V-only PCI plug-in cards and docking stations can still be supported through a bridge device such as OPTi's 82C824 Cardbus Controller / Docking Solution, whose prefetch and postwrite buffers off-load operations from the primary PCI bus. (Figure 1-1 illustrates the typical system architecture applicable when using the FireStar solution.)

DRAM Controller


 Provides BIOS with the means to automatically detect the DRAM type in use on each bank, whether fast page mode, EDO, or synchronous DRAM, allowing BIOS routines to efficiently program DRAM operation.

ISA Bus

 A full ISA bus is directly provided to support the keyboard controller, BIOS ROM, and Compact ISA peripheral devices for local ISA support with no TTL. When reduced ISA operation is selected, other FireStar pins become available for general purpose use.

Bus Mastering IDE

- FireStar supports two bus mastering IDE channels that function concurrently with operations on the CPU/L2 cache interface and PCI interface. Up to four drives are supported.
- An emulated bus mastering IDE feature allows IDE drives that are not commonly available as bus mastering devices, such as CD-ROM drives, to act as bus mastering drives.
 For example, a CD-ROM drive can transfer video data to DRAM while the CPU is decompressing the data and sending it to the graphics controller.

912-2000-015 Revision: 1.0

Thermal Management

- Fail-safe thermal management incorporates feedback logic that requires a very inexpensive external sensor circuit.
- Hardware monitors temperature directly and reliably, while the fail-safe aspect of the circuitry ensures that sensor component failure will automatically inhibit CPU clocking to prevent overheating.
- SMM code will be able to read (and display if desired) actual CPU temperature.

ACPI Implementation

 Microsoft Advanced Configuration and Power Interface (ACPI) is being implemented in the FireStar silicon. ACPI is a standard register interface for power management function jointly developed by Microsoft[®], Intel[®], and Toshiba[®].

Miscellaneous

- The standard version of the chip can run at 3.3V, up to 66MHz on the CPU bus.
- A new Context Save Mode feature allows chip registers to be saved and restored more efficiently than ever before, requiring less SMM code and storage space.
- The OPTi Viper-N+ Power Management Unit is used, maintaining backward compatibility down to the register level with previously written support firmware.
- Serial IRQs are supported as an option for interrupts on PCI.
- Known devices in the system can be positively decoded on the PCI bus, eliminating the delay for subtractive decode and improving the efficiency of ISA operations.
- ISA bus cycle speed can be individually controlled to certain ISA device groups.
- Simple logic gate functions can be assigned to unused pins to eliminate the need for external TTL. Pin programming is far more flexible than ever possible on any other chip.

Page 2 912-2000-015

2.0 Overview

This data book describes the next generation Pentium® solution from the Mobile division of OPTi. The "FireStar" solution supports 64-bit 6x86-class CPUs and is very highly integrated, packaged in a single 432-pin BGA (Ball Grid Array). FireStar is intended as a low-cost yet high-performance notebook solution that can also be appropriate for use in certain

desktop applications. Using FireStar in a full-featured, PCI-based notebook allows for designs with zero TTL.

Figure 2-1 shows the logic modules within the functional blocks of FireStar.

Figure 2-1 FireStar Logic Modules

Signal Definitions 3.0

3.1 Terminology/Nomenclature Conventions

The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name, the signal is asserted when at the high voltage level.

The terms "assertion" and "negation" are used extensively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signals. The term "assert", or "assertion" indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term "negate", or "negation" indicates that a signal is inactive.

Some FireStar pins have more than one function. These pins can be time-multiplexed, have strap options, or can be selected via register programming. Included in the signal descriptions is a column titled "Selected By" which explains how to implement/invoke the various functions that a pin may have. The terms PCIDV0, PCIDV1, and SYSCFG relate to registers located in the PCI and System Configuration Register Spaces of FireStar. Refer to Section 5.0, "Register Descriptions" for more details regarding these register spaces and their access mechanisms.

The tables in this section use several common abbreviations. Table 3-1 lists the mnemonics and their meanings. Note that TTL/CMOS/Schmitt-trigger levels pertain to inputs only. Outputs are driven at CMOS levels.

Table 3-1 Signal Definitions Legend

Mnemonic	Description
CMOS	CMOS-level compatible
Dcdr	Decoder
Ext	External
G	Ground
I	Input
Int	Internal
I/O	Input/Output
Mux	Multiplexer
0	Output
OD	Open drain
Р	Power
PD	Pull-down resistor
PU	Pull-up resistor
S	Schmitt-trigger
S/T/S	Sustain Tristate
TTL	TTL-level compatible

912-2000-015 Page 4

	Figu	ıre 3	-1	Pir	ı Dia	grar	n																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	_
A	O HD48	O HD49	O HD50	O HD52	O HD55	O HD59	O SDCKE	O SD CAS#	⊕ TAG4	⊕ TAG- WE#	⊕ CAS3#	⊕ CAS7#	O MA1	O MA5	O MA9	O MD61	O MD56	O MD52	О мD47	O MD42	O MD38	О мD33	O MD29	O MD25	O MD22	O MD20	A
В	O HD46	O HD47	O HD51	O HD53	O HD56	O HD60	O RSVD	⊕ TAG7	⊕ TAG3	⊕ CAS0#	⊕ CAS4#	⊕ RAS2#	O MA2	O MA6	O MA10	O MD60	O MD55	O MD51	O MD46	O MD41	O MD37	O MD32	O MD28	O MD24	O MD21	O MD19	В
С	O HD43	O HD44	O HD45	O HD54	O HD57	O HD61	⊕ OSC32	⊕ TAG6	⊕ TAG2	⊕ CAS1#	⊕ CAS5#	⊕ RAS3#	О	O MA7	O MA11	O MD59	O MD54	O MD50	O MD45	O MD40	O MD36	O MD31	O MD27	O MD23	O MD17	O MD18	С
D	O HD39	O HD40	O HD41	O HD42	O HD58	O HD62	O SD	⊕ TAG5	⊕ TAG1	⊕ CAS2#	⊕ CAS6#	O MA0	O MA4	O MA8	O MD63	O MD58	O MD53	O MD49	O MD44	O MD39	O MD35	O MD30	O MD26	O MD14	O MD15	O MD16	D
E	O HD35	O HD36	O HD37	O HD38	O osc_		RAS# 5VREF		⊕ TAG0	⊕ DWE#		⊕ RAS0#	⊕ RAS1#	● GN D	O MD62	O MD57	⊘ vcc	O MD48	O MD43	⊚ vcc	O MD34	⊕ RAS4#	O MD10	O MD11	O MD12	O MD13	E
F	O HD30	O HD31	O HD32	O HD33	14MHZ O HD34	● GN D		_CPU			_DRAM		● GN D	● GN D			_DRAM			_DRAM	• GND	O MD5	O MD6	O MD7	O MD8	O MD9	F
G	O HD26	O HD27	O HD28	O HD29	O vcc																	O MD0	O MD1	O MD2	O MD3	O MD4	G
н	O HD21	O HD22	O HD23	O HD24	_CPU O HD25																	⊚ vcc	O SPKR	⊕ DBEW#	⊕ DDRQ0	⊕ PWR	н
J	O HD16	O HD17	O HD18	O HD19	O HD20																	_CORE DACK	OUT DACK	⊕ ROM	⊕ RFSH#	GD ⊕ KBD	J
K	O HD12	O HD13	O HD14	O HD15	O VCC																	6#/F#	7#/G#	cs# ⊕	⊕ DACK	CS# DACK	ĸ
L	O HD7	O HD8	O HD9	O HD10	_CORE																	0#/A# O VCC	1#/B# ⊕ DRQ	2#/C# ⊕ DRQ	3#/D# ⊕ DRQ	5#/E# ⊕ DRQ	L
М	O	O HD4	O HD5	O HD6	O CPU-																	_ISA ⊕ AEN	3/D ⊕ TC	5/E ⊕ DRQ	6/F ⊕ DRQ	7/G ⊕ DRQ	м
N	⊕	0	0	0	CLKIN	•					T.			/:		_					•	⊕	⊕	0/A ⊕	1/B ⊕	2/C ⊕	N
	GWE#	HD0	HD1 ⊕	HD2 ⊕	GND	GN D					IC	p	V	16)W						GND	SA1	SA0	RTC AS ⊕	RTC RD# ⊕	RTC WR#	
Р	CDOE#	ADV#	CACS#	BWE#	ADSC#	GND															GND	GÑD	SA5 ⊕	SA4 ⊕	SA3 ⊕	SA2 ⊕	P
R	CPU- RST		A20M#						Ke	ey: •												SA10	SA9 ⊕	SA8	SA7 ⊕	SA6 ⊕	R
Т	FERR#	CACHE #	D/C#	EADS#	VCC _CPU					€		er iplexed	d Signa	al - Re	fer to	Table 3	3-2					SA15	SA14	SA13	SA12	SA11	Т
U	SMI- ACT#	_	AHOLD		BRDY#																	VCC _ISA	⊕ SA19	⊕ SA18	⊕ SA17	SA16	U
٧	O BE4#	O BE5#	O BE6#	O BE7#	O ADS#																	⊕ SMWR#	_	⊕ SA22	⊕ SA21	⊕ SA20	v
W	BE0#	O BE1#	O BE2#	O BE3#	VCC _CPU																	⊕ BALE	⊕ IO16#	⊕ M16#	⊕ SBHE#	⊕ SMRD#	w
Y	O HA6	O HA5	O HA4	НАЗ	O M/IO#																	VCC _ISA	⊕ XD3	⊕ XD2	⊕ XD1	⊕ XD0	Y
AA	O HA10	O HA9	O HA8	O HA7	⊕ W/R#	● GN D							● GN D	● GN D							● GND	⊕ ATCLK	⊕ XD7	⊕ XD6	⊕ XD5	⊕ XD4	AA
АВ	O HA14	O HA13	O HA12	O HA11	O TMS	O PCI CLKIN	VCC _PCI	O AD26	O FRAME #	VCC _PCI	O IRDY#	O TRDY#	● GN D	O PCI CLK0	⊕ GNT2#	VCC _PCI	⊕ GNT1#	⊕ REQ1#	VCC _CORE	⊕ CMD#	⊘ 5VREF	O IRQ 10/G	⊕ MWR#	⊕ IOR#	⊕ IOW#	O IOCH- RDY	АВ
AC	O HA17	O HA16	O HA15	O HA27	O HA31	O IGERR#	O AD30	O AD25	O AD21	O AD17	O AD13	O AD9	O AD5	O AD1	O C/BE1#	O STOP#	O CPAR	⊕ GNT3#	O IRQ 3/A	⊕ SEL#/ ATB#	O IRQ 11/H	⊕ SD15	⊕ PPWRL	O RESET	⊕ RST DRV	⊕ MRD#	AC
AD	O HA19	O HA18	O HA24	O HA28	O NMI	O CPU- INIT	O AD29	O AD24	O AD20	O AD16	O AD12	O AD8	O AD4	O AD0	O C/BE0#	O GNT0#	O SERR#	⊕ REQ3#	O IRQ 4/B	O IRQ 7/E	⊕	⊕ SD14	⊕ SD11	⊕ SD2	⊕ SD1	⊕ SD0	AD
AE	O HA20	O HA22	O HA25	O HA29	O SMI#	O STP CLK#	O AD28	O AD23	O AD19	O AD15	O AD 11	O AD7	O AD3	O C/BE3#	O PLOCK	⊕ REQ2#	O PERR#	⊕ IRQ SER	O IRQ 5/C	⊕ IRQ8#	⊕ IRQ14	⊕ SD13	⊕ SD10	⊕ SD8	⊕ SD4	⊕ SD3	AE
AF	O HA21	O HA23	O HA26	O HA30	O INTR	O AD31	O AD27	O AD22	O AD18	O AD14	O AD10	O AD6	O AD2	O C/BE2#			O REQ0#	⊕	O	O IRQ	⊕ IRQ15	⊕ SD12	⊕ SD9	⊕ SD7	⊕ SD6	⊕ SD5	AF
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	SEL#	RUN# 16	17	18	6/D 19	9/F 20	21	22	23	24	25	26	1

Note: *In FireStar ACPI pin A7 becomes SDCKE, where as in the non-ACPI version it is reserved. However, in both versions pin A7 is still used as part of the input address for the NAND tree test mode.

Alphabetical Pin Cross-Reference List Table 3-2

Signal Name	Pin No.	Pin Type	Pwr Plane
A20M#	R3	0	CPU
AD0	AD14	1/0	PCI
AD1	AC14	1/0	PCI
AD2	AF13	1/0	PCI
AD3	AE13	I/O	PCI
AD4	AD13	1/0	PCI
AD5	AC13	1/0	PCI
AD6	AF12	1/0	PCI
AD7	AE12	I/O	PCI
AD8	AD12	1/0	PCI
AD9	AC12	I/O	PCI
AD10	AF11	1/0	PCI
AD11	AE11	1/0	PCI
AD12	AD11	1/0	PCI
AD13	AC11	1/0	PCI
AD14	AF10	1/0	PCI
AD15	AE10	1/0	PCI
AD16	AD10	1/0	PCI
AD17	AC10	1/0	PCI
AD18	AF9	1/0	PCI
AD19	AE9	1/0	PCI
AD20	AD9	1/0	PCI
AD21	AC9	1/0	PCI
AD22	AF8	1/0	PCI
AD23	AE8	1/0	PCI
AD24	AD8	1/0	PCI
AD25	AC8	1/0	PCI
AD26	AB8	1/0	PCI
AD27	AF7	1/0	PCI
AD28	AE7	1/0	PCI
AD29	A D7	1/0	PCI
AD30	AC7	1/0	PCI
AD31	AF6	1/0	PCI
ADS#	V5	1	CPU
ADSC#+PIO2	P5	0	CPU
ADV#+PIO3	P2	0	CPU
AEN+PPWR11	M22	1/0	ISA
AHOLD	U3	0	CPU
ATCLK+PCICLK4	AA22	0	ISA
BALE+PCICLK5	W22	0	ISA
BE0#	W1	-	CPU
BE1#	W2	<u> </u>	CPU
BE2#	W3	<u> </u>	CPU
		<u> </u>	
BE3#	W4		CPU
BE4#	V1	I	CPU
BE5#	V2	1	CPU
BE6#	V3	-	CPU
BE7#	V4		CPU
BOFF#	R5	1/0	CPU
BRDY#	U5	0	CPU
BWE#	P4	0	CPU
CACHE#	T2	- 1	CPU

-Reference List			
Signal Name	Pin No.	Pin Type	Pwr Plane
CACS#+DIRTY	P3	1/0	CPU
CAS0#+SDDQM0#	B10	0	DRAM
CAS1#+SDDQM1#	C10	0	DRAM
CAS2#+SDDQM2#	D10	0	DRAM
CAS3#+SDDQM3#	A11	0	DRAM
CAS4#+SDDQM4#	B11	0	DRAM
CAS5#+SDDQM5#	C11	0	DRAM
CAS6#+SDDQM6#	D11	0	DRAM
CAS7#+SDDQM7#	A12	0	DRAM
C/BE0#	AD15	1/0	PCI
C/BE1#	AC15	1/0	PCI
C/BE2#	AF14	1/0	PCI
C/BE3#	AE14	1/0	PCI
CDOE#+PIO0	P1	0	CPU
CLKRUN#+PIO6	A F16	1/0	PCI
CMD#+DIRTY+PCICLK3	AB20	1/0	ISA
CPAR	AC17	9	PCI
CPUCLKIN	M5	_	CPU
CPUINIT	A D6	0	CPU
CPURST+RSMRST	R1	0	CPU
D/C#	T3	_	CPU
DACK0#/DACKA#+ PP W R4	K22	0	ISA
DACK1#/DACKB#+ PP W R5	K23	0	ISA
DACK2#/DACKC#+ PP W R6	K24	0	ISA
DACK3#/DACKD#+ PP W R7	K25	0	ISA
DACK5#/DACKE#+ PP W R13	K26	0	ISA
DACK6#/DACKF#+ PP W R14	J22	0	ISA
DACK7#/DACKG#+ PPWR15	J23	0	ISA
DBEW#+IDE1_DACK#+ DWR#	H24	0	ISA
DDRQ0+PIO9	H25	1/0	ISA
DEVSEL#	AF15	1/0	PCI
DRQ0/DRQA+PIO25	M24	1/0	ISA
DRQ1/DRQB+PIO26	M25	1/0	ISA
DRQ2/DRQC+PIO27	M26	1/0	ISA
DRQ3/DRQD+PIO28	L23	1/0	ISA
DRQ5/DRQE+PIO29	L24	1/0	ISA
DRQ6/DRQF+PIO30	L25	1/0	ISA
DRQ7/DRQG+PIO31	L26	1/0	ISA
DWE#+SDWE#	E10	0	DRAM
EADS#+WB/WT#	T4	0	CPU
FERR#	T1	1	CPU
FRAME#	AB9	1/0	PCI
GND	AA6	G	
GND	AA13	G	
GND	AA14	G	
GND	AA 21	G	

Signal Name	Pin No.	Pin Type	Pwr Plane
GND	AB13	G	
GND	E14	G	
GND	F6	G	
GND	F13	G	
GND	F14	G	
GND	F21	G	
GND	N5	G	
GND	N6	G	
GND	N21	G	
GND	P6	G	
GND	P21	G	
GND	P22	G	
GNT0#	A D16	0	PCI
GNT1#+PCICLK1	A B17	0	PCI
GNT2#+PCICLK2	AB15	0	PCI
GNT3#	AC18	0	PCI
GWE#+RAS5#	N1	0	CPU
H A 3	Y4	1/0	CPU
H A 4	Y3	1/0	CPU
H A 5	Y2	1/0	CPU
H A 6	Y1	1/0	CPU
H A 7	AA4	1/0	CPU
HA8	AA3	1/0	CPU
H A 9	AA2	1/0	CPU
H A 10	AA1	1/0	CPU
H A 11	AB4	1/0	CPU
H A 12	AB3	1/0	CPU
HA13	AB2	1/0	CPU
H A 14	AB1	1/0	CPU
H A 15	AC3	1/0	CPU
H A 16	AC2	2/0	CPU
H A 17	AC1	1/0	CPU
H A 18	AD2	1/0	CPU
H A 19	AD1	1/0	CPU
H A 20		1/0	CPU
H A 21	AE1 AF1	1/0	CPU
HA22	AE2	1/0	CPU
HA23	AF2	1/0	CPU
H A 24	AD3	1/0	CPU
HA25	AE3	1/0	CPU
HA26	AF3	1/0	CPU
HA27	AC4	1/0	CPU
HA28	AD4	1/0	CPU
HA29	AE4	1/0	CPU
HA30	AF4	1/0	CPU
HA31	AC5	1/0	CPU
HD0	N2	1/0	CPU
HD1	N3	1/0	CPU
HD2	N4	1/0	CPU
HD3	M1	1/0	CPU
HD4	M2	1/0	CPU
HD5	М3	1/0	CPU

Page 6 912-2000-015

Table 3-2 Alphabetical Pin Cross-Reference List (cont.)

Signal Name	Pin No.	Pin Type	Pwr Plane
HD6	M4	/0	CPU
HD7	L1	1/0	CPU
HD8	L2	1/0	CPU
HD9	L3	1/0	CPU
HD10	L4	1/0	CPU
HD11	L5	I/O	CPU
HD12	K1	1/0	CPU
HD13	K2	I/O	CPU
HD14	K3	1/0	CPU
HD15	K4	1/0	CPU
HD16	J1	1/0	CPU
HD17	J2	1/0	CPU
HD18	J3	1/0	CPU
HD19	J4	1/0	CPU
HD20	J5	1/0	CPU
HD21	H1	1/0	CPU
HD22	H2	1/0	CPU
		1/0	
HD23	H3		CPU
HD24	H4	1/0	CPU
HD25	H5	1/0	CPU
HD26	G1	1/0	CPU
HD27	G2	1/0	CPU
HD28	G3	1/0	CPU
HD29	G4	1/0	CPU
HD30	F1	1/0	CPU
HD31	F2	1/0	CPU
HD32	F3	1/0	CPU
HD33	F4	1/0	CPU
HD34	F5	1/0	CPU
HD35	E1	1/0	CPU
HD36	E2	1/0	CPU
HD37	E3	I/O	CPU
HD38	E4	1/0	CPU
HD39	D1	1/0	CPU
HD40	D2	1/0	CPU
HD41	D3	1/0	CPU
HD42	D4	1/0	CPU
HD43	C1	1/0	CPU
HD44	C2	1/0	CPU
HD45	C3	1/0	CPU
	B1	1/0	CPU
HD46			
HD47	B2	1/0	CPU
HD48	A1	1/0	CPU
HD49	A2	1/0	CPU
HD50	A3	1/0	CPU
HD51	B3	1/0	CPU
HD52	A4	1/0	CPU
HD53	B4	1/0	CPU
HD54	C4	I/O	CPU
HD55	A 5	1/0	CPU
HD56	B5	1/0	CPU
HD57	C5	1/0	CPU

Pin No.	Pin Type	Pwr Plane	Signal Name	Pin No.	Pin Type	Pwr Plane
M4	/0	CPU	HD58	D5	1/0	CPU
L1	0	CPU	HD59	A 6	1/0	CPU
L2	1/0	CPU	HD60	В6	1/0	CPU
L3	1/0	CPU	HD61	C6	1/0	CPU
L4	/0	CPU	HD62	D6	1/0	CPU
L5	1/0	CPU	HD63	E6	1/0	CPU
K1	1/0	CPU	HITM#	R4	- 1	CPU
K2	1/0	CPU	IGERR#	AC6	1/0	CPU
КЗ	1/0	CPU	INTR	AF5	0	CPU
K4	1/0	CPU	IO16#+PIO18	W23	1/0	ISA
J1	1/0	CPU	IOCHRDY	AB26	1/0	ISA
J2	/0	CPU	IOR#+IDE1_DRD#	AB24	1/0	ISA
J3	1/0	CPU	IOW#+IDE1_DWR#	AB25	1/0	ISA
J4	1/0	CPU	IRDY#	A B11	1/0	PCI
J5	I/O	CPU	IRQ1+PIO10	AF18	1/0	PCI
H1	1/0	CPU	IRQ3/IRQA	AC19	ı	PCI
H2	1/0	CPU	IRQ4/IRQB	AD19	ı	PCI
НЗ	1/0	CPU	IRQ5/IRQC	A E19	1	PCI
H4	1/0	CPU	IRQ6/IRQD	AF19	ı	PCI
H5	1/0	CPU	IRQ7/IRQE	AD20	i	ISA
G1	1/0	CPU	IRQ8#+PIO11	AE20	1/0	ISA
G2	1/0	CPU	IRQ9/IRQF	AF20	1	ISA
G3	1/0	CPU	IRQ10/IRQG	AB22	i	ISA
G4	1/0	CPU	IRQ11/IRQH	AC21	i	ISA
F1	1/0	CPU	IRQ12+PIO12	AD21	1/0	ISA
F2	1/0	CPU	IRQ14+PIO13	AE21	1/0	ISA
F3	1/0	CPU	IRQ15+SIN#	AF21	1	ISA
F4	1/0	CPU	IRQSER+SDCKE+SOUT#	AE18	1/0	PCI
F5	1/0	CPU	KBDCS#+PIO24+DRD#	J26	1/0	ISA
E1	9	CPU	KEN#	R2	0	CPU
E2	1/0	CPU	LOCK#	U2		CPU
E3	1/0	CPU	M/IO#	Y5	<u> </u>	CPU
E4	1/0	CPU	M16#+PIO19	W24	1/0	ISA
D1	1/0	CPU	MA0	D12	0	DRAM
D2	1/0	CPU	MA1	A13	0	DRAM
					<u> </u>	
D3	1/0	CPU	MA2	B13	0	DRAM
D4	1/0	CPU	MA3	C13	0	DRAM
C1	1/0	CPU	MA4	D13	0	DRAM
C2	1/0	CPU	MA5	A14	0	DRAM
C3	1/0	CPU	MA6	B14	0	DRAM
B1	1/0	CPU	MA7	C14	0	DRAM
B2	1/0	CPU	MA8	D14	0	DRAM
A1	1/0	CPU	MA9	A15	0	DRAM
A2	1/0	CPU	MA10	B15	0	DRAM
A3	1/0	CPU	MA11	C15	0	DRAM
B3	1/0	CPU	MD0	G22	1/0	DRAM
A4	1/0	CPU	MD1	G23	1/0	DRAM
B4	1/0	CPU	MD2	G24	1/0	DRAM
C4	1/0	CPU	MD3	G25	1/0	DRAM
A 5	I/O	CPU	MD4	G26	1/0	DRAM
B5	1/0	CPU	MD5	F22	1/0	DRAM
C5	1/0	CPU	MD6	F23	1/0	DRAM

Signal Name	Pin No.	Pin Type	Pwr Plane
MD7	F24	1/0	DRAM
MD8	F25	1/0	DRAM
MD9	F26	1/0	DRAM
MD10	E23	1/0	DRAM
MD11	E24	1/0	DRAM
MD12	E25	1/0	DRAM
MD13	E26	1/0	DRAM
MD14	D24	1/0	DRAM
MD15	D25	1/0	DRAM
MD16	D26	1/0	DRAM
MD17	C25	1/0	DRAM
MD18	C26	1/0	DRAM
MD19	B26	1/0	DRAM
MD20	A 26	1/0	DRAM
MD21	B25	1/0	DRAM
MD22	A 25	1/0	DRAM
MD23	C24	1/0	DRAM
MD24	B24	1/0	DRAM
MD25	A 24	1/0	DRAM
MD26	D23	1/0	DRAM
MD27	C23	1/0	DRAM
MD28	B23	1/0	DRAM
MD29	A23	1/0	DRAM
MD30	D22	1/0	DRAM
MD31	C22	1/0	DRAM
MD32	B22	1/0	DRAM
MD33	A 22	1/0	DRAM
MD34	E21	1/0	DRAM
MD35	D21	1/0	DRAM
MD36	C21	1/0	DRAM
MD37	B21	1/0	DRAM
MD38	A 21	1/0	DRAM
MD39	D20	1/0	DRAM
MD40	C20	1/0	DRAM
MD41	B20	1/0	DRAM
MD42	A 20	1/0	DRAM
MD43	E19	1/0	DRAM
MD44	D19	1/0	DRAM
MD45	C19	1/0	DRAM
MD46	B19	1/0	DRAM
MD47	A 19	1/0	DRAM
MD48	E18	1/0	DRAM
MD49	D18	1/0	DRAM
MD50	C18	1/0	DRAM
MD51	B18	1/0	DRAM
MD52	A18	1/0	DRAM
MD53	D17	1/0	DRAM
MD54	C17	1/0	DRAM
MD55	B17	1/0	DRAM
MD56	A 17	1/0	DRAM
MD57	E16	1/0	DRAM
MD58	D16	1/0	DRAM

912-2000-015 Revision: 1.0

Table 3-2 Alphabetical Pin Cross-Reference List (cont.)

Signal Name	Pin No.	Pin Type	Pwr Plane
MD59	C16	1/0	DRAM
MD60	B16	1/0	DRAM
MD61	A16	1/0	DRAM
MD62	E15	1/0	DRAM
MD63	D15	1/0	DRAM
MRD#+IDE1_DCS3#	AC26	1/0	ISA
MWR#+IDE1 DCS1#	AB23	1/0	ISA
NA#	U4	0	CPU
NMI	AD5	0	CPU
OSC 14MHZ	E5	ı	CPU
OSC32	C7	1	CPU
PCICLK0	AB14	0	PCI
PCICLKIN	AB6	ī	CPU
PERR#	AE17	1/0	PCI
PLOCK#	AE15	1/0	PCI
PPWRL+PPWR0#	AC23	1/0	ISA
PWRGD	H26	1	ISA
RAS0#+SDCS0#	E12	0	DRAM
RAS1#+SDCS1#+PIO5	E13	0	DRAM
RAS2#+SDCS2#+PIO4	B12	0	DRAM
RAS3#+SDCS3#+MA12		0	
	C12		DRAM
RAS4#+MA12	E22	0	DRAM
RFSH#+PPWR12	J25	1/0	ISA
REQ0#	AF17	1/0	PCI
REQ1#+PIO7	AB18	1/0	PCI
REQ2#+PIO8	AE16	1/0	PCI
REQ3#	A D18	1	PCI
RESET#	AC24	0	ISA
ROMCS#+PIO23+ ROMCS#/KBDCS#	J24	1/0	ISA
RSTDRV+PIO15	AC25	1/0	ISA
RTCAS+IDE1_DA0	N24	1/0	ISA
RTCRD#+IDE1_DA1	N25	1/0	ISA
RTCWR#+IDE1_DA2	N26	1/0	ISA
SA0+IDE1_DD0	N23	1/0	ISA
SA1+IDE1_DD1	N22	1/0	ISA
SA2+IDE1_DD2	P26	1/0	ISA
SA3+IDE1_DD3	P25	1/0	ISA
SA4+IDE1_DD4	P24	1/0	ISA
SA5+IDE1_DD5	P23	1/0	ISA
SA6+IDE1_DD6	R26	1/0	ISA
SA7+IDE1 DD7	R25	1/0	ISA
SA8+IDE1 DD8	R24	1/0	ISA
SA9+IDE1 DD9	R23	1/0	ISA
SA10+IDE1 DD10	R22	1/0	ISA
SA11+IDE1 DD11	T26	1/0	ISA
SA12+IDE1 DD12	T25	1/0	ISA
SA13+IDE1 DD13	T24	1/0	ISA
SA14+IDE1 DD14	T23	1/0	ISA
SA15+IDE1 DD15	T22	1/0	ISA
SA16+PIO16	U26	1/0	ISA
SA17+PIO17	U25	1/0	ISA
O/(1/T) 10 1/	1 020	"0	107

	Pin	Pin	Pwr
Signal Name	No.	Туре	Plane
SA18+PPWR8	U24	1/0	ISA
SA19+PPWR9	U23	9	ISA
SA20+PPWR0	V 26	9	ISA
SA21+PPWR1	V 25	9	ISA
SA22+PPWR2	V 24	1/0	ISA
SA23+PPWR3	V23	9	ISA
SBHE#+PIO20	W 25	1/0	ISA
SD0+MAD0	AD26	1/0	ISA
SD1+MAD1	AD25	1/0	ISA
SD2+MAD2	AD24	1/0	ISA
SD3+MAD3	AE26	1/0	ISA
SD4+MAD4	AE25	1/0	ISA
SD5+MAD5	AF26	9	ISA
SD6+MAD6	AF25	9	ISA
SD7+MAD7	AF24	9	ISA
SD8+MAD8	AE24	1/0	ISA
SD9+MAD9	AF23	9	ISA
SD10+MAD10	AE23	1/0	ISA
SD11+MAD11	AD23	9	ISA
SD12+MAD12	AF22	9	ISA
SD13+MAD13	AE22	9	ISA
SD14+MAD14	AD22	1/0	ISA
SD15+MAD15	AC22	1/0	ISA
SDCAS#	A 8	0	DRAM
SDRAS#	D7	0	DRAM
SEL#/ATB#+SDCKE+ PIO14	AC20	9	ISA
SERR#	AD17	9	PCI
SMI#	AE5	0	CPU
SMIACT#	U1	I	CPU
SMRD#+PIO21	W 26	1/0	ISA
SMWR#+PIO22	V22	I/O	ISA
SPKOUT	H23	1/0	ISA
STOP#	AC16	I/O	PCI
STPCLK#	AE6	0	CPU
TAG0+CAS0#	E9	1/0	DRAM
TAG1+CAS1#+START#	D9	1/0	DRAM
TAG2+CAS2#+START#	C9	1/0	DRAM
TAG3+CAS3#+SBOFF#	B9	1/0	DRAM
TAG4+CAS4#+SDCKE	A 9	1/0	DRAM
TAG5+CAS5#+DWE#	D8	1/0	DRAM
TAG6+CAS6#+SDCAS#	C8	9	DRAM
TAG7+CAS7#+SDRAS#	B8	/0	DRAM
TAGWE#+PIO1	A 10	0	DRAM
TC+PPWR10	M23	1/0	ISA
RSVD	B7	ı	CPU
SDCKE	A 7	0	CPU
TMS	AB5		CPU
TRDY#	AB12	1/0	PCI
VCC_CORE	H22	Р	
VCC_CORE	K5	Р	
VCC_CORE	A B19	Р	

Signal Name	Pin No.	Pin Type	Pwr Plane
VCC_CPU	E8	Р	
VCC_CPU	G5	Р	
VCC_CPU	T5	Р	
VCC_CPU	W 5	Р	
VCC_DRAM	E11	Р	
VCC_DRAM	E17	Р	
VCC_DRAM	E20	Р	
VCC_ISA	L22	Р	
VCC_ISA	U22	Р	
VCC_ISA	Y22	Р	
VCC_PCI	AB7	Р	
VCC_PCI	A B10	Р	
VCC_PCI	A B16	Р	
W/R#+INV	AA5	1/0	CPU
XD0+IDE_DWR#	Y26	1/0	ISA
XD1+IDE_DRD#	Y25	1/0	ISA
XD2+IDE_DA0	Y24	1/0	ISA
XD3+IDE_DA1	Y23	1/0	ISA
XD4+IDE_DA2	AA 26	1/0	ISA
XD5+IDE_DDACK#	AA 25	1/0	ISA
XD6+IDE_DCS1#	AA 24	1/0	ISA
XD7+IDE_DCS3#	AA 23	1/0	ISA
5VREF	AB21	Р	
5VREF	E7	Р	

Power Plane Key:

CORE = 3.3V Only

CPU = 3.3V (and 2.5V in future revisions)

DRAM = 3.3V or 5.0V ISA = 3.3V or 5.0V

PCI = 3.3V or 5.0V

Note: The pins listed below are 5.0V tolerant inputs, even when their power plane is connected to 3.3V as long as the 5VREF pins of FireStar are connected to +5.0V:

OSC32
OSC_14MHZ
CACS#+DIRTY
PCICLK
IRQA
IRQB
IRQC
IRQD

IRQ1

Page 8 912-2000-015

3.2 Signal Descriptions

3.2.1 CPU Interface Signals Set

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
Host Data Bus				
HD[63:0]	Refer to Table 3-2	I/O (4m A)		Host Data Bus Lines 63 through 0: Provides a 64-bit data path to the CPU.
CPU Address				
HA[31:3]	Refer to Table 3-2	I/O (4mA)		Host Address Bus Lines 31 through 3: HA[31:3] are the address lines of the CPU bus. HA[31:3] are connected to CPU lines A[31:3]. Along with the byte enable signals, HA[31:3] define the physical area of memory or I/O being accessed.
				During CPU cycles, the HA[31:3] lines are inputs. They are used for address decoding and second level cache tag lookup sequences.
				During inquire cycles, the HA[31:5] lines are outputs to the CPU to snoop the first level cache tags. They also are outputs to the L2 cache.
BE[7:0]#	V4:V1, W4:W1	ı		Byte Enables 7 through 0: Selects the active byte lanes on HD[63:0].
NMI	AD5 Strap option pin, refer to Table 3-7	O (4mA)		Non-Maskable Interrupt: This signal is activated when a parity error from a local memory read is detected or when the IOCHK# signal from the ISA bus is asserted and the corresponding control bit in Port B is also enabled.
INTR	AF5 Strap option pin, refer to Table 3-7	O (4mA)		Interrupt Request: INTR is driven to signal the CPU that an interrupt request is pending and needs to be serviced. The interrupt controller must be programmed following a reset to ensure that INTR is at a known state.
FERR#	T1	I		Floating Point Coprocessor Error: This input causes two operations to occur. IRQ13 is triggered and IGERR# is enabled. An I/O write to Port F0h will set IGERR# low when FERR# is low.
IGERR#	AC6 Strap option pin, refer to Table 3-7	I/O (4mA)		Ignore Coprocessor Error: Normally high, IGERR# will go low after FERR# goes low and an I/O write to Port 0F0h occurs. When FERR# goes high, IGERR# is driven high.
CPU Control/Stat	us	<u>-</u>		
CPUINIT	AD6	0		CPU Initialize: A shutdown cycle or a low-to-high transition of I/O Port 092h bit 0 will trigger CPUINIT. If keyboard emulation is enabled (default), a CPUINIT will be generated when a Port 064h write cycle with data FEh is decoded. If keyboard emulation has been disabled, then this signal will be triggered when it sees the KBRST from the keyboard.

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
M/IO#	Y5	I		Memory/Input-Output: M/IO#, D/C#, and W/R# define CPU bus cycles. Interrupt acknowledge cycles are forwarded to the PCI bus as PCI interrupt acknowledge cycles. All I/O cycles and any memory cycles that are not directed to memory controlled by the DRAM interface are forwarded to PCI.
D/C#	Т3	I		Data/Control : D/C#, M/IO#, and W/R# define CPU bus cycles. (See M/IO# definition above.)
W/R#	AA5	I/O (4mA)	Cycle Multiplexed	Write/Read: W/R#, D/C#, and M/IO# define CPU bus cycles. (See M/IO# definition above.)
INV		O (4mA)		Invalidate: Pin AA5 also serves as an output signal and is used as INV for L1 cache during an inquire cycle.
ADS#	V5	I		Address Strobe: The CPU asserts ADS# to indicate that a new bus cycle is beginning. ADS# is driven active in the same clock as the address, byte enables, and cycle definition signals.
				ADS# has an internal pull-up resistor that is disabled when the system is in the Suspend mode.
BRDY#	U5	O (4mA)		Burst Ready: BRDY# indicates that the system has responded in one of three ways:
				 Valid data has been placed on the CPU data bus in response to a read, CPU write data has been accepted by the system, or the system has responded to a special cycle.
NA#	U4	O (4mA)		Next Address: This signal is connected to the CPU's NA# pin to request pipelined addressing for local memory cycle. FireStar asserts NA# for one clock when the system is ready to accept a new address from the CPU, even if all data transfers for the current cycle have not completed.
KEN#	R2	O (4mA)		Cache Enable: This pin is connected to the KEN# input of the CPU and is used to determine whether the current cycle is cacheable.
EADS#	T4	O (4mA)	Cycle Multiplexed	External Address Strobe: This output indicates that a valid address has been driven onto the CPU address bus by an external device. This address will be used to perform an internal cache inquiry cycle when the CPU samples EADS# active.
WB/WT#				Writeback/Write-Through: Pin T4 is also used to control writeback or write-through policy for the primary cache during CPU cycles.
HITM#	R4	I		Hit Modified: Indicates that the CPU has had a hit on a modified line in its internal cache during an inquire cycle. It is used to prepare for writeback.

Page 10 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
CACHE#	T2	I		Cacheability: This input is connected to the CACHE# pin of the CPU. It goes active during a CPU initiated cycle to indicate when, an internal cacheable read cycle or a burst writeback cycle, occurs.
AHOLD	U3	O (4m A)		Address Hold: This signal is used to tristate the CPU address bus for internal cache snooping.
LOCK#	U2	I		CPU Bus Lock: The processor asserts LOCK# to indicate the current bus cycle is locked. It is used to generate PLOCK# for the PCI bus.
				LOCK# has an internal pull-down resistor that is engaged when HLDA is active.
BOFF#	R5 Strap option pin, refer to Table 3-7	O (4mA)		Back-off: This pin is connected to the BOFF# input of the CPU.
CPURST	R1	O (4m A)	(Always)	CPU Reset: This signal generates a hard reset to the CPU whenever the PWRGD input goes active.
RSMRST			SYSCFG ADh[5] = 1	Resume Reset: Generates a hard reset to the CPU on resuming from Suspend mode.
Host Power Contro	ol			
SMI#	AE5	O (4mA)		System Management Interrupt: This signal is used to request System Management Mode (SMM) operation.
SMIACT#	U1	I		System Management Interrupt Active: The CPU asserts SMIACT# in response to the SMI# signal to indicate that it is operating in System Management Mode (SMM).
STPCLK#	AE6	O (4mA)		Stop Clock: This signal is connected to the STP-CLK# input of the CPU. It causes the CPU to get into the STPGNT# state.
L2 Cache Control	•		•	
CDOE#	P1	O (4mA)	PCIDV1 80h = 00h	Cache Output Enable: This signal is connected to the output enables of the SRAMs of the L2 cache in both banks to enable data read.
PIO0			PCIDV1 80h ≠ 00h	Programmable Input/Output 0: Due to the critical timing required for the functionality of this pin, it can be programmed only as an output.
				See Section 3.3, "Programmable I/O Pins", on page 33 for more details.

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
CACS#	P3	O (4mA)	See SYSCFG 16h[7,5] bit descriptions on page 266	Cache Chip Select: This pin is connected to the chip selects of the SRAMs in the L2 cache to enable data read/write operations. If not used, the CS# lines of the cache should be tied low.
DIRTY		I/O (4m A)		Tag Dirty Bit: This separate dirty bit allows the tag data to be 8 bits wide instead of 7.
				DIRTY is a 5.0V tolerant input, even when its power plane is connected to 3.3V as long as the 5VREF pins of FireStar are connected to +5.0V.
BWE#	P4	O (4mA)		Byte Write Enable: Write command to L2 cache indicating that only bytes selected by BE[7:0]# will be written.
GWE#	N1	O (4mA)	SYSCFG 19h[7] = 0	Global Write Enable: Write command to L2 cache indicating that all bytes will be written.
RAS5#			SYSCFG 19h[7] = 1	Row Address Strobe Bit 5: Each RAS# signal corresponds to a unique DRAM bank. Depending on the kind of DRAM modules being used, this signal may or may not need to be buffered externally. This signal, however, should be connected to the corresponding DRAM RAS# line through a damping resistor.
TAG0	E9	I/O (4mA)	SYSCFG 11h[3] = 0	Tag RAM Data Bit 0: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS0#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 0 (2nd copy)
TAG1	D9	I/O (4mA)	SYSCFG 00h[5] = 0 11h[3] = 0	Tag RAM Data Bit 1: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS1#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 1 (2nd copy)
START#		O (4m A)	SYSCFG 00h[5] = 1	Start: If using the Sony cache module, then this pin is connected to the START# output from the Sony SONIC2-WP module.
				If using the Sony cache module, then TAG1 and TAG2 are connected to the START# output from the module and TAG3 is connected to the BOFF# output from the module. The remaining TAG bits are unused.

Page 12 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
TAG2	C9	I/O (4m A)	SYSCFG 00h[5] = 0 11h[3] = 0	Tag RAM Data Bit 2: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS2#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 2 (2nd copy)
START#		O (4mA)	SYSCFG 00h[5] = 1	Start: If using the Sony cache module, then this pin is connected to the START# output from the Sony SONIC2-WP module.
				If using the Sony cache module, then TAG1 and TAG2 are connected to the START# output from the module and TAG3 is connected to the BOFF# output from the module. The remaining TAG bits are unused
TAG3	B9	I/O (4m A)	SYSCFG 00h[5] = 0 11h[3] = 0	Tag RAM Data Bit 3: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS3#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 3 (2nd copy)
SBOFF#		O (4mA)	SYSCFG 00h[5] = 1	Sony Back-off: For use with Sony SONIC-2WP cache module.
TAG4	A9	I/O (4mA)	SYSCFG 11h[3] = 0	Tag RAM Data Bit 4: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS4#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 4 (2nd copy)
SDCKE			PCIDV1 53h[7] = 1	SDRAM Clock Enable: This signal is asserted to put the SDRAM into a "Stop" state. The BIOS can program FireStar to assert this signal only in Suspend mode.
TAG5	D8	I/O (4m A)	SYSCFG 11h[3] = 0	Tag RAM Data Bit 5: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS5#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 5 (2nd copy)
DWE#		O (4mA)	PCIDV1 53h[7] = 1	DRAM Write Enable (2nd copy)
TAG6	C8	I/O (4m A)	SYSCFG 11h[3] = 0	Tag RAM Data Bit 6: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS6#		O (4mA)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 6 (2nd copy)
SDCAS#		O (4mA)	PCIDV1 53h[7] = 1	SDRAM Column Address Strobe (2nd copy)

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
TAG7	B8	I/O (4mA)	SYSCFG 11h[3] = 0	Tag RAM Data Bit 7: This input signal becomes an output whenever TAGWE# is activated to write a new tag to the Tag RAM.
CAS7#		O (4m A)	SYSCFG 11h[3] = 1	Column Address Strobe Bit 7 (2nd copy)
SDRAS#		O (4m A)	PCIDV1 53h[7] = 1	SDRAM Row Address Strobe (2nd copy)
TAGWE#	A10	O (4mA)	PCIDV1 81h = 00h	Tag RAM Write Enable: This control strobe is used to update the Tag RAM with the valid tag of the new cache line that replaces the current one during external cache read miss cycles.
PIO1			PCIDV1 81h ≠ 00h	Programmable Input/Output 1: Due to the critical timing required for the functionality of this pin, it can be programmed only as an output.
				See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
ADSC#	P5	O (4mA)	PCIDV1 82h = 00h	Controller Address Strobe: For a synchronous L2 cache operation, this pin is connected to the ADSC# input of the synchronous SRAMs.
PIO2			PCIDV1 82h ≠ 00h	Programmable Input/Output 2: Due to the critical timing required for the functionality of this pin, it can be programmed only as an output.
				See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
ADV#	P2	O (4mA)	PCIDV1 83h = 00h	Advance Output: For synchronous cache L2 operation, this pin becomes the advance output and is connected to the ADV# input of the synchronous SRAMs.
PIO3			PCIDV1 83h ≠ 00h	Programmable Input/Output 3: Due to the critical timing required for the functionality of this pin, it can be programmed only as an output.
				See Section 3.3, "Programmable I/O Pins", on page 33 for more details.

912-2000-015 Page 14

3.2.2 DRAM and PCI Interface Signals Set

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
DRAM Interface				
RAS0#	E12	O (8/12mA)	Cycle Multiplexed	Row Address Strobe 0: Each RAS# signal corresponds to a unique DRAM bank. Depending on the kind of DRAM modules being used, this signal may or may not need to be buffered externally. This signal, however, should be connected to the corresponding DRAM RAS# line through a damping resistor.
SDCS0#				SDRAM Chip Select Line 0: Each SDCS# output corresponds to a unique SDRAM Bank. When active, the SDRAM will accept the command from FireStar. These outputs must be connected to the SDRAM banks through a damping resistor.
RAS1#	E13	O (8/12m A)	Cycle Multiplexed if	Row Address Strobe 1: Refer to RAS0# signal description.
SDCS1#			PCIDV1 85h = 00h	SDRAM Chip Select Line 1: Refer to SDCS0# description.
PIO5			PCIDV1 85h ≠ 00h	Programmable Input/Output 5: Due to the critical timing required for the functionality of this pin, it can be programmed only as an output.
				See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
RAS2#	B12	2 O (8/12mA)	Cycle Multiplexed if PCIDV1 84h = 00h	Row Address Strobe 2: Refer to RAS0# signal description.
SDCS2#				SDRAM Chip Select Line 2: Refer to SDCS0# description.
PIO4			PCIDV1 84h ≠ 00h	Programmable Input/Output 4: Due to the critical timing required for the functionality of this pin, it can be programmed only as an output.
				See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
RAS3#	C12	O (8/12m A)	Cycle Multiplexed	Row Address Strobe 3: Refer to RAS0# signal description.
SDCS3#				SDRAM Chip Select Line 3: Refer to SDCS0# description.
MA12			PCIDV1 53h[6:5] = 01	Memory Address Bus Line 12
RAS4#	E22	O (8/12m A)	SYSCFG 19h[3] = 1	Row Address Strobe 4 (primary copy): Refer to RAS0# signal description.
MA12			SYSCFG 19h[3] = 1 PCIDV1 53h[6:5] = 10	Memory Address Bus Line 12

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
CAS[7:0]#	A12, D11, C11, B11, A11,	D11, (8mA) Mul C11, B11,	Cycle Multiplexed	Column Address Strobe Lines 7 through 0 (primary copies): The CAS[7:0]# outputs correspond to the eight bytes for each DRAM bank. Each DRAM bank has a 64-bit data bus. These signals are typically connected directly to the DRAM's CAS# inputs through a damping resistor.
SDDQM[7:0]#	C10, B10			SDRAM Data Mask Control Bits 7 through 0: During SDRAM read cycles, these outputs control whether the DRAM output buffers are driven on the MD bus or not.
				During SDRAM write cycles, these outputs control whether or not MD data will be written into the memory device.
SDCAS#	A8	0		SDRAM Column Address Strobe (primary copy): This output is part of the SDRAM command combination. This pin should be connected to the SDRAM through a damping resistor.
SDRAS#	D7	0		SDRAM Row Address Strobe (primary copy): This output is part of the SDRAM command combination. This pin should be connected to the SDRAM through a damping resistor.
DWE#	E10	O (8m A)	Cycle Multiplexed	DRAM Write Enable (primary copy): This signal is the common write enable for all 64 bits of DRAM if either fast page mode or EDO DRAMs are used. This signal can be buffered externally before connection to the WE# input of the DRAMs.
SDWE#				SDRAM Write Enable: This output is the write enable signal for SDRAM.
MA[11:0]	Refer to Table 3-2	O (8/12mA)		Memory Address Bus Lines 11 through 0: Multiplexed row/column address lines to the DRAMs. Depending on the kind of DRAM modules being used, these signals may or may not need to be buffered externally. MA12 is optionally available instead of RAS3# or RAS4#.
MD[63:32]	Refer to Table 3-2	I/O (4m A)		Higher Order Memory Data Bus: These pins are connected directly to the higher order DRAM data bus.
MD[31:0]	Refer to Table 3-2	I/O (4m A)		Lower Order Memory Data Bus: These pins are connected directly to the lower order DRAM data bus.
PCI Bus Interface				
AD[31:0]	Refer to Table 3-2	I/O (PCI)		PCI Address and Data: AD[31:0] are bidirectional address and data lines for the PCI bus. The AD[31:0] signals sample or drive the address and data on the PCI bus.

Page 16 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
C/BE[3:0]#	AE14, AF14, AC15, AD15	I/O (PCI)		PCI Bus Command and Byte Enables: During the address phase of a transaction, C/BE[3:0]# define the PCI command. During the data phase, C/BE[3:0]# are used as the PCI byte enables. The PCI commands indicate the current cycle type, and the PCI byte enables indicate which byte lanes carry meaningful data. FireStar drives C/BE[3:0]# as an initiator of a PCI bus cycle and monitors C/BE[3:0]# as a target.
CPAR	AC17	I/O (PCI)		Calculated Parity Signal: PAR is "even" parity and is calculated on 36 bits - AD[31:0] plus C/BE[3:0]#. PAR is generated for address and data phases and is only guaranteed to be valid on the PCI clock after the corresponding address or data phase.
FRAME#	AB9	I/O (PCI)		Cycle Frame: FRAME# is driven by the current bus master to indicate the beginning and duration of an access. FRAME# is asserted to indicate that a bus transaction is beginning. FRAME# is an input when FireStar is the target and an output when it is the initiator.
IRDY#	AB11	I/O (PCI)		Initiator Ready: IRDY# indicates FireStar's ability, as an initiator, to complete the current data phase of the transaction. It is used in conjunction with TRDY#. A data phase is completed on each clock that both IRDY# and TRDY# are sampled asserted. IRDY# is an input to when FireStar is the target and an output when it is the initiator.
TRDY#	AB12	I/O (PCI)		Target Ready: TRDY# indicates FireStar's ability to complete the current data phase of the transaction. It is used in conjunction with IRDY#. A data phase is completed on each clock that TRDY# and IRDY# are both sampled asserted. TRDY# is an input when FireStar is the initiator and an output when it is the target.
DEVSEL#	AF15	I/O (PCI)		Device Select: FireStar asserts DEVSEL# to claim a PCI transaction. As an output, FireStar asserts DEVSEL# when it samples configuration cycles to the configuration registers. FireStar also asserts DEVSEL# when an internal IPC address is decoded.
				As an input, DEVSEL# indicates the response to a transaction. If no slave claims the cycle, FireStar will assert DEVSEL# to terminate the cycle.
STOP#	AC16	I/O (PCI)		Stop: STOP# indicates that FireStar, as a target, is requesting a master to stop the current transaction. As a master, STOP# causes FireStar to stop the current transaction. STOP# is an output when FireStar is a target and an input when it is the initiator.

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
PLOCK#	AE15	I/O (PCI)		PCI Lock: PLOCK# is used to indicate an atomic operation that may require multiple transactions to complete. When PLOCK# is asserted, non-exclusive transactions may proceed to an address that is not currently locked. Control of PLOCK# is obtained under its own protocol in conjunction with PGNT#.
SERR#	AD17	I/O (PCI)		System Error: SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, FireStar generates a non-maskable interrupt (NMI) to the 3.3V Pentium CPU.
PERR#	AE17	I/O (4mA)		Parity Error: PERR# may be pulsed by any agent that detects a parity error during an address phase, or by the master, or by the selected target during any data phase in which the AD[31:0] lines are inputs. Upon sampling PERR# active, FireStar generates a non-maskable interrupt (NMI) to the 3.3V Pentium CPU.
PCICLKIN	AB6	ı		PCI Clock Input: Master PCI clock input on the CPU power plane.
				PCICLKIN is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
CLKRUN#	AF16	I/O (PCI)	PCIDV1 86h = 00h	Clock Run: CLKRUN# is an I/O sustained tristate signal and follows the PCI 2.1 defined protocol. When a PCI device pulls CLKRUN# low, FireStar enables PCICLK by asserting CLKOE (PIO option) high. FireStar maintains control of CLKRUN# and will keep it low as long as it intends to keep the clock running. FireStar will attempt to turn off the PCI clock to PCI devices whenever software enables APM Doze mode (setting SYSCFG 50h[3] = 1). Note that the FireStar PCICLK input must not be turned off. A weak external pull-up is required. Also refer to the CLKOE signal description in Section 3.3, Programmable I/O Pins.
PIO6			PCIDV1 86h ≠ 00h	Programmable Input/Output 6: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
REQ0#	AF17	I		PCI Bus Request 0: REQ# is used by PCI bus masters to request control of the bus.
GNT0#	AD16	O (PCI)		PCI Bus Grant 0: GNT# is returned to PCI bus masters asserting REQ#, when the bus becomes available.

Page 18 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
REQ1#	AB18	I	PCIDV1 87h = 00h	PCI Bus Request 1: REQ# is used by PCI bus masters to request control of the bus.
PIO7		I/O (4mA)	PCIDV1 87h ≠ 00h	Programmable Input/Output 7: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
PCICLK0	AB14 Strap option pin, refer to Table 3-7	O (PCI)		PCI Clock Output 0: This PCI clock output is always available.
GNT1#	AB17	O (PCI)	Default	PCI Bus Grant 1: GNT# is returned to PCI bus masters asserting REQ#, when the bus becomes available.
PCICLK1		O (4m A)	RTCRD# strap option	PCI Clock Output 1
REQ2#	AE16	I	PCIDV1 88h = 00h	PCI Bus Request 2: REQ# is used by PCI bus masters to request control of the bus.
PIO8		I/O (4mA)	PCIDV1 88h ≠ 00h	Programmable Input/Output 8: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
GNT2#	AB15	O (PCI)	Default	PCI Bus Grant 2: GNT# is returned to PCI bus masters asserting REQ#, when the bus becomes available.
PCICLK2			RTCWR# strap option	PCI Clock Output 2
REQ3#	AD18	I		PCI Bus Request 3: REQ# is used by PCI bus masters to request control of the bus.
GNT3#	AC18	O (PCI)		PCI Bus Grant 3: GNT# is returned to PCI bus masters asserting REQ#, when the bus becomes available.

3.2.3 IDE Interface Signal Set

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description		
Bus Master IDE Interface						
DBE W #	H24	0	Default	Drive W Buffer Control		
IDE1_DACK#	Strap option pin, refer to	(4mA)	RTCAS:A20M# strap option	DDACK# for Second IDE Cable		
DWR#	Table 3-7		PCIDV1 4Fh[1] = 1	Drive Write Signal		

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
DDRQ0	H25	I/O (4mA)	PCIDV1 89h = 00h	Drive Cable A DMA Request
PIO9			PCIDV1 89h ≠ 00h	Programmable Input/Output 9: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
Clock and Reset In	terface			
RESET#	AC24	O (8mA)		System Reset: When asserted, this signal resets the CPU. RESET# is asserted in response to a PWRGD only and is guaranteed to be active for 1ms such that CLK and VCC are stable.
				If RSTDRV is programmed to toggle in Suspend (via SYSCFG 40h[0]), so will RESET# since RESET# is derived from RSTDRV.
PWRGD	H26	I		Power Good: This input reflects the "wired-OR" status of the external reset switch and the power good status from the power supply.
OSC_14MHZ	E5	I		Timer Oscillator Clock: This is the main clock used by the internal 8254 timers. It is connected to a 14.31818MHz oscillator.
				OSC_14MHZ is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
OSC32	C7	I		32KHz Clock: This signal is used as a 32KHz clock input. It is used for power management and is usually the only active clock when the system is in Suspend mode.
				OSC32 is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
CPUCLKIN	M5	I		Feedback input to Circuitry: This input clock must be equivalent to, and in phase with, the clock going to the CPU.
				Note: This is a CMOS-level input and therefore it is imperative that the rise time on this signal is less than or equal to 2.5ns.

Page 20 912-2000-015

3.2.4 ISA Interface Signal Set

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
Interrupt Controlle	r Interface	·		
IRQ1	AF18	1	PCIDV1 8Ah = 00h	Interrupt Request 1: Normally connected to the keyboard controller.
				IRQ1 is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
PIO10		I/O (4mA)	PCIDV1 8Ah ≠ 00h	Programmable Input/Output 10: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
IRQA/IRQ3	AC19	1		Programmable Interrupt Request A / IRQ3: This input defaults to IRQ3, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B0h.
				IRQA/IRQ3 is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
IRQB/IRQ4	AD19	I		Programmable Interrupt Request B / IRQ4: This input defaults to IRQ4, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B1h.
				IRQB/IRQ4 is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
IRQC/IRQ5	AE19	I		Programmable Interrupt Request C / IRQ5: This input defaults to IRQ5, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B2h.
				IRQC/IRQ5 is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
IRQD/IRQ6	AF19	1		Programmable Interrupt Request D / IRQ6: This input defaults to IRQ6, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B3h.
				IRQD/IRQ6 is a 5.0V tolerant input, even when its power plane is connected to 3.3.V as long as the 5VREF pins of FireStar are connected to +5.0V.
IRQE/IRQ7	AD20	l		Programmable Interrupt Request E / IRQ7: This input defaults to IRQ7, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B4h.

Pin No.	Signal Type (Drive)	Selected By	Signal Description
AE20	ı	PCIDV1 8Bh = 00h	Interrupt Request 8: Normally connected to the RTC alarm output.
	I/O (4mA)	PCIDV1 8Bh ≠ 00h	Programmable Input/Output 11: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
AF20	I		Programmable Interrupt Request F / IRQ9: This input defaults to IRQ9, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B5h.
AB22	ı		Programmable Interrupt Request G / IRQ10: This input defaults to IRQ10, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B6h.
AC21	ı		Programmable Interrupt Request H / IRQ11: This input defaults to IRQ11, however, it can be programmed to route onto any ISA or PCI interrupt through PCIDV1 B7h.
AD21	I	PCIDV1 8Ch = 00h	Interrupt Request 12: Normally connected to the mouse interrupt from the keyboard controller.
	I/O (4mA)	PCIDV1 8Ch ≠ 00h	Programmable Input/Output 12: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
AE21	I	PCIDV1 8Dh = 00h	Interrupt Request 14: Normally connected to the primary IDE channel.
	I/O (4mA)	PCIDV1 8Dh ≠ 00h	Programmable Input/Output 13: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
AF21	I	PCIDV1 BBh[0] = 0	Interrupt Request 15: Normally connected to the secondary IDE channel.
		PCIDV1 BBh[0] = 1	Serial Input: Serial interrupt return line for Intel style of serial IRQs.
AE18	I/O	PCIDV1 BAh[0] = 0	Serial Interrupt Request: Bidirectional interrupt line for Compaq style of serial IRQs.
	0	PCIDV1 53h[4] = 1	SDRAM Clock Enable: This signal is asserted to put the SDRAM into a "Stop" state. The BIOS can program FireStar to assert this signal only in Suspend mode.
		PCIDV1 BBh[0] = 1	Serial Output: Serial interrupt output line for Intel style of serial IRQs.
	AE20 AF20 AB22 AC21 AD21 AE21	Pin No. (Drive) AE20 I I/O (4mA) I/O (4mA) AB22 I AD21 I I/O (4mA) I/O (4mA) AF21 I AE18 I/O	Pin No. (Drive) By

Page 22 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
ISA DMA Arbiter I	nterface	<u> </u>		
DRQA/DRQ0	M24	1	PCIDV1 99h = 00h	Programmable DMA Request A / DRQ0: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ0, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C0h[2:0].
PIO25		I/O (4mA)	PCIDV1 99h ≠ 00h	Programmable Input/Output 25: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DRQB/DRQ1	M25	I	PCIDV1 9Ah = 00h	Programmable DMA Request B / DRQ1: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ1, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C0h[6:4].
PIO26		I/O (4mA)	PCIDV1 9Ah ≠ 00h	Programmable Input/Output 26: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DRQC/DRQ2	M26	I	PCIDV1 9Bh = 00h	Programmable DMA Request C / DRQ2: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ0, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C1h[2:0].
PIO27		I/O (4m A)	PCIDV1 9Bh ≠ 00h	Programmable Input/Output 27: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DRQD/DRQ3	L23	I	PCIDV1 9Ch = 00h	Programmable DMA Request D / DRQ3: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ3, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C1h[6:4].
PIO28		I/O (4mA)	PCIDV1 9Ch ≠ 00h	Programmable Input/Output 28: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DRQE/DRQ5	L24	1	PCIDV1 9Dh = 00h	Programmable DMA Request E / DRQ5: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ5, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C2h[6:4].
PIO29		I/O (4m A)	PCIDV1 9Dh ≠ 00h	Programmable Input/Output 29: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
DRQF/DRQ6	L25	I	PCIDV1 9Eh = 00h	Programmable DMA Request F / DRQ6: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ6, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C3h[2:0].
PIO30		I/O (4mA)	PCIDV1 9Eh ≠ 00h	Programmable Input/Output 30: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DRQG/DRQ7	L26	I	PCIDV1 9Fh = 00h	Programmable DMA Request G / DRQ6: The DRQ is used to request DMA service from the DMA controller.
				This input defaults to DRQ7, however, it can be programmed to route onto any internal DRQ by programming PCIDV1 C3h[6:4].
PIO31		I/O (4mA)	PCIDV1 9Fh ≠ 00h	Programmable Input/Output 31: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DACKA#/DACK0#	K22	0		Programmable DMA Acknowledge A / DACK0#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK0#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C0h[2:0].
PPWR4			PCIDV1 C0h[2:0] = 100	Peripheral Power Control Line 4: Peripheral power control lines 0 through 15 are latch outputs used to control external devices.
DACKB#/DACK1#	K23	0		Programmable DMA Acknowledge B / DACK1#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK1#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C0h[6:4].
PPWR5			PCIDV1 C0h[6:4] = 100	Peripheral Power Control Line 5
DACKC#/DACK2#	K24	0		Programmable DMA Acknowledge C / DACK2#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK2#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C1h[2:0].
PPWR6			PCIDV1 C1h[2:0] = 100	Peripheral Power Control Line 6

Page 24 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
DACKD#/DACK3#	K25	0		Programmable DMA Acknowledge D / DACK3#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK3#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C1h[6:4].
PPWR7			PCIDV1 C1h[6:4] = 100	Peripheral Power Control Line 7
DACKE#/DACK5#	K26	0		Programmable DMA Acknowledge E / DACK5#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK5#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C2h[6:4].
PPWR13			PCIDV1 C2h[6:4] = 100	Peripheral Power Control Line 13
DACKF#/DACK6#	J22	0		Programmable DMA Acknowledge F / DACK6#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK6#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C3h[2:0].
PPWR14			PCIDV1 C3h[2:0] = 100	Peripheral Power Control Line 14
DACKG#/DACK7#	J23	0		Programmable DMA Acknowledge G / DACK7#: DACK# is used to acknowledge DRQ to allow DMA transfer.
				This input defaults to DACK7#, however, it can be programmed to route onto any internal DACK# by programming PCIDV1 C3h[6:4].
PPWR15			PCIDV1 C3h[6:4] = 100	Peripheral Power Control Line 15
Compact ISA Interf	ace			
RSTDRV	AC25	I/O (4m A)	PCIDV1 8Fh = 00h	Reset Drive: Active high reset signal to ISA bus devices.
				RSTDRV can be programmed to toggle in Suspend via SYSCFG 40h[0].
PIO15			PCIDV1 8Fh ≠ 00h	Programmable Input/Output 15: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
SD[15:0]	Refer to Table 3-2	I/O (8mA)	Cycle Multiplexed	System Data Bus: SD[15:0] provides the 16-bit data path for devices residing on the ISA bus.
MAD[15:0]				Multiplexed Address/Data Bus: Used during CISA cycles.

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
SEL/ATB#	AC20	1/0	PCIDV1	Select/AT Back-off: Dedicated CISA input.
		(4mA)	8Eh = 00h	This signal needs to be pulled up externally.
SDCKE			PCIDV1 53h[3] = 1	SDRAM Clock Enable: This signal is asserted to put the SDRAM into a "Stop" state. The BIOS can program FireStar to assert this signal only in Suspend mode.
PIO14			PCIDV1 8Eh ≠ 00h	Programmable Input/Output 14: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
CMD#	AB20	O (4mA)	SYSCFG 16h[7, 5]	Command: Dedicated CISA output used to signal a data transfer command.
DIRTY		I/O (4mA)		Tag Dirty Bit: This dirty bit allows the tag data to be 8 bits wide instead of 7.
PCICLK3		O (4mA)	ROMCS#: KBDCS# strap option	PCI Clock Output 3
ATCLK	AA22	O (8mA)		ISA Bus Clock: This signal is derived from an internal division of PCICLK. It is used to sample and drive all ISA synchronous signals.
				PCIDV1 47h[5:4] sets the ATCLK: 00 = PCICLK÷4
				The ATCLK is also used to demultiplex and sample externally multiplexed inputs. During Suspend, it is possible to output 32KHz on this pin, or drive it low.
PCICLK4			ROMCS#: KBDCS# strap option	PCI Clock Output 4
IOCHRDY	AB26	I/O (8mA)		I/O Channel Ready: Resources on the ISA bus deassert IOCHRDY to indicate that wait states are required to complete the cycle. IOCHRDY is an input when FireStar owns the ISA bus and is an output when an external ISA bus master owns the ISA bus. IOCHRDY is automatically tristated in Suspend.
BALE	W22	O (8mA)		Bus Address Latch Enable: BALE is an active high signal asserted to indicate that the address, AEN, and SBHE# signal lines are valid. BALE remains asserted throughout ISA master and DMA cycles.
PCICLK5			ROMCS#: KBDCS# strap option	PCI Clock Output 5

Page 26 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
ISA Bus Interface				
MRD#	AC26	I/O (8mA)		Memory Read: MRD# is the command to a memory slave that it may drive data onto the ISA data bus. MRD# is an output when FireStar is a master on the ISA bus. MRD# is an input when an ISA master, other than FireStar, owns the ISA bus.
IDE1_DCS3#			RTCAS:A20M# strap option	DCS3 Control for Secondary IDE Channel
MWR#	AB23	I/O (8mA)		Memory Write: MWR# is the command to a memory slave that it may latch data from the ISA data bus. MWR# is an output when the FireStar owns the ISA bus. MWR# is an input when an ISA master, other than FireStar, owns the ISA bus.
IDE1_DCS1#			RTCAS:A20M# strap option	DCS1 Control for Secondary IDE Channel
IOR#	AB24	I/O (8mA)		I/O Read: IOR# is the command to an ISA I/O slave device that the slave may drive data on to the ISA data bus (SD[15:0]). The I/O slave device must hold the data valid until after IOR# is negated. IOR# is an output when FireStar owns the ISA bus. IOR# is an input when an external ISA master owns the ISA bus.
IDE1_DRD#			RTCAS:A20M# strap option	Drive Read Control for Secondary IDE Channel
IOW#	AB25	I/O (8mA)		I/O Write: IOW# is the command to an ISA I/O slave device that the slave may latch data from the ISA data bus (SD[15:0]). IOW# is an output when FireStar owns the ISA bus. IOW# is an input when an external ISA master owns the ISA bus.
IDE1_DWR#			RTCAS:A20M# strap option	D Write Control for Secondary IDE Channel
SMRD#	W26	I/O (8mA)	PCIDV1 96h = 00h	System Memory Read: FireStar asserts SMRD# to request a memory slave to provide data. If the access is below the 1MB range (00000000h-000FFFFh) during DMA compatible, IPC master, or ISA master cycles, FireStar asserts SMRD#.
PIO21			PCIDV1 96h ≠ 00h	Programmable Input/Output 21: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
SMWR#	V22	I/O (8mA)	PCIDV1 97h = 00h	System Memory Write: FireStar asserts SMWR# to request a memory slave to accept data from the data lines. If the access is below the 1MB range (00000000h-000FFFFFh) during DMA compatible, IPC master, or ISA master cycles, FireStar asserts SMWR#.
PIO22			PCIDV1 97h ≠ 00h	Programmable Input/Output 22: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
AEN	M22	I/O	PCIDV1 C2h[1] = 0	Address Enable: AEN is asserted during DMA cycles to prevent I/O slaves from misinterpreting DMA cycles as valid I/O cycles. When asserted, AEN indicates to an I/O resource on the ISA bus that a DMA transfer is occurring. This signal is asserted also during refresh cycles. AEN is driven low upon reset.
PPWR11			PCIDV1 C2h[1] = 1	Peripheral Power Control Line 11
IO16#	W23	I/O	PCIDV1 92h = 00h	16-Bit I/O Chip Select: This signal is driven by I/O devices on the ISA bus to indicate that they support 16-bit I/O bus cycles.
PIO18			PCIDV1 92h ≠ 00h	Programmable Input/Output 18: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
M16#	W24	I/O	PCIDV1 93h = 00h	16-Bit Memory Chip Select: ISA slaves that are 16-bit memory devices drive this signal low. MEMCS16# is an input when FireStar owns the ISA bus. FireStar drives this signal low during ISA master to PCI memory cycles.
PIO19			PCIDV1 93h ≠ 00h	Programmable Input/Output 19: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
RFSH#	J25	I/O	PCIDV1 C2h[0] = 0	Refresh: As an output, this signal is used to inform FireStar to refresh the local DRAM.
				During normal operation, a low pulse is generated every 15µs to indicate to FireStar that the DRAM is to be refreshed if PCIDV1 64h[0] = 0.
				During Suspend, if normal DRAM is used, the 32KHZ input to the FireStar is routed out on this pin so that it may perform DRAM refresh.
				An option to continuously drive this signal low during Suspend is also provided. The internal pull-up on this pin is disengaged in Suspend.
PPWR12			PCIDV1 C2h[0] = 1	Peripheral Power Control Line 12

Page 28 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
SBHE#	W25	I/O	PCIDV1 94h = 00h	System Byte High Enable: When asserted, SBHE# indicates that a byte is being transferred on the upper byte (SD[15:8]) of the data bus. SBHE# is negated during refresh cycles. SBHE# is an output when FireStar owns the ISA bus.
PIO20			PCIDV1 94h ≠ 00h	Programmable Input/Output 20: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
TC	M23	I/O	PCIDV1 C2h[2] = 0	Terminal Count
PPWR10			PCIDV1 C2h[2] = 1	Peripheral Power Control Line 10
XD7	AA23	I/O	Cycle	XD Bus Line 7: ISA status signal.
IDE_DCS3#		(8m A)	Multiplexed (See Note)	DCS3 Control for Primary IDE Channel
XD6	AA24	I/O	Cycle	XD Bus Line 6: ISA status signal.
IDE_DCS1#	1	(8mA)	Multiplexed (See Note)	DCS1 Control for Primary IDE Channel
XD5	AA25	I/O (8mA)	Cycle Multiplexed (See Note)	XD Bus Line 5: ISA status signal.
IDE_DDACK#				DMA Acknowledge for Primary IDE Channel
XD4	AA26	I/O (8mA)	Cycle Multiplexed (See Note)	XD Bus Line 4: ISA status signal.
IDE_DA2				Address Bit 2 for Primary IDE Channel
XD3	Y23	Y23 I/O (8mA)	Cycle Multiplexed (See Note)	XD Bus Line 3: ISA status signal.
IDE_DA1				Address Bit 1 for Primary IDE Channel
XD2	Y24	Y24 I/O (8mA)	Cycle Multiplexed (See Note)	XD Bus Line 2: ISA status signal.
IDE_DA0				Address Bit 0 for Primary IDE Channel
XD1	Y25	I/O	Cycle	XD Bus Line 1: ISA status signal.
IDE_DRD#		(8mA)	Multiplexed (See Note)	Drive Read Control for Primary IDE Channel
XD0	Y26	1/0	Cycle	XD Bus Line 0: ISA status signal.
IDE_DWR#		(8m A)	Multiplexed (See Note)	Drive Write Control for Primary IDE Channel
Note: XD[7:0] can	be strapped to b	e dedicated IDE	lines via the RTC	AS:A20M# strap option and PCIDV1 75h[6] = 1.
SA[23:20]	V23:V26,	I/O (8m A)		System Address Bus Lines 23 through 20: The SA[23:0] signals on FireStar provide the address for memory and I/O accesses on the ISA bus. The addresses are outputs when FireStar owns the ISA bus and are inputs when an external ISA master owns the ISA bus.
PPWR[3:0]			DBEW# strap option	Peripheral Power Control Lines 3 through 0

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
SA[19:18]	U23, U24	I/O		System Address Bus Lines 19 and 18
PPWR[9:8]		(8m A)	DBEW# strap option	Peripheral Power Control Lines 9 and 8
SA[17:16]	U25, U26	I/O (8m A)	PCIDV1 91h-90h = 00h	System Address Bus Lines 17 and 16
PIO[17:16]			PCIDV1 91h-90h ≠ 00h	Programmable Input/Output Lines 17 and 16: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
SA[15:0]	Refer to Table	I/O		System Address Bus Lines 15 through 0
IDE1_DD[15:0]	3-2	(8m A)	RTCAS:A20M# strap option	Disk Data Lines 15 through 0: DD[15:0] provide the 16-bit data path for the IDE disk drives.
External Real-Tim	e Clock Interface	•		
RTCAS	N24 Strap option pin, refer to	O (4mA)		Real-Time Clock Address Strobe: This signal is connected to the address strobe of the real-time clock.
IDE1_DA0	Table 3-7	1/0	RTCAS:A20M# strap option and PCIDV1 75h[7] = 1.	Address Bit 0 for Secondary IDE Channel
RTCRD#	N25 Strap option	O (4m A)		Real-Time Clock Read: This pin is used to drive the read signal of the real-time clock.
IDE1_DA1	pin, refer to Table 3-7	I/O	RTCAS:A20M# strap option and PCIDV1 75h[7] = 1.	Address Bit 1 for Secondary IDE Channel
RTCWR#	N26 Strap option	O (4m A)		Real-Time Clock Write: This pin is used to drive the write signal of the real-time clock.
IDE1_DA2	pin, refer to Table 3-7	1/0	RTCAS:A20M# strap option and PCIDV1 75h[7] = 1.	Address Bit 2 for Secondary IDE Channel
Power Manageme	ent Unit Interface			
PPWRL	AC23	O (4mA)	(Default)	Power Control Latch: This signal is used to control the external latching of the peripheral power control signals PPWR[15:0]. This signal is pulsed after reset to preset the external latch.
PPWR0#		I/O	BOFF# strap option	Peripheral Power Control Line 0#

Page 30 912-2000-015

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
Miscellaneous				
A20M#	R3 Strap option pin, refer to Table 3-7	O (4m A)		Address Bit 20 Mask: This pin is an output and generates the A20M# output by trapping GATEA20 commands to the keyboard or to Port 092h. The CPUINIT signal to the CPU is generated whenever it senses reset commands to Port 060h/064h, or a Port 092h write command with bit 0 set high.
				When keyboard emulation is disabled, FireStar traps only Port 092h GATEA20 commands and accepts the GATEA20 input from the keyboard controller, which is sent out as A20M# to the CPU.
ROMCS#	J24 Strap option pin, refer to Table 3-7	O (4m A)	PCIDV1 52h[2] = 0 97h = 00h 4Fh[1] = 0	BIOS ROM Chip Select: This output goes active on both reads and writes to the ROM area to support flash ROM. For flash ROM support, writes to ROM can be supported by appropriately setting PCIDV1 47h[7].
PIO23		I/O (4mA)	PCIDV1 52h[2] = 0 $97h \neq 00h$ 4Fh[1] = 0	Programmable Input/Output Line 23: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
ROMCS#/ KBDCS#		O (4mA)	PCIDV1 52h[2] = 1 or 4Fh[1] = 1	Combined ROM and Keyboard Chip Select: When this combined functionality is selected, the ROM cycles are qualified by MRD#/MWR#; the key- board controller cycles are qualified by IOR#/IOW#.
SPKROUT	H23	I/O (8mA)		Speaker Data: This pin is used to drive the system board speaker. This signal is a function of the Timer-0 Counter-2 and Port 061h bit 1.
				Can use CISA protocol to gang several.
KBDCS#	J26 Strap option pin, refer to	O (8mA)	Default PCIDV1 98h = 00h	Keyboard Chip Select : Used to decode accesses to the keyboard controller.
PIO24	Table 3-7	I/O (8mA)	PCIDV1 98h ≠ 00h	Programmable Input/Output 24: See Section 3.3, "Programmable I/O Pins", on page 33 for more details.
DRD#		O (8m A)	PCIDV1 4Fh[1] = 1	Drive Read Signal

3.2.5 Test Mode Selection Pins

Signal Name	Pin No.	Signal Type (Drive)	Selected By	Signal Description
RSVD	B7 Strap option pin for future 2.5V CPU interface, refer to Table 3-7	I/O (4mA)		Reserved: This pin is reserved for possible additional functionality on future revisions of FireStar. However, it is used as an input for the ATE Test Mode selection address. See TMS (pin AB5) description.
RSVD	A7	I/O (4m A)		Reserved in FireStar: An input for the ATE Test Mode selection address. See TMS (pin AB5) description.
SDCKE (FS ACPI)			PCIDV1 52h[3] = 1	SDRAM Clock Enable in FireStar ACPI: This signal is asserted to put the SDRAM into a "Stop" state. The BIOS can program FireStar to assert this signal only in Suspend mode.
				This pin is also an input for the ATE Test Mode selection address. See TMS (pin AB5) description.
TMS	AB5	I/O		Test Mode Select: An input for the ATE Test Mode selection address.
				AB5 B7 A7 Mode 0 X X Normal operation (default) 1 0 0 Tristate all pins 1 0 1 NAND tree test 1 1 0 Reserved for factory test 1 1 1 Reserved for factory test

3.2.6 Power and Ground Pins

Signal Name	Pin No.	Signal Type	Signal Description
GND	AA6, AA13, AA14, AA21, AB13, E14, F6, F13, F14, F21, N5, N6, N21, P6, P21, P22	G	Ground Connections
VCC_ISA	L22, U22, Y22	Р	ISA Bus Power Plane: 3.3V or 5.0V
VCC_CPU	E8, G5, T5, W5	Р	CPU Bus Power Plane: 3.3V (and 2.5V in future 2.5V CPU interface revision)
VCC_CORE	AB19, H22, K5	Р	FireStar Core Power Plane: 3.3V only
VCC_DRAM	E11, E17, E20	Р	Memory Power Plane: 3.3V or 5.0V
VCC_PCI	AB7, AB10, AB16	Р	PCI Bus Power Plane: 3.3V or 5.0V
5VREF	AB21, E7	Р	5.0 V Reference: Connect to 5.0V is available in the system. Connect to 3.3V for an all 3.3V design.

Page 32 912-2000-015

3.3 Programmable I/O Pins

Programmable I/O options are available on 32 PIO pins of the FireStar chip. The options available comprise all of the PPWR[15:0] power control lines, the general purpose chip select lines GPCS[3:0]#, certain ISA pins, and various other options such as logical operations (OR, AND, NOT, XOR). The goal is to reduce to a minimum the number of external logic devices required by recovering unused pins.

PIO pin assignment is more flexible than in past OPTi chips, allowing any programmable function to replace any PIO-ready pin. This assignment always overrides the former function of the pin. The mechanism for PIO assignment is to pro-

gram the group and subfunction number for the PIO pin into the corresponding register at PCIDV1 80h-9Fh.

Functions are also assignable to internal "nodes". In this way, multi-level logic functions can be built up internally and the resulting input or output signals can be assigned to free PIO pins.

Note: Any signal that can potentially be programmed as a PIO pin will function as a PIO pin only if the corresponding CPU register is programmed to a non-zero value.

Table 3-3 PIO Functions

Group	Function	Sub-function Number	Description
Power	Default on pin	0h	Pin definition at reset
Management Inputs	EPMI0#	1h	External Power Management Input 0
Group 0	EPMI1#	2h	External Power Management Input 1
	EPMI2#	3h	External Power Management Input 2
	EPMI3#	4h	External Power Management Input 3
	LOBAT	5h	Low Battery SMI (periodic)
	LLOBAT	6h	Very Low Battery SMI (level-triggered)
	RINGI	7h	Ring Indicator
	SUS/RES#	8h	Suspend/Resume
	THMIN	9h	
	HDI	Ah	ISA Hot Docking Indicator
	TEMPDET	Bh	Temperature Detect Input for thermal mgmt.
	Reserved	C-Fh	
Power Control Outputs Group 1h	PPWRx	0-Fh	Peripheral Power Control Outputs, x = 015
Misc. Inputs	PCIRQ[3:0]#	0-3h	PCI Interrupts
Group 2h	DDRQ1	4h	IDE Cable 1 DMA Request
	CHRDYA	5h	Dedicated IDE Cable 0 Channel Ready
	CHRDYB	6h	Dedicated IDE Cable 1 Channel Ready
	MSTR#	7h	ISA MASTER# signal
	CHCK#	8h	ISA IOCHCK# signal (generates NMI)
	KBCRST	9h	Reset signal from Keyboard Controller
	KBCA20M#	Ah	A20M# signal from Keyboard Controller
	Monitor Input	Bh	PIO pin becomes input; read at PCIDV1 A8h-ABh
	NOWS#	Ch	ISA zero wait state signal
	Reserved	D-Fh	

Preliminary **82C700**

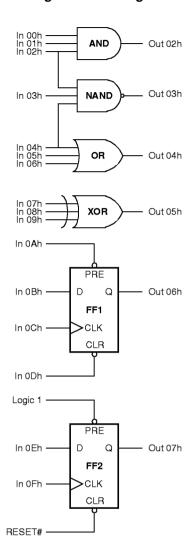
PIO Functions (cont.) Table 3-3

Group	Function	Sub-function Number	Description
Misc. Outputs	GPCSx#	0-3h	General Purpose Chip Select outputs, x=0-3
Group 3h	Reserved	4-7h	
	CDIR	8h	Compact ISA Cable Buffer Direction signal
	L2CLKOE	9h	L2 Cache Clock Output Enable
	PCICLKOE	Ah	PCI Clock Output Enable (to ext. clock generator)
	HGNT#	Bh	UMA Split Buffer Control signal
	FAN	Ch	CPU overtemp fan control output
	Reserved	Dh	
	PCTLL	Eh	Power control latch low is available only on PIO15 (RSTDRV) and is used to latch PPWR[15:0] from SD[15:0]
	ATCLK/2	Fh	ATCLK divided by 2 (for KBCLK and/or ACPIMX)
IDE Controller	DDACK0#	0h	Dedicated IDE DMA acknowledge (Primary cable)
Outputs Group 4h	DDACK1#	1h	Dedicated IDE DMA acknowledge (Secondary cable)
	DRD#	2h	Dedicated IDE command
	DWR#	3h	
	DCS1#	4h	Dedicated IDE chip select
	DCS3#	5h	
	DA0	6h	Dedicated IDE address
	DA1	7h	
	DA2	8h	
	DBEX#	9h	IDE buffer control for drive X
	DBEY#	Ah	IDE buffer control for drive Y
	DBEZ#	Bh	IDE buffer control for drive Z
	DDACK0-0#	Ch	Dedicated IDE DMA acknowledge (Primary Cable, Drive 0)
	DDACK0-1#	Dh	Dedicated IDE DMA acknowledge (Primary Cable, Drive 1)
	DDACK1-0#	Eh	Dedicated IDE DMA acknowledge (Secondary Cable, Drive 0)
	DDACK1-1#	Fh	Dedicated IDE DMA acknowledge (Secondary Cable, Drive 1)

Page 34 912-2000-015

Table 3-3 PIO Functions (cont.)

Group	Function	Sub-function Number	Description
ACPI Inputs Group 7h	UNDOCK# (ACPI0)	0h	Active low input
	DOCK# (ACPI1)	1h	Active low input
	STSCH# (ACPI2)	2h	Active low input
	FRI# (ACPI3)	3h	Active low input
	RI# (ACPI4)	4h	Active low input
	USB# (ACPI5)	5h	Active low input
	EC# (ACPI6)	6h	Active low input
	LID (ACPI7)	7h	Active high input
	(ACPI8)	8h	Active high input
	(ACPI9)	9h	Active high input
	(ACPI10)	Ah	Active high input
	(ACPI11)	Bh	Active high input
	ACPIMX0	Ch	Time-multiplexed input of ACPI0-3
	ACPIMX1	Dh	Time-multiplexed input of ACPI4-7
	ACPIMX2	Eh	Time-multiplexed input of ACPI8-11
	PWRBTN#	Fh	Power button with hardware-enforced Suspend feature


The PIO functions listed in Table 3-4 are simple gate functions. The available gates are illustrated in Figure 3-2.

Some PIO pins can be assigned a new signal function through the register set as shown in Table 3-6.

Table 3-4 Gate Level PIO Functions

Group	Function	Sub- function Number	Description
Gate Logic	AND input 1	0h	3-input AND
Inputs Group 5h	AND input 2	1h	Gate
aroup on	AND input 3/ NAND input 1	2h	
	NAND input 2	3h	3-input NAND Gate
	NAND input 3/ OR input 1	4h	3-input OR Gate
	OR input 2	5h	
	OR input 3	6h	
	XOR input 1	7h	3-input XOR
	XOR input 2	8h	Gate
	XOR input 3	9h	
	FF1 PRE# input	Ah	First D Flip-Flop
	FF1 D input	Bh	
	FF1 CLK input	Ch	
	FF1 CLR# input	Dh	
	FF2 D input	Eh	Second D Flip-
	FF2 CLK input	Fh	Flop
Logic Out-	Logic 0	0h	
puts Group 6h	Logic 1	1h	
	AND output	2h	
	NAND output	3h	
	OR output	4h	
	XOR output	5h	
	FF1 Q output	6h	
	FF2 Q output	7h	
	Reserved	8-Fh	

Figure 3-2 Programmable Logic Matrix

The gate inputs and outputs can be connected directly to PIO pins, or can be connected to each other for multi-level logic development as described in the example below and using the Gate Matrix registers shown in Table 3-5.

Example:

A certain system design might require a nearly complete ISA bus, but without the need for the M16# pin because no ISA memory would be supported. PPWR6 function could be assigned to replace the M16# pin without disturbing the rest of the ISA interface by simply programming. PCIDV1 93h = 16h (M16# is PIO19). A setting of 16h selects the Power Control Outputs Group (1h) and the PPWR6 subfunction (6h).

Page 36 912-2000-015

 Table 3-5
 Gate Matrix Programming Registers

7	6	5	4	3	2	1	0
PCIDV1 A0h	Logic Matrix Register 1 Defa						Default = 00h
Invert input 01h (whether from PIO pin or from logic matrix output)? 0 = No 1 = Yes	Connect logic input 01h (AND2) to: 000 = PIO pin 001 = Logic 1 010 = Out 2h (AND output) 011 = Out 3h (NAND output) 100 = Out 4h (OR output) 101 = Out 5h (XOR output) 110 = Out 6h (flip-flop 1 output) 111 = Out 7h (flip-flop 2 output)			Invert input 00h (whether from PIO pin or from logic matrix output)? 0 = No 1 = Yes		logic input 00h (/ CIDV1 A0h[6:4] f	•
PCIDV1 A1h			Logic Matr	ix Register 2			Default = 00h
Invert input 03h? 0 = No 1 = Yes		logic input 03h (N PCIDV1 A0h[6:4] fo	•	Invert input 02h? 0 = No 1 = Yes	Connect logic input 02h (AND3) to: Refer to PCIDV1 A0h[6:4] for decode.		
PCIDV1 A2h			Logic Matr	ix Register 3			Default = 00h
Invert input 05h? 0 = No 1 = Yes	Connect logic input 05h (OR2) to: Refer to PCIDV1 A0h[6:4] for decode.			Invert input 04h? 0 = No 1 = Yes	Connect logic input 04h (OR1) to: Refer to PCIDV1 A0h[6:4] for decode.		
PCIDV1 A3h			Logic Matr	ix Register 4			Default = 00h
Invert input 07h? 0 = No 1 = Yes	Connect logic input 07h (XOR1) to: Refer to PCIDV1 A0h[6:4] for decode.			Invert input 06h? 0 = No 1 = Yes	Connect logic input 06h (OR3) to: Refer to PCIDV1 A0h[6:4] for decode.		•
PCIDV1 A4h			Logic Matr	ix Register 5			Default = 00h
Invert input 09h? 0 = No 1 = Yes		Connect logic input 09h (XOR3) to: Refer to PCIDV1 A0h[6:4] for decode.				logic input 08h () CIDV1 A0h[6:4] 1	
PCIDV1 A5h			Logic Matr	ix Register 6			Default = 00h
Invert input 0Bh? 0 = No 1 = Yes	Connect logic input 0Bh (flip-flop 1, -D input) to: Refer to PCIDV1 A0h[6:4] for decode.			Invert input OAh? 0 = No 1 = Yes	I .	out 0Ah (flip-flop : CIDV1 A0h[6:4] f	I, PRE# input) to:
PCIDV1 A6h			Logic Matr	ix Register 7			Default = 00h
Invert input 0Dh? 0 = No 1 = Yes	Connect logic input 0Dh (flip-flop 1, CLR# input) to: Refer to PCIDV1 A0h[6:4] for decode.			Invert input 0Ch? 0 = No 1 = Yes	·	put 0Ch (flip-flop CIDV1 A0h[6:4] f	
PCIDV1 A7h			Logic Matr	ix Register 8			Default = 00h
Invert input 0Fh? 0 = No 1 = Yes	Connect logic input 0Fh (flip-flop 2, CLK input) to: Refer to PCIDV1 A0h[6:4] for decode.			Invert input 0Eh? 0 = No 1 = Yes	I -	input 0Eh (flip-flo CIDV1 A0h[6:4] f	

912-2000-015 Revision: 1.0

Preliminary **82C700**

Table 3-6 Register Programmable PIO Pins

7	6	5	4	3	2	1	0
PCIDV1 80h			Default = 00h				
Tristate, pull- down PIO pin during Suspend: 0 = No 1 = Yes	001 = Group 1 (Power Control Outputs) 010 = Group 2 (Miscellaneous Outputs) 011 = Group 3 (Miscellaneous Outputs) 100 = Group 4 (IDE Controller Outputs) 101 = Group 5 (Gate Logic Inputs) 110 = Group 6 (Logic Outputs) 0001 = Group sub-function 1 0010 = Group sub-function 3 0100 = Group sub-function 4 0101 = Group sub-function 5 0110 = Group sub-function 6					1001 = Group 1010 = Group 1011 = Group 1100 = Group 1101 = Group 1110 = Group	sub-function 8 sub-function 9 sub-function 10 sub-function 11 sub-function 12 sub-function 13 sub-function 14 sub-function 15
PCIDV1 81h		Р	IO1 Pin (TAGWE	#) Function Regis	iter		Default = 00h
PCIDV1 82h		ı	PIO2 Pin (ADSC#) Function Regist	ler		Default = 00h
PCIDV1 83h			PIO3 Pin (ADV#)	Function Registe	er		Default = 00h
PCIDV1 84h		ı	PIO4 Pin (RAS2#)	Function Regist	er		Default = 00h
PCIDV1 85h		ı	PIO5 Pin (RAS1#)	Function Regist	er		Default = 00h
PCIDV1 86h		PI	O6 Pin (CLKRUN	#) Function Regi	ster		Default = 00h
PCIDV1 87h		ı	PIO7 Pin (REQ1#)	Function Regist	er		Default = 00h
PCIDV1 88h		ı	PIO8 Pin (REQ2#)	Function Regist	er		Default = 00h
PCIDV1 89h		F	PIO9 Pin (DDRQ0) Function Regis	ter		Default = 00h
PCIDV1 8Ah			PIO10 Pin (IRQ1)	Function Regist	er		Default = 00h
PCIDV1 8Bh		ı	PIO11 Pin (IRQ8#	Function Regist	ter		Default = 00h
PCIDV1 8Ch		F	PIO12 Pin (IRQ12) Function Regis	ter		Default = 00h
PCIDV1 8Dh		F	PIO13 Pin (IRQ14) Function Regis	ter		Default = 00h
PCIDV1 8Eh		PIC	014 Pin (SEL#/AT	B#) Function Reg	jister		Default = 00h
PCIDV1 8Fh		PI	O15 Pin (RSTDR	V) Function Regi	ster		Default = 00h
PCIDV1 90h			PIO16 Pin (SA16)	Function Regist	er		Default = 00h
PCIDV1 91h			PIO17 Pin (SA17)	Function Regist	er		Default = 00h
PCIDV1 92h		ı	PIO18 Pin (IO16#)	Function Regist	er		Default = 00h
PCIDV1 93h			PIO19 Pin (M16#)	Function Regist	er		Default = 00h
PCIDV1 94h		P	PIO20 Pin (SBHE#) Function Regis	ter		Default = 00h
PCIDV1 95h		Р	IO21 Pin (SMRD#	f) Function Regis	ter		Default = 00h
PCIDV1 96h		Р	IO22 Pin (SMWR	#) Function Regis	ster		Default = 00h
PCIDV1 97h		PI	O23 Pin (ROMCS	#) Function Regi	ster		Default = 00h
PCIDV1 98h		PI	O24 Pin (KBDCS	#) Function Regi	ster		Default = 00h
PCIDV1 99h		F	PIO25 Pin (DRQA) Function Regis	ter		Default = 00h
PCIDV1 9Ah		F	PIO26 Pin (DRQB) Function Regis	ter		Default = 00h
PCIDV1 9Bh		F	PIO27 Pin (DRQC) Function Regis	ter		Default = 00h
PCIDV1 9Ch		F	PIO28 Pin (DRQD) Function Regis	ter		Default = 00h
PCIDV1 9Dh		F	PIO29 Pin (DRQE	Function Regist	ter		Default = 00h
PCIDV1 9Eh		i	PIO30 Pin (DRQF	Function Regist	ter		Default = 00h
PCIDV1 9Fh		F	PIO31 Pin (DRQG) Function Regis	ter		Default = 00h

Page 38 912-2000-015

3.4 Strap Selected Options

The strap options are selected by connecting a 10kohm resistor opposite to the sense of the internal resistor listed. The internal resistor is about 50kohm, so the external resistor must be less than 10kohm to counteract it.

Table 3-7 gives the strap options and Table 3-8 shows the registers used to readback the option selected.

Table 3-7 Strap Options

Pin No.	Pin Name	Option	Internally at Reset	Description
N25	RTCRD#	PCICLK1 Enable PCIDV1 48h[0]	Pull low (becomes GNT1# by default)	Selects whether: -GNT1# comes out (if RTCRD# is sensed low) -PCICLK1 comes out (if RTCRD# is sensed high)
N26	RTCWR#	PCICLK2 Enable PCIDV1 48h[1]	Pull low (becomes GNT2# by default)	Selects whether: -GNT2# comes out (if RTCWR# is sensed low) -PCICLK2 comes out (if RTCWR# is sensed high)
J24:J26	Bit 1:0 ROMCS#: KBDCS#	PCICLK3-5 Enable PCIDV1 48h[3:2]	Pull low (all pins take on default ISA/CISA function)	00 = CMD# is CMD#, ATCLK is ATCLK, BALE is BALE 01 = CMD# => PCICLK3, ATCLK and BALE stay the same 10 = CMD# => PCICLK3, ATCLK => PCICLK4, BALE stays the same 11 = CMD# => PCICLK3, ATCLK => PCICLK4, BALE => PCICLK5
AF5	INTR	PCIVCC Select PCIDV1 48h[4]	Pull high (PCI is 3.3V by default)	Selects whether input threshold on PCI interface is: -3.3V (if INTR is sensed high) -5.0V (if INTR is sensed low)
AD5	NMI	DRAMVCC Select PCIDV1 48h[5]	Pull high (DRAM is 3.3V by default)	Selects whether input threshold on DRAM is: -3.3V (if NMI is sensed high) -5.0V (if NMI is sensed low)
AC6	IGERR#	ISAVCC Select PCIDV1 48h[6]	Pull low (ISA is 5.0V by default)	Selects whether input threshold on ISA interface is: -3.3V (if IGERR# is sensed high) -5.0V (if IGERR# is sensed low)
H24	DBEW#	PPWR Select PCIDV1 49h[1]	Pull low (Normal mode is selected by default)	Force SA[23:18] to zero during reset to use as initially low PPWR pins: -Normal mode (if DBEW# is sensed low) -Initially low PPWR[3:0] and PPWR[9:8] (if DBEW# is sensed high)
R5	BOFF#	PPWR0# Select PCIDV1 49h[2]	Pull low (becomes PPWRL by default)	Selects whether: -PPWRL comes out (if line is sensed low) -PPWR0# comes out (if line is sensed high)
N24:R3	Bit 1:0 RTCAS: A20M#	Mode Select PCIDV1 49h[3,0]	Pull high (Normal decode, ISA-less mode is selected by default)	Selects whether: 00 = PC98 Mode, ISA-less Mode 01 = Normal decode ISA mode. ROM, KBC, and RTC on SD bus only (XD bus is not sampled during XD bus device read cycles). The XD bus is automatically mapped as dedicated primary channel IDE control. PCIDV1 46h[6] is ignored. 10 = Normal decode ISA mode, ROM on XD bus only. KBC and RTC can be relocated to the SD bus. XD bus can be qualified with DBE# to generate IDE control signals. The XD bus data will also be driven onto the SD bus during XD bus device read cycles. 11 = Normal decode, ISA-less Mode
AB14	PCICLK0	MCACHE Support PCIDV1 49h[4]	Pull low (No MCACHE support)	Selects whether: 0 = No MCACHE support 1 = MCACHE support enabled (Feature is not supported)
B7	RSVD	CPUVCC	Pull low (CPU is 3.3V by default)	Selects whether input threshold on CPU interface is: -3.3V (if RSVD is sensed low) -2.5V (if RSVD is sensed high)

Table 3-8 Strap Option Readback Registers

7	6	5	4	3	2	1	0
PCIDV1 48h	Strap Option Readback Register (RO) - Byte 0						
Reserved	IGERR# strap option selects: 0 = 5.0V ISA 1 = 3.3V ISA	NMI strap option selects: 0 = 5.0V DRAM 1 = 3.3V DRAM	INTR strap option selects: 0 = 5.0V PCI 1 = 3.3V PCI		ATCLK, BALE PCICLK4, BALE	RTCWR# strap option selects: 0 = GNT2# 1 = PCICLK2	RTCRD# strap option selects: 0 = GNT1# 1 = PCICLK1
PCIDV1 49h		Strap	Option Readbac	k Register (RO)	- Byte 1		Default = 00h
Reserved			PCICLK0 strap option selects: 0 = No MCACHE 1 = MCACHE enabled Not supported.	RTCAS strap selects ⁽¹⁾	BOFF# strap option selects: 0 = PPWRL 1 = PPWR0#	DBEW# strap option selects: 0 = SA[23:18] pins are SA[23:8] signals 1 = SA[23:18] pins are remapped: SA[23:20] = PPWR[3:0] and SA[19:18] = PPWR[9:8]	A20M# strap selects ⁽¹⁾
(1) Bits 3 and 0 work together: 00 = NEC mode & No ISA mode 01 = ISA mode without XD bus 10 = ISA mode with XD bus 11 = No ISA mode							

Page 40 912-2000-015

4.0 Functional Description

4.1 Buses and Concurrency

The FireStar architecture is built around multiple system buses. These are independent buses except for ISA/Compact ISA, IDE, and the X bus, which all share at least part of their pins. The buses are described below in the order of decode priority. If no priority is listed within a group, then there is no implied priority (no conflicts among participating devices).

4.1.1 Cycles Originating from CPU

Cycles started by the CPU go first to DRAM and/or L2 cache, then to PCI. From PCI the cycle can be:

- Positively decoded by the FireStar logic itself, in the case of IDE or known ISA devices.
- · Positively decoded by a local device on the PCI bus.
- Positively decoded by a bridge chip such as the 82C824
 CardBus/Docking Controller, subject to later rejection if no downstream device claims the cycle (the aborted cycle eventually gets claimed by the local ISA bus).
- · Subtractively decoded and forwarded to ISA/CISA.

The highest priority in any CPU-initiated cycle will always be to the locally decoded L2 cache and DRAM. The ranges decoded:

Logic Memory Ranges Decoded

CPU/L2 cache 0-128MB DRAM 0-512MB If there is no decode by local memory, the cycle goes out on the PCI bus. There are three possible cases of how the FireStar system handles the cycle on PCI, according to its intended destination:

- · Cycles destined for a known local device.
- Cycles destined for unknown device on PCI, local Compact ISA, or local ISA.
- Cycles destined for a docking station ISA bus device.

4.1.1.1 Cycles Destined for a Known Local Device

For access to all devices known to FireStar, such as local IDE, ROM, RTC, local ISA floppy, etc., the PCI cycle is automatically remapped to an address space in high memory (a "base address" register is provided in the PCI configuration register space). The full list of positively decoded devices is provided in Section 4.9.4.1, "PCI Positive Decode for ISA". In this way, PCI bus devices will not attempt to claim the cycle. FireStar always responds to this cycle with a fast PCI decode.

PCI bus masters other than FireStar do not need to issue a remapped address to access local devices. In this case, FireStar must wait for the subtractive decode clock before claiming the cycle.

Table 4-1 indicates the cycles considered for positive decode/remapping, ordered by priority.

Table 4-1 Cycle Decode

Bus/Device	Memory Address Ranges	I/O Address Ranges	Remapped	Decode
X	C0000-FFFFFh	060, 064, 070-1h	MemBase or IOBase + original address	Positive by FireStar
IDE (PIO mode)	(PIO mode) 16		IOBase + original address	Positive by FireStar
Known local ISA devices	Defined by PMI decode	Defined by PMI decode	MemBase or IOBase + original address	Positive by FireStar
PCI	All	All	No	Positive by PCI device
Docking Station ISA	All	All	No	Positive by PCI device
Unknown local ISA devices, Compact ISA	All non-local DRAM space, or DRAM "holes"	x100-x3FFh	No	Subtractive by FireStar

4.1.1.2 Cycles Destined for Unknown Devices on PCI, Local Compact ISA, or Local ISA

For accesses whose owner is not known beforehand to the FireStar logic, the cycle presented on PCI is the same one as generated by the CPU. FireStar monitors DEVSEL#: If no PCI device claims the cycle, FireStar claims it at the subtractive decode clock and passes it to the local ISA controller. Local ISA always claims unclaimed cycles. Even if no ISA device is present to receive the cycle, PCI will see a normal cycle termination.

4.1.1.3 Cycles Destined for a Docking Station ISA Bus Device

Cycles that might be destined for docking station ISA will be claimed on the medium decode clock by the 82C824 chip. If the 82C825 PCI-ISA bridge cannot complete the cycle (no ISA device responds), FireStar logic must have some means of recovering the cycle.

Therefore, the 82C824 logic immediately and automatically retries all cycles to ISA windows (programmable on a perwindow basis in the 82C824 registers) while it attempts to complete the access through the 82C825 bridge. The 82C824 continues to claim all retries while it awaits a response from the 82C825 chip.

Two outcomes to the PCI cycle on bus 0 are possible.

- If the attempt to complete a cycle on the 82C825 ISA bus is successful, the 82C824 completes the cycle with the primary PCI bus master (FireStar or other master) on a later retry. FireStar will retry such cycles up to a programmable limit. Refer to Section 4.9.4.2, "Remote ISA Support" for details on how the FireStar/82C824/82C825 solution recognizes "claimed" cycles on ISA.
- 2) If the 82C825 fails to determine that an ISA device has claimed the cycle, it will end its PCI cycle with a Target Abort. As a result, the 82C824 chip, which has been forcing retry attempts on the primary side up until now, will simply ignore the next retry. In this way, FireStar will claim the cycle through subtractive decoding and pass it to its local ISA bus.

Figure 4-1 illustrates the multi-bus concept needed when using ISA on a docking station.

FireStar implements a register to limit the number of retries. In this way, a system hang condition can be resolved by allowing SMM or other code to interrogate the 82C824 chip and determine why the cycle cannot proceed. For example, if a bad docking connection has caused the 82C824 to be unable to properly complete its cycle, FireStar can still recover gracefully on the primary side after its retry limit has been reached.

Figure 4-1 Multiple ISA Bus Support

Page 42 912-2000-015

4.1.2 Concurrent Bus Operation

The independent nature of the buses allows all common bus operations to run concurrently. The only concurrency restrictions involve the low-speed slave buses, as follows.

- PIO mode IDE cycles effectively block all system buses if the cycles are initiated by the CPU, since the I/O cycle must first go through PCI. Bus master mode IDE cycles do not block the CPU.
- BIOS ROM cycles on the X bus block the IDE bus because they use the IDE control bus.
- RTC and keyboard controller cycles on the X bus block only IDE operations because they use the IDE control bus.
- ISA cycles block IDE cycles because they use the IDE data bus.

Since the BIOS is usually shadowed in DRAM, it will only be accessed at system boot time. Therefore, it is reasonable to summarize that only ISA cycles to unknown (non-positively decoded) devices will significantly reduce system performance. System designs should avoid integrating ISA bus devices where possible in order to allow maximum concurrency.

4.2 Intermodule Communications

The operations of the FireStar chip are specified in terms of communication sequences between logic modules. For example, a CPU write to DRAM can be broken down into two intermodule communication sequences: CPU to post-write buffers, then post-write buffers to DRAM.

The following sub-sections highlight specific aspects of intermodule communications in FireStar.

4.2.1 Read: CPU < DRAM or L2 Cache

Memory read cycles on the CPU interface are always directed to both the L2 cache controller and to the DRAM interface, in parallel. The memory controller always starts a memory read cycle to DRAM while it is waiting for the L2 cache tag comparison results, as long as the DRAM is not busy (such as for a PCI bus master access to DRAM). If the data turns out to be in L2 cache, the memory controller simply terminates the DRAM cycle.

Starting the cycle early allows the DRAM controller to generate an address on the MA lines and drop its RAS# line in preparation for the possible access to come.

4.2.2 Write: CPU > DRAM or L2 Cache

Any write to memory, whether destined for DRAM or PCI, is first posted to the post write buffers. The CPU interface logic controls the burst at its fastest speed, and can generate NA# at the appropriate time to pipeline the succeeding burst. The chip can accommodate six qwords (quadwords - 64-bit data words) for full-speed (no wait state) pipelined burst cycles even at 66MHz.

Once the post-write buffer is filled up, the CPU interface logic inserts CPU wait states to prevent further writes until some of the DRAM writes are completed. However, the CPU will be allowed to continue writing, one burst at a time, as the buffer empties (non-blocking feature).

4.2.3 Cache Write Hit - Write Cycles from CPU to L2 Cache

The FireStar solution minimizes the penalty of eventual write-back cycles to DRAM by using the OPTi-proprietary adaptive writeback scheme. In adaptive writeback mode, CPU writes to memory are automatically written-through to DRAM instead of being written only to L2 cache for a later writeback to DRAM. However, this action occurs only if a specified number of write buffers is available (programmable).

If the write buffers are filled above the limit (programmable), the system enters normal writeback mode and only updates the L2 cache. It will write the data back to DRAM only when that cache line is replaced in L2 cache.

4.2.4 L2 Cache Inquiries from PCI

PCI bus memory transactions are automatically presented on the CPU bus to determine whether the data exists in L2 cache. If so:

- For a PCI memory write cycle, the cache line will be invalidated.
- For a PCI memory read cycle in the local DRAM range, the cache line will be written back to the DRAM while the PCI read cycle is taking place. In this case, the PCI read cycle takes place concurrently with the writeback cycle to DRAM.

This mode of operation optimizes operations on PCI that involve DRAM.

912-2000-015 Revision: 1.0

4.3 Reset Logic

The PWRGD input is used to generate the CPU and the system reset, RESET#. PWRGD is a "cold reset" which is generated when either PWRGD goes low (from the power supply, indicating a low power condition) or the system reset button is activated. When PWRGD makes a low-to-high transition, RESET# will go active and will remain active for at least 1ms after PWRGD goes high. The PCI clock input to FireStar is used for timing the RESET# pulse width and must be running during reset. The RESET# output may be used to generate reset for all system devices. In addition, FireStar generates reset on the RSMRST signal which may be used to reset devices on power-up and also on a Resume from Suspend. The duration of the RSMRST pulse on power-up is fixed and is the same as the duration of the RESET# signal. However,

the duration of the RSMRST pulse on Resuming from Suspend can be programmed as 8ms, 32ms, 128ms, 32 μ s, or 1s. Refer to Table 4-2.

The CPUINIT signal is used to initialize the 3.3V CPU during warm resets. CPUINIT is generated for the following cases:

- When a shutdown condition is decoded from the CPU bus definition signals, the 82C700 will assert CPUINIT for 15 T-states.
- Keyboard reset to I/O Port 064h.
- · Fast reset to I/O Port 092h.

Table 4-2 Resume Recovery Control Bits

7	6	5	4	3	2	1	0		
SYSCFG 68h	SYSCFG 68h Clock Source Register 3 Det								
Resume recovery time: 00 = 8ms									
SYSCFG BEh if	AEh[7] = 0	I	ldle Reload Even	t Enable Registe	r 2		Default = 00h		
							Override SYSCFG 68h[3:2]: 0 = No		
							1 = Recover time 1s		

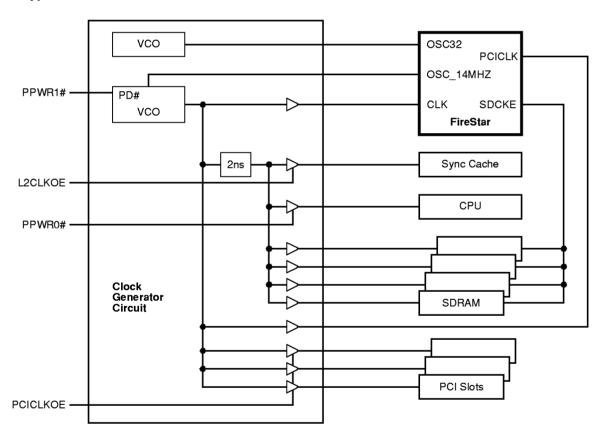
Page 44 912-2000-015

Revision: 1.0

4.4 System Clocks

4.4.1 CPU and FireStar Clocks

The master CPU clock input to FireStar, CPUCLKIN, is a single phase clock which is used to sample all host CPU synchronous signals and for clocking its internal state machines. CPUCLKIN must be earlier than the clock to the CPU and should lead by 1.5-2.5ns.


Figure 4-2 shows a typical CPU and FireStar clock distribution circuit. PPWR1# is an inverted output of PPWR1 that is output by FireStar that can be used to power off the clock generator in Suspend. Note that in Suspend, all clocks in the system may be powered off except the OSC32 clock input to FireStar. This clock is used by FireStar to track various power management events. PPWR0# can be used to turn off the

CPU clock during APM for greater power savings on the CPU in the Stop Clock state. L2CLKOE can be used to dynamically control the clock to the synchronous cache.

4.4.2 PCI Bus Clocks

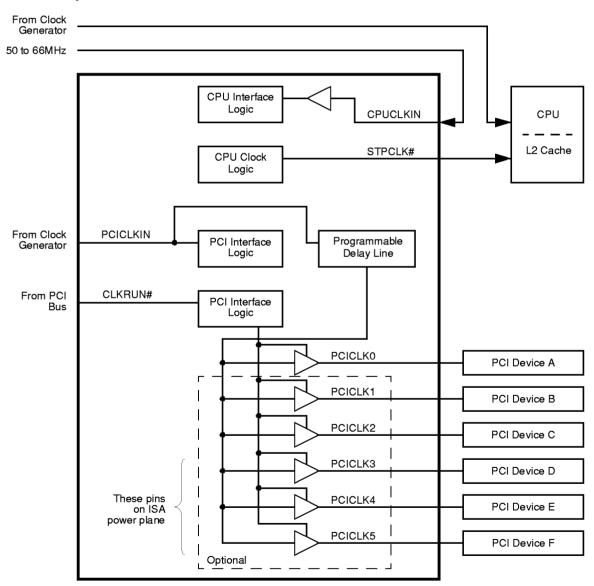
FireStar requires PCICLK for the PCI interface. PCICLK can be synchronous or asynchronous. Figure 4-2 also shows a typical clock generation and distribution scheme for PCICLK. In order to support synchronous PCI operation, the leading edge of the PCI clock input to FireStar must not lag or lead the leading edge of the CPU clock from which it is derived by more than 1ns. PCICLKOE can be used to turn off the clocks to all PCI devices except FireStar in APM.

Figure 4-2 Typical CPU and FireStar Clock Distribution

Note: All control inputs are high for operation and low for stop.

4.4.2.1 **PCI Clock Generation**

FireStar provides CLKRUN#-controlled clocks to multiple PCI devices. The clocks are derived from the PCICLKIN line. This clock is fed directly to the system logic. A partial-clock delay is introduced to correct for the output buffer delay and the circuit board trace delay, and the clocks are fed out to one or more output lines.


PCICLKIN should be exactly in phase with the CPUCLKIN signal for high-performance synchronous operation. Figure 4-3 illustrates the clocking arrangement.

Buffered PCICLK Outputs

Up to five buffered PCICLK sources are available as strapselected options on certain output-only pins. For example, if the ATCLK signal is not needed in the system, it can be reassigned at reset as a PCICLK source for one PCI device.

The internal PCI clock skew is corrected through an internal delay line. Programming the delay line introduces any needed delay to account for trace delays to the external devices. This scheme eliminates the need to use external components to adjust clock skew. Note that three of the options are on the ISA power plane, and therefore may not be appropriate if PCI and ISA are at different voltages.

Figure 4-3 **System Clock Generation**

912-2000-015 Page 46

Each PCICLK output is individually controlled by the CLK-RUN# circuitry. In this way, devices that do not support CLK-RUN# can be supported along with those that do.

The alternative option to reassigning FireStar pins as PCI clock outputs is to use externally buffered versions of the main PCICLK signal to drive PCI devices.

Programming

The PCICLK outputs 1-5 are enabled as strap-selected features. Once enabled, PCIDV1 68h through 6Bh control the

clock delay and stop/start each clock individually (refer to Table 4-3).

On reset, the delay circuit is disabled and the input clock is output directly to the outputs. The internal delay of the chip will cause the output to be delayed from the input by 3-6ns.

Clock Throttling

FireStar fully supports power management by CPU clock throttling. PCI bus clocking is controlled by CLKRUN#, which the chip will attempt to deassert each time the CPU is put into a power-saving mode.

Table 4-3 PCICLK Outputs Programming Registers

Table 4-3	PCICLK Outputs Programming Registers							
7	6	5	4	3	2	1	0	
PCIDV1 68h			PCICLK Con	trol Register 1			Default = FFh	
Rese	erved	PCICLK5:	PCICLK4:	PCICLK3:	PCICLK2:	PCICLK1:	PCICLK0:	
		0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	
		1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	
PCIDV1 69h PCICLK Co				trol Register 2			Default = 00h	
Rese	erved	PCICLK5	PCICLK4	PCICLK3	PCICLK2	PCICLK1	PCICLK0	
		affected by	affected by	affected by	affected by	affected by	affected by	
		CLKRUN#:	CLKRUN#:	CLKRUN#:	CLKRUN#:	CLKRUN#:	CLKRUN#:	
		0 = No	0 = No	0 = No	0 = No	0 = No	0 = No	
		1 = Yes	1 = Yes	1 = Yes	1 = Yes	1 = Yes	1 = Yes	
PCIDV1 6Ah		PCICLI	K Skew Adjust R	egister for PCICL	K 0, 1, 2		Default = 00h	
Reserved:	(Coarse adjustment	t:	Reserved		Fine adjustment:		
For PCICLK	000 = No dela					= No delay		
debug		K period ÷2) + ~4r				= Add ∼1ns		
purposes.	,	K period ÷2) + ~8r				= Add ~2ns		
	1	K period ÷2) + ~12			011 = Add ~3ns 100 = Add ~4ns			
	,	K period ÷2) + ~16 K period ÷2) + ~2(
		K period ÷2) + ~24			101 = Add ~5ns 110 = Add ~6ns			
		<pre>K period ÷2) + ~28</pre>			111 =			
Note: If both coa	rse adjustment an	d fine adjustment a	are set to 0 (no de	lay), PCICLKIN w	ill be routed to PC	ICLK output with r	no compensation.	
PCIDV1 6Bh		PCICLI	K Skew Adjust R	egister for PCICL	K 3, 4, 5		Default = 00h	
Reserved:	(Coarse adjustment	t:	Reserved		Fine adjustment:		
For PCICLK	000 = No dela					= No delay		
debug	,	K period ÷2) + ~4r			001 = Add ~1ns			
purposes.	,	K period ÷2) + ~8r			010 = Add ~2ns			
		K period ÷2) + ~12 K period ÷2) + ~16			011 = Add ~3ns 100 = Add ~4ns			
	,	K period ÷2) + ~10 K period ÷2) + ~20				= Add ~4ns = Add ~5ns		
		K period ÷2) + ~24				= Add ~5ns = Add ~6ns		
		K period ÷2) + ~28				= Add ~7ns		
Note: If both coa	rse adjustment and	· /		lay), PCICLKIN w	ill be routed to PC	ICLK output with r	no compensation.	

Preliminary **82C700**

4.4.3 ISA Bus Clocks

FireStar generates the ISA bus clock (ATCLK) from an internal division of PCICLK. The ATCLK frequency is programmable and can be set to any of the four clock division options through PCIDV1 47h[5:4] (see Table 4-4). This allows the system designer to tailor the ISA bus clock frequency to support a wide range of system designs and performance platforms.

4.4.4 Clock Control

In addition to the PPWR0 clock control, the FireStar power management unit (PMU) provides the L2CLKOE signal as an option on PIO pins. The two signals function in a slightly different manner.

 PPWR0 automatically goes low to turn off the clock to the CPU during APM Doze mode. The toggle occurs only after the PMU has received the Stop Grant cycle from the CPU. Once an interrupt event comes in to wake the system out of Doze mode, PPWR0 goes high again to restart the clock generator. The STPCLK# signal to the CPU remains asserted for an additional 1ms to allow the PLL of the CPU to stabilize. L2CLKOE automatically goes low to turn off the clock to
the L2 cache any time Stop Grant mode is active on the
CPU. As with PPWR0, the toggle occurs only after the
PMU has received the Stop Grant cycle from the CPU.
However, L2CLKOE stays low until STPCLK# is removed.
Therefore, it can be used to save power during CPU clock
throttling, when the STPCLK# pin to the CPU is asserted
on a periodic basis but the CPU clock is not stopped.
PPWR0 does not toggle during clock throttling.

Either one or both of these signals can be used to minimize power consumption in a low-power design. PPWR1 is also available as the master control for all system clocks. It is used to shut off the clock generator completely during Suspend.

4.4.5 L2 Cache Clock Control

FireStar generates the L2CLKOE control to the clock generator to allow it to stop the clock to the L2 cache. This pin is deasserted when the cache is not being accessed, when the CPU is in Stop Grant state. The L2 cache clock runs at all other times, since the cache must be able to latch an upcoming CPU address even before any CPU command lines go active.

L2CLKOE is a programmable pin option and can be assigned to any available PIO pin.

Table 4-4 ATCLK Frequency Control Register Bits

7	6	5	4	3	2	1	0
PCIDV1 47h			PCI Control Re	gister B - Byte 1			Default = 00h
		ATCLK fi 00 = PCI 01 = PCI 10 = PCI 11 = PCI	CLK ÷3 CLK ÷2				

Page 48 912-2000-015

4.5 Cache Subsystem

The integrated cache controller, which uses a direct-mapped, scheme dramatically boosts the overall performance of the local memory subsystem by caching writes as well as reads (writeback mode). The cache controller also supports 256KB, 512KB, 1MB, and 2MB of synchronous SRAM in a single/double bank configuration. Two programmable non-cacheable regions are provided. The cache controller operates in a non-pipelined or a pipelined mode, with a fixed 32-byte line size (optimized to match a CPU burst linefill) in order to simplify the motherboard design without increasing cost or degrading system performance. The secondary cache operates independently and in addition to the CPU's internal cache.

The cache controller of FireStar has a built-in tag comparator which improves system performance while reducing component count on the system board. The controller features a 64-bit wide data bus with 32-byte CPU burst support. The cache controller supports writeback, adaptive writeback, and write-through schemes.

The cache controller uses a 32-byte secondary cache line size. It supports 3-1-1-1 burst read/write for pipelined synchronous SRAMs. 2-1-1-1 burst read/write cycles are supported for standard synchronous SRAMs at 50MHz. In this case, the ADSC# output of the processor needs to be connected to the ADSC# input of the synchronous SRAM. The 8-bit tag has a "dirty" bit option for the writeback cache.

4.5.1 CPU Burst Mode Control

FireStar fully supports the 64-bit wide data path for the CPU burst read and burst write cycles. The cache and DRAM controllers in FireStar ensure that data is burst into the CPU whenever the CPU requests a burst linefill or a burst write to the system memory.

FireStar contains separate burst counters to support DRAM and external cache burst cycles. The DRAM controller performs a burst for the L2 cache read miss linefill cycle (DRAM to L2 cache and CPU) and the cache controller burst supports the CPU burst linefill (3.3V Pentium and K5 burst linefill and the Cyrix M1 linear burst linefill) for the L2 cache hit cycle (L2 cache to the 3.3V Pentium CPU). Depending on the kind of processor being used, either the 3.3V Pentium quad-word burst address sequencing or the Cyrix M1 quad-word linear burst address sequencing is used for all system memory burst cycles.

4.5.1.1 Cyrix Linear Burst Mode Support

FireStar supports the Cyrix linear burst mode. SYSCFG 17h[0] determines which burst mode is to be implemented, the Intel 3.3V Pentium CPU burst mode or the Cyrix linear burst mode. No additional hardware is required for supporting either of these modes.

When using a synchronous SRAM solution, care must taken that the synchronous SRAM burst protocol complements the processor's burst protocol.

Table 4-5 shows the burst mode sequence for both of these processors and Table 4-6 highlights the register bits that need to be programmed upon system burst mode selection.

Table 4-5 Burst Modes

1st Address	2nd Address	3rd Address	4th Address					
Cyrix Linear Burst Mode								
0	8	10	18					
8	10	18	0					
10	18	0	8					
18	0	8	10					
Intel/AMD Bu	rst Mode							
0	8	10	18					
8	0	18	10					
10	18	0	8					
18	10	8	0					

Table 4-6 Burst Mode Control Register Bit

6	5	4	3	2	1	0
		PCI Cycle Co	ntrol Register 2			Default = 00h
						Burst type: 0 = Intel burst protocol 1 = Cyrix linear burst protocol
		Clock Con	trol Register			Default = 00h
				Add one more wait state dur- ing PCI master cycle with Intel- type address toggling(1): 0 = No 1 = Yes		
	6		PCI Cycle Col	PCI Cycle Control Register 2 Clock Control Register	Clock Control Register Clock Control Register Add one more wait state during PCI master cycle with Intelty pe address toggling(1):	Clock Control Register Clock Control Register Add one more wait state during PCI master cycle with Inteltype address toggling(1):

4.5.2 Cache Cycle Types

Some cache terminology and cycle definitions that are chipset specific:

The cache hit/miss status is generated by comparing the high-order address bits (for the memory cycle in progress) with the stored tag bits from previous cache entries. When a match is detected and the location is cacheable, a cache hit cycle takes place. If the comparator does not detect a match or a non-cacheable location is accessed (based on the internal non-cacheable region registers), then the current cycle is a cache miss.

A cache hit/miss decision is always made at the end of the first T2 for a non-pipeline cycle and at the end of the first T2P for a pipeline cycle, so the SRAM read/write cycle will begin after the first T2 or T2P. The cacheable decision is based on the DRAM bank decodes and the chipset's configuration registers for non-system memory areas and non-cacheable area definitions. If the access falls outside the system memory area, it is always non-cacheable.

The dirty bit is a mechanism for monitoring coherency between the cache and system memory. Each tag entry has a corresponding dirty bit to indicate whether the data in the represented cache line has been modified since it was loaded from system memory. This allows FireStar to determine whether the data in the system memory is "stale" and needs to be updated before a new memory location is allowed to overwrite the currently indexed cache entry. FireStar supports several Tag/Dirty schemes and those are described in Section 4.5.3.7, Tag and Dirty RAM Implementations, on page 56.

A linefill cycle occurs for a cache read miss cycle. It is a data read of the new address location from the system memory and a corresponding write to the cache. The tag data will also be updated with the new address.

A castout cycle occurs for a cache read miss cycle, but only if the cache line that is being replaced is "dirty". In this cycle, the dirty cache line is read from the cache and written to the system memory. The upper address bits for this cycle are provided by the tag data bits.

A writeback cycle consists of performing a castout cycle followed by a linefill cycle. The writeback cycle causes an entire cache line (32 bytes) to be written back to memory followed by a line burst from the new memory location into the cache and to the CPU simultaneously. The advantages of performing fast write cycles to the cache (for a write hit) typically outweigh the cycle overhead incurred by the writeback scheme.

4.5.3 Cache Operation

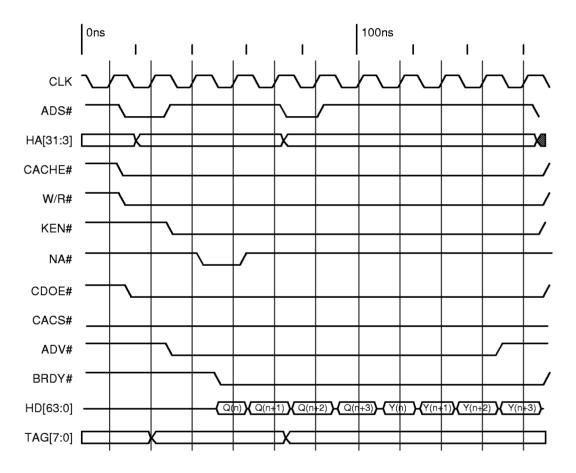
The following section describes the cache operation on FireStar.

4.5.3.1 L2 Cache Read Hit

On an L1 read miss and an L2 read hit, the secondary cache provides data to the CPU. FireStar follows the CPU's burst protocol mode (i.e., either linear or non-linear) to fill the processor's internal cache line.

The cache controller will sample CACHE# from the CPU at the end of T1 and perform a burst read if CACHE# is sampled active. The first cache read hit for a cycle is always one wait state. If a read cycle can be converted to a burst, the read cycle is extended for the additional three words continuing at

Page 50 912-2000-015


one wait state per cycle. To achieve the burst at this rate, the hit or miss decision must be made before BRDY# is returned to the CPU at the end of the second T2. The cache hit comparator in FireStar compares the data from the tag RAM with the higher address bits from the CPU bus. The output of this comparator generates the BRDY# signal to the 3.3V Pentium CPU. The tag comparator's output is sampled at the end of the first T2, and BRDY# is generated one clock later for cache hits, resulting in a leadoff of three cycles. BRDY# will

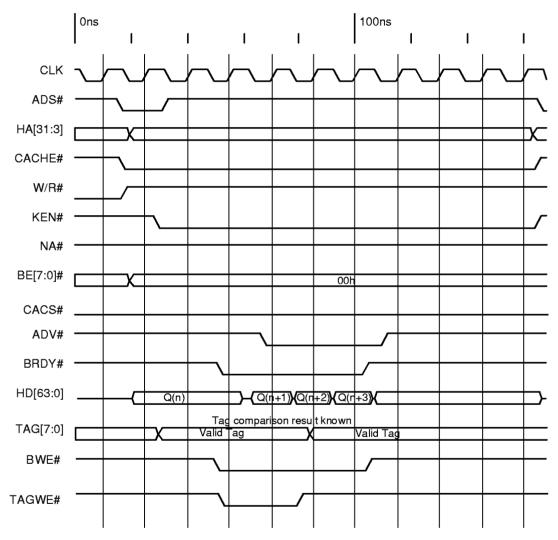
go inactive to add wait states depending on the wait states programmed. Refer to Table 4-8 for the tag compare table.

The data output for the SRAM is controlled by a separate output enable (CDOE#). The CDOE# generation for the leadoff cycle is based on address bit A3 from the CPU. The output enable CDOE# will be active for the complete cycle.

Figure 4-4 shows an example of an L2 cache read hit cycle using synchronous SRAMs.

Figure 4-4 L2 Cache Read Hit Cycle - Sync SRAMs

4.5.3.2 L2 Cache Write Hit Cycle


Write-through Mode: In this mode, data is always written to the L2 cache and to the system memory. The dirty bit is not used. When the write to the system memory is completed, BRDY# is returned to the CPU.

Writeback Mode: For a write hit case, the data is written only to the L2 cache (the system memory is not updated) and the dirty bit is always made dirty. The cache controller will sample CACHE# from the CPU at the end of T1 and execute a burst write if CACHE# is sampled active, otherwise the cycle will end in a single write. In this mode, the write cycle is completed in a 3-1-1-1 burst.

For writes, only the byte requested by the CPU can be written to the cache. This is done by using the BEx# from the CPU to control the SRAM write enable signals.

Figure 4-5 shows an example of a write hit burst cycle in writeback mode using synchronous SRAMs.

Figure 4-5 Write Hit Burst Cycle for Writeback Mode - Sync SRAM

912-2000-015 Page 52

4.5.3.3 L2 Cache Read Miss

Writeback Mode: There are two cache read miss cases depending on the status of the dirty bit.

CASE 1: Read miss of a "clean" cache line.

In this case, only a linefill cycle is executed. The L2 cache line that is to be replaced with a new line from the DRAM will just be overwritten. The linefill cycle is done by reading the new data from the system memory first and then the data is simultaneously written to both the CPU and the secondary cache.

The sequence for CASE 1 linefill is: System memory read ⇒ write to the L2 cache + CPU read.

The cache controller will update the tag data bits and the dirty bit in the background during the linefill cycle. At the end of T1, if the CACHE# signal from the CPU is negated, a linefill cycle will not be executed. Instead, only the eight bytes requested by the CPU will be read from the system memory. The tag and the dirty bit will not be updated.

CASE 2: Read miss with cache line dirty.

The cache line for this case has been modified and only the L1 and L2 cache have the updated copy of the data. Before this line is overwritten in the cache, the modified line must first be written to the system memory by performing a castout cycle. After the completion of the castout cycle, a linefill cycle is executed. The linefill cycle is performed by reading the new data from the system memory and then simultaneously writing this data to the CPU and the secondary cache.

The sequence for CASE 2 is: Read the dirty line from L2 cache ⇒ write to the system memory ⇒ new line read from system memory ⇒ write to the L2 cache + CPU read.

The cache controller will update the tag data bits and the dirty bit in the background during the castout cycle. If the CACHE# signal from the CPU is inactive, then the eight bytes requested by the CPU will be read from the system memory. The tag and the dirty bit are not updated.

4.5.3.4 L2 Cache Write Miss

Writeback or Write-through Cases: The data is not written to the SRAM and the tag data remains unchanged. The data is written only to the system memory.

If the write buffer and DRAM posted write is enabled then is available, it is stored there and the cycles are posted writes to the DRAM. If the target is on the PCI or ISA bus, the cache controller will not be active.

4.5.3.5 Write Policies

Any of the following three write policies supported by FireStar can be chosen: writeback, write-through, and adaptive writeback, by programming SYSCFG 02h[5:4] and SYSCFG 08h[1] (as shown in Table 4-7).

Depending on the state of these bits and the type of DRAM cycle that would be required to complete the write hit cycle, the cache controller decides whether to update the DRAM memory, however, the cache is always updated. The adaptive writeback policy tries to reduce the disadvantages of both the write-through and the writeback schemes to a minimum. The adaptive writeback scheme converts a write hit cycle to a write through cycle only if the address location being written to corresponds to a page hit. In this manner, this scheme incurs a four CLK penalty for a burst write cycle but it saves a 13 CLK penalty (for a castout cycle) that would have occurred later due to a read miss access. There are two adaptive writeback modes.

Write-Through on Page Hit and RAS# Active (AWB Mode 1)

In this mode, the data is written through to the DRAM on a write hit if the address being written to causes a page hit and the corresponding RAS# signal is active. The data will not be written through if, either the RAS# is inactive or if it is a page miss. In this case, the write hit cycle completes in the same manner as in a writeback scheme.

Write-Through on Page Hit (AWB Mode 2)

In this mode, data is written through to the DRAM on a write hit if the address being written to causes a page hit. RAS# being active/inactive does not come into consideration when making this decision.

Table 4-7 Register Bits	Associated with Write Policies
-------------------------	--------------------------------

7	6	5	4	3	2	1	n
SYSCFG 02h	Cache Control Register 1						Default = 00h
		L2 cache w 00 = L2 cache w 01 = Adaptive wr 10 = Adaptive wr 11 = L2 cache wr	rite-through iteback Mode 1 iteback Mode 2 iteback				

OPTi

Register Bits Associated with Write Policies (cont.) Table 4-7

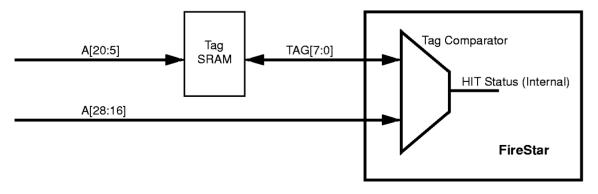
7	6	5	4	3	2	1	0
SYSCFG 08h			CPU Cache C	ontrol Register			Default = 00h
							BIOS area cacheability in L1 cache:
							Determines if system BIOS area E0000h-FFFFFh (if SYSCFG 04h[2] = 1) or F0000h-FFFFFh (if SYSCFG 04h[2] = 0), and video BIOS area C0000h-C7FFFh is cacheable in L1 or not. 0 = Cacheable
							1 = Not
							Cacheable
SYSCFG 04h				ontrol Register 1			Default = 00h
					E0000h- EFFFFh range selection: Determines whether this region will be treated like the F0000 BIOS area or whether it will always be non-cacheable. 0 = E0000h- EFFFFh area will always be non-cacheable 1 = E0000h- EFFFFh area will be treated like the F0000h BIOS area. If this bit is set, then SYSCFG 06h[3:2] and [1:0] Should be set identically.		

Page 54 912-2000-015

Table 4-7 Register Bits Associated with Write Policies (cont.)

7	6	5	4	3	2	1	0
SYSCFG 06h			Shadow RAM C	Control Register 3			Default = 00h
		C0000h- C7FFFh cacheability: 0 = Not cacheable 1 = Cacheable in L1 and L2 (L1 dis- abled by SYSCFG 08h[0])	F0000h- FFFFFh cacheability: 0 = Not cacheable 1 = Cacheable in L1 and L2 (L1 dis- abled by SYSCFG 08h[0])	F0000h- read/write 00 = Read/write 01 = Read from I PCI 10 = Read from I DRAM 11 = Read/write I If SYSCFG 04h[2 E0000h-EFFFFh trol should have tas this.	e control: PCI bus DRAM/write to PCI/write to DRAM PI = 1, then the read/write con-		DRAM/write to

4.5.3.6 Tag Compare Table


The upper address bits used to compare for a L2 cache hit status will depend on the total L2 cache size. Table 4-8

shows the address bits from the CPU bus and the tag data bit used in the tag comparator of FireStar. Figure 4-6 shows the block diagram of the L2 cache tag structure.

Table 4-8 Tag Compare Table

	L2 Cache Size								
Tag Data	64KB	128KB	256KB	512KB	1MB	2MB			
TAG0	A16	A24	A24	A24	A24	A24			
TAG1	A17	A17	A25	A25	A25	A25			
TAG2	A18	A18	A18	A26	A26	A26			
TAG3	A19	A19	A19	A19	A27	A27			
TAG4	A 20	A 20	A20	A20	A20	A28			
TAG5	A21	A21	A21	A21	A21	A21			
TAG6	A22	A22	A22	A22	A22	A22			
TAG7	A23	A23	A23	A23	A23	A23			
Dirty Bit	Dirty	Dirty	Dirty	Dirty	Dirty	Dirty			

Figure 4-6 Internal Tag Comparator Block Diagram

912-2000-015 Revision: 1.0

4.5.3.7 Tag and Dirty RAM Implementations

There are various tag/dirty RAM implementations supported by FireStar. Table 4-9 shows the tag and dirty RAM register programmable bits located in SYSCFG 16h.

Combined Tag/Dirty RAM Implementation

There are various ways of achieving a combined tag/dirty RAM implementation.

A 32Kx9 SRAM can be used to implement eight tag bits and one dirty bit. In this case, the TAGWE# signal from FireStar is used to update both the tag and dirty information. The OE# signal of the 32Kx9 SRAM can be connected to the DIRYTWE# signal from FireStar or it can be tied to GND. The DIRTYI signal FireStar becomes a bidirectional signal and it now serves as the dirty I/O bit. This scheme is shown in Figure 4-7.

A 32Kx8 SRAM can be used, wherein seven bits are used for the tag RAM and one bit is used for the dirty RAM. In this case, the TAGWE# signal from FireStar is used to update both the tag and dirty information. The OE# of the 32Kx8 SRAM can be connected to the DIRYTWE# signal from FireStar or it can be tied to GND. TAG[7:1] convey the tag information and TAG0 becomes the dirty I/O bit. In this scheme, the amount of main memory that can be cached reduces by half as compared to an 8-bit tag implementation. This scheme is shown in Figure 4-8.

A 32Kx8 SRAM can be used to implement the eight tag bits and another 32Kx8 SRAM used to implement the single dirty I/O bit. This scheme is identical to the 32Kx9 implementation and is shown in Figure 4-9.

Table 4-9 Tag/Dirty RAM Control Register Bits

7	6	5	4	3	2	1	0
SYSCFG 16h			Dirty/Tag RAM	Control Register	Default = A0h		
This bit along with bit 5 and PCICLK3 strap define DIRTY, CMD# as PCICLK3 on the CMD# pin, and CACS# or DIRTY options on the CACS# pin.(1)		Tag RAM size selection: 0 = 8-bit 1 = 7-bit (Default) Selects CACS# for 7-bit and DIRTY for 8-bit tag ⁽¹⁾	Single write hit leadoff cycle in a combined Dirty/Tag imple- mentation 0 = 5 cycles 1 = 4 cycles	Pre-snoop control: 0 = Pre-snoop for starting address 0 only 1 = Pre-snoop for all addresses except those on the line boundary			
1 ' '	KBDCS# strappe			1 ' '	KBDCS# strappe		
Bits 7 & 5	CACS#		CMD# Pin DIRTY	Bits 7 & 5	CACS# DIRTY		CMD# Pin PCICLK3
00	CACS#		DIRTY	00	CACS#		PCICLK3
10	DIRTY		CMD#	10	DIRTY		PCICLK3
11	CACS#	ŧ (CMD#	11	CACS#	: 1	PCICLK3

Page 56 912-2000-015

Figure 4-7 32Kx9 Combined Tag/Dirty RAM Implementation

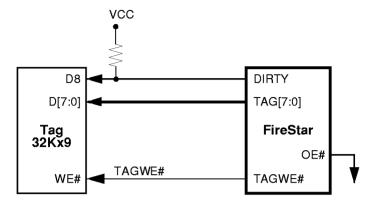


Figure 4-8 32Kx8 Combined Tag/Dirty RAM Implementation

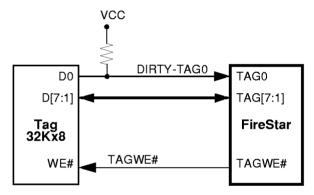
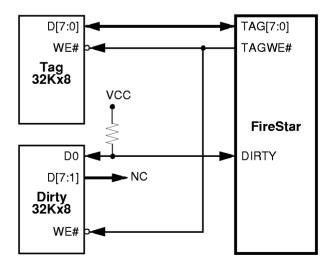



Figure 4-9 32Kx8 and 32Kx8 Combined Tag/Dirty RAM Implementation (Separate Devices)

4.5.3.8 Cache Initialization

On power-up, the tag RAM will contain random data and the L2 cache will contain no valid data. Therefore, the cache must be initialized before it is enabled.

Initializing Procedure 1: The cache is initialized by configuring the cache controller to the write-through mode. This will cause all the cache read miss cycles to fill the cache with valid data. This can be done by reading a block of system memory that is greater than or equal to the size of the cache. Once the cache is initialized, it is always valid. After this is done, the L2 cache can be set up for writeback operation by initializing the dirty bits. This is done by first enabling the cache controller to the writeback mode. Then, by reading a block of system memory that is greater than or equal to twice the size of the cache, the dirty bits will be cleared and the L2 cache will be valid.

Initializing Procedure 2: This procedure uses the cache controller in Test Mode 1 and Test Mode 2 as defined in SYSCFG 02h[3:2] and 07h[7:0]. (Refer to Table 4-10.)

The upper bits of an address is written to SYSCFG 07h. The cache controller is now set to Test Mode 2. Writing a block equal to the size of the cache to the system memory will write the contents of SYSCFG 07h to the tag. The cache controller is now configured in the write-through mode and reading a block of system memory equal to the size of the cache will make the data in the cache valid. Next, by reading a block of system memory which is greater than or equal to twice the size of the cache, the dirty bits will be cleared and the L2 cache will be valid.

Disabling the Cache: Disabling of a writeback cache **cannot** be done by just turning off SYSCFG 02h[3:2]. There may still be valid data in the cache that has not been written to the system memory. Disabling writeback cache without flushing this valid data usually causes a system crash.

This situation can be avoided by first reading a cacheable memory block *twice* the size of the cache. "Twice the size" of the cache is required to make sure every location gets a read miss, which will cause a castout cycle if the cache line is dirty. The cache can then be disabled. *Note: No writes should occur during this process.*

4.5.3.9 Write Back Cache with DMA/ISA Master/PCI Master Operation

The L1 and the L2 cache contain the only valid copy (modified) of the data. FireStar will execute an inquire cycle to the L1 cache for all master accesses to the system memory area. This will increase the bus master cycle time for every access to the system memory which will also decrease the bus master performance. FireStar provides the option of a snoop-line comparator (snoop filtering) to increase the performance of a bus master with the L1 cache.

L1 Cache Inquire Cycle: This cycle begins with the CPU relinquishing the bus with the assertion of BOFF#. On sampling HLDA active, FireStar will assert AHOLD. The address will flow from the master to the CPU bus and FireStar will assert EADS# for one CPUCLK. If the CPU does not respond with the assertion of HITM#, FireStar will complete the cycle from the L2 cache or the system memory. If HITM# was asserted, FireStar will expect a castout cycle from the L1 cache.

Table 4-10 Test Mode Selection/Control Bits

7	6	5	4	3	2	1	0
SYSCFG 02h	SYSCFG 02h Cache Control Register 1						
			L2 cache operating mode select: 00 = Disable				
			01 = Test Mode 1; External Tag Write (Tag data write- through SYSCFG 07h)				
			10 = Test Mode 2; External Tag Read (Tag data read from SYSCFG 07h)				
				11 = Enable L2 c	ache		

SYSCFG 07h Tag Test Register Default = 00h

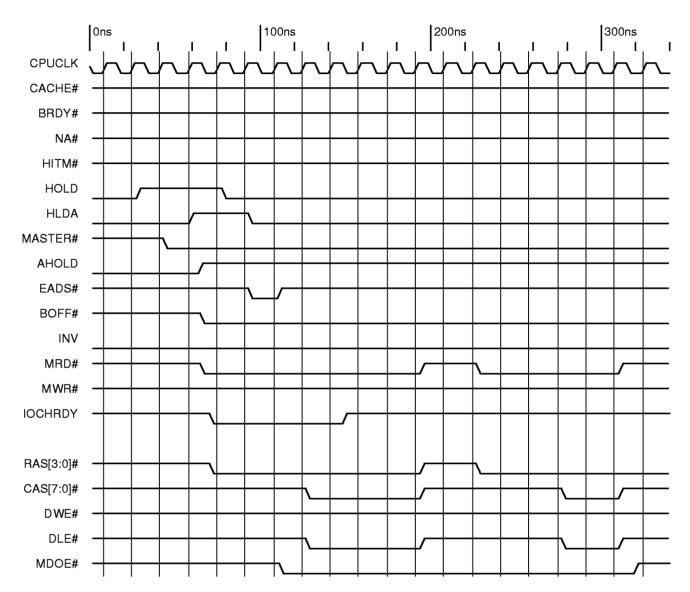
- Data from this register is written to the tag, if in Test Mode 1 (refer to SYSCFG 02h).
- Data from the tag is read into this register, if in Test Mode 2 (refer to SYSCFG 02h).

Page 58 912-2000-015

DMA/Master Read Cycle: Table 4-11 shows the action taken by FireStar based on the L1 and L2 cache status for bus master reads from the system memory area. The L1 cache castout cycle will be completed in the burst order provided by the CPU and will be written to the L2 cache or the system memory based on the L2 cache status. The required bytes are then read back for the completion of the master read cycle. A read hit in the L1 cache will always invalidate the L1 cache line. Refer to Figures 4-10 and 4-11.

DMA/Master Write Cycle: Table 4-12 shows the action taken by FireStar based on the L1 and L2 cache status for bus master writes to the system memory area. A master write to the L2 cache will always be in the write-through mode. The L1 cache castout cycle will be completed in the CPU burst sequence and the data will be written to the L2 cache or to the system memory based on the L2 cache status. Data from the master is always written to the system DRAM memory and is written to the L2 cache only if it is a L2 cache hit. Refer to Figure 4-12.

Table 4-11 DMA/Master Read Cycle Summary


DMA/Master Read Cycle					
L1 Cache	L2 Cache	Data Source	Type of Cycle for L1 Cache	Type of Cycle for L2 Cache	Type of Cycle for DRAM
Hit	Hit	L2 Cache	Invalidate	Read the Bytes Requested	No Change
hitM	Hit	L1 Cache	Castout, invalidate	Write CPU Data, Read Back the Bytes Requested	No Change
Hit	Miss	DRAM	Invalidate	No Change	Read the Bytes Requested
hitM	Miss	L1 Cache	Castout, invalidate	No Change	Write CPU Data, Read Back the Bytes Requested
Miss	Hit	L2 Cache	No Change	Read the Bytes Requested	No Change
Miss	Miss	DRAM	No Change	No Change	Read

Note: hitM - L1 cache modified

Table 4-12 DMA/Master Write Cycle Summary

DMA/Master Write Cycle					
L1 Cache	L2 Cache	Data Destination	Type of Cycle for L1 Cache	Type of Cycle for L2 Cache	Type of Cycle for DRAM
Hit	Hit	DRAM, sec	Invalidate	Write Master Data	Write Master Data
hitM	Hit	DRAM, sec	Castout, Invalidate	Write CPU Data, Write Mas- ter Data	Write Master Data
Hit	Miss	DRAM	Invalidate	No Change	Write Master Data
hitM	Miss	DRAM	Castout, Invalidate	No Change	Write CPU Data, Write Master Data
Miss	Hit	DRAM, sec	No Change	Write Master Data	Write Master Data
Miss	Miss	DRAM	No Change	No Change	Write Master Data

Figure 4-10 ISA DMA/Master Read (L1 cache with non-modified line)

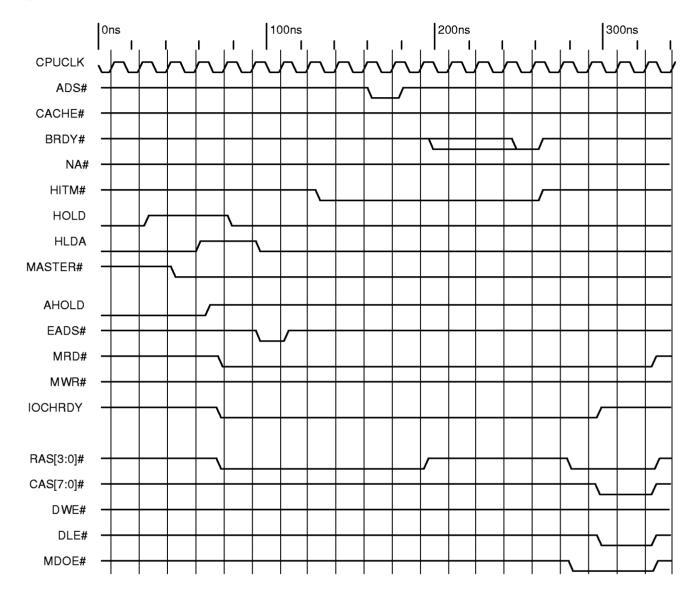


Figure 4-11 ISA DMA/Master Read (L1 cache with modified line)

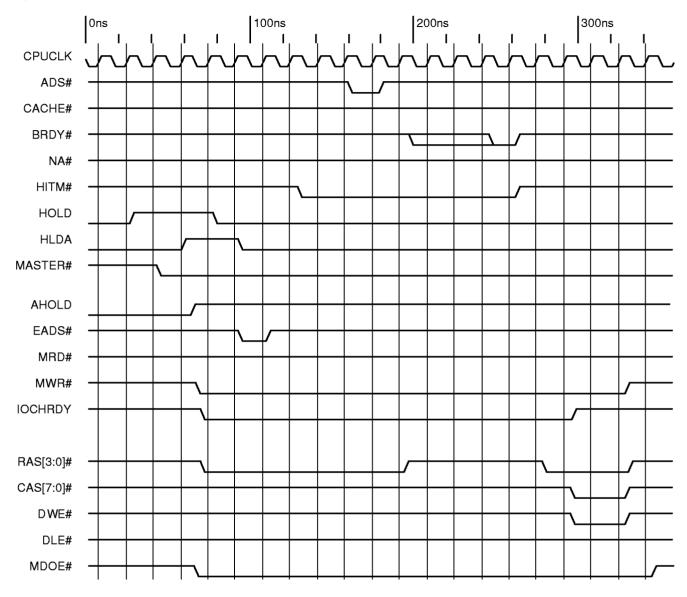


Figure 4-12 ISA DMA/Master Write (L1 cache with modified line)

4.5.4 **Shadow ROM and BIOS Cacheability**

When using FireStar, the procedures listed below should be followed for proper setup and configuration of shadow RAM utilities.

- Enable ROMCS# generation for the segment to be shadowed. Although the F0000h-FFFFFh segment defaults to ROMCS# generation, the C, D, and E0000h ROM segments must have ROMCS# generation enabled by setting the appropriate bits in PCIDV1 4Ah and 4Bh.
- Enable ROM contents to be copied into DRAM. To do this, the appropriate bits in SYSCFG 04h, 05h, and 06h should be set. These bits must be set so that reads from

- these segments will be executed out of ROM but will be written to DRAM.
- Enable shadow RAM areas to permit DRAM read/write accesses. At this point, the ROMCS# generation bits that were previously necessary to access the original ROM code, must be disabled.
- 4. Write protect shadow RAM areas. To do this, the appropriate bits in SYSCFG 04h, 05h, and 06h should be set. These bits must be set so that reads from these segments will be executed out of DRAM, but writes will be directed to the ROM.

912-2000-015 Page 62

5. Cache shadow RAM areas in L2/L1 caches (optional). Caching of the individual code segments can be accomplished by setting the appropriate bits in SYSCFG 06h. Although write protection control for the L2 cache is provided, the L1 cache does not have a write protection mechanism and the ROM code may be overwritten or modified if stored in the L1 cache.

4.5.4.1 Cacheability and Write Protection

FireStar allows certain ROM areas to be cacheable. C0000h-C7FFFh, E0000h-EFFFFh, and F0000h-FFFFFh have separate cache-related controls.

Table 4-13 highlights the appropriate programming register bits.

Table 4-13 Shadow ROM and BIOS Cacheability / Write Protection Control Bits

7	6	5	4	3	2	1	0
PCIDV1 4Ah			ROM Chip Se	lect Register 1			Default = 00h
ROMCS# for F8000h- FFFFFh: 0 = Enable	ROMCS# for F0000h- F7FFFh: 0 = Enable	ROMCS# for E8000h- EFFFFh: 0 = Disable	ROMCS# for E0000h- E7FFFh 0 = Disable	ROMCS# for D8000h- DFFFFh: 0 = Disable	ROMCS# for D0000h- D7FFFh: 0 = Disable	ROMCS# for C8000h- CFFFFh: 0 = Disable	ROMCS# for C0000h- C7FFFh: 0 = Disable
1 = Disable	1 = Disable	1 = Enable			1 = Enable	1 = Enable	1 = Enable
PCIDV1 4Bh			ROM Chip Se	lect Register 2			Default = 00h
ROMCS# for FFFF8000h- FFFFFFFh: 0 = Enable 1 = Disable	ROMCS# for FFFF0000h- FFFF7FFh: 0 = Enable 1 = Disable	ROMCS# for FFFE8000h- FFFEFFFh: 0 = Disable 1 = Enable	ROMCS# for FFFE0000h- FFFE7FFh: 0 = Disable 1 = Enable	ROMCS# for FFFD8000h- FFFDFFFFh: 0 = Disable 1 = Enable	ROMCS# for FFFD0000h- FFFFD7FFFh: 0 = Disable 1 = Enable	ROMCS# for FFFC8000h- FFFCFFFFh: 0 = Disable 1 = Enable	ROMCS# for FFFC0000h- FFFC7FFFh: 0 = Disable 1 = Enable
						,	
	DRAM/write to		CBFFFh e control: PCI bus DRAM/write to PCI/write to	control Register 1	E0000h- EFFFFh range selection: Determines whether this region will be treated like the F0000 BIOS area or whether it will always be non-cacheable. 0 = E0000h- EFFFFh area will always be non-cacheable 1 = E0000h- EFFFFh area will be treated like the F0000h BIOS area. If this bit is set, then SYSCFG 06h[3:2] and [1:0] Should be set identically.		DRAM/write to

Table 4-13 Shadow ROM and BIOS Cacheability / Write Protection Control Bits (cont.)

7	6	5	4	3	2	1	0
SYSCFG 05h			Shadow RAM C	Control Register 2	2		Default = 00h
01 = Read from DRAM/write to PCI 01 = Read from DRAM/write to PCI		D4000h-D7FFFh read/write control: 00 = Read/write PCI bus 01 = Read from DRAM/write to PCI 10 = Read from PCI/write to		D0000h-D3FFFh read/write control: 00 = Read/write PCI bus 01 = Read from DRAM/write to PCI 10 = Read from PCI/write to			
DRAM		DRAM		DRAM		DRAM	
11 = Read/write I	JRAM	11 = Read/write I	JRAM	11 = Read/write [JRAM	11 = Read/write [DRAM
SYSCFG 06h			Shadow RAM C	ontrol Register 3	3		Default = 00h
		C0000h- C7FFFh cacheability: 0 = Not cacheable 1 = Cacheable in L1 and L2 (L1 dis- abled by SYSCFG 08h[0])	F0000h- FFFFFh cacheability: 0 = Not cacheable 1 = Cacheable in L1 and L2 (L1 dis- abled by SYSCFG 08h[0])		DRAM/write to PCI/write to DRAM PI = 1, then the read/write con-	E0000h- read/write 00 = Read/write 01 = Read from I PCI 10 = Read from F DRAM 11 = Read/write I	e control: PCI bus DRAM/write to PCI/write to
SYSCFG 0Eh		I	PCI Master Burst	Control Register	r 1		Default = 00h
						Write protection for L1 BIOS: 0 = No 1 = Yes	

Both system DRAM and shadow RAM are cacheable in both the primary (L1) and/or secondary (L2) cache. Of these two areas, only the shadow RAM areas (system BIOS, video BIOS and DRAM) have the capability of being write-protected (Non-shadowed BIOS ROM areas are implicitly write-protected). Since the possibility exists that write-protected shadow RAM can be cached, there also exists the possibility that this data might be modified inside the cache and subsequently executed. To prevent this from occurring, an explicit control mechanism must be used that prevents the unexpected from happening. There are three methods for controlling write protection in FireStar. These methods are discussed next and summarized in Table 4-14.

METHOD 1: In this method, the write protected areas are **not** cached in the L1 or the L2 cache. This is implemented by driving KEN# high for the first word with BRDY#, which will cause the CPU to not cache the data in its L1 cache and not do burst cycles. Data in the L2 cache is also not updated, so all reads and writes to this area will go directly to or from the

system memory or to/from system BIOS/video BIOS (if they are not shadowed).

METHOD 2: In this method, the write protected areas can be cached in the L2 cache but not in the L1 cache. This is implemented by driving KEN# high for the first word with BRDY#, which will cause the CPU to not cache the data in the L1 cache or do a burst cycle. This data can then be stored in the L2 cache, but only subsequent read requests by the CPU are serviced (discarding all writes), thus effectively write-protecting the data in the L2 cache. Read miss cycles are serviced by first performing a linefill burst from the DRAM into the L2 cache and then performing a normal non-cacheable (and non-burst) cycle to the CPU. In this method, writes to the system memory and to the L2 cache are write protected.

METHOD 3: This method is implemented by driving EADS# high during the read cycle. Data read from write protected areas are stored in both the L1 and L2 caches. Accesses from the CPU that are L2 cache read hits are serviced in burst mode and L2 cache read miss cycles are serviced by

Page 64 912-2000-015

first performing a linefill burst read to the L2 cache from the write protected area and then performing a normal burst cycle to the CPU. Write cycles from the CPU to these areas are write-through and are discarded by the cache controller

of the 82C700. However, L1 cache writes occur internally to the CPU in this mode and are therefore not write protected. Table 4-15 shows the register bit (SYSCFG 08h[0]) associated with this function.

Table 4-14 Cacheability Methods

	System	DRAM	Syster	n BIOS	Video	BIOS	Write E Shado	inabled w RAM		otected w RAM
Method	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write
1	L1,L2	L1,L2	Single	None	Single	None	L1,L2	L1,L2	Single	None
2	L1,L2	L1,L2	L2	None	L2	None	L1,L2	L1,L2	L2	None
3	L1,L2	L1,L2	L1,L2	L1	L1,L2	L1	L1,L2	L1,L2	L1,L2	L1

Note: L1 = accessible to primary cache

L2 = accessible to secondary cache None = no cycle performed (or discard) Single = single word (non-burst) cycle

Table 4-15 SYSCFG 08h[0]

7	6	5	4	3	2	1	0
SYSCFG 08h			CPU Cache C	ontrol Register			Default = 00h
							BIOS area cacheability in L1 cache:
							Determines if system BIOS area E0000h-FFFFFh (if SYSCFG 04h[2] = 1) or F0000h-FFFFFh (if SYSCFG 04h[2] = 0), and video BIOS area C0000h-C7FFFh is cacheable in L1 or not.
							0 = Cacheable
							1 = Not Cacheable

Remapping of Reset Vector to Shadow DRAM 4.5.4.2

FireStar allows the reset instruction segment to point to DRAM instead of ROM if desired. This feature allows the soft reset generation of address FFFFFF0h to point to BIOS shadowed DRAM instead of BIOS in ROM. This feature is enabled through PCIDV1 4Fh[0] as shown in Table 4-16.

Table 4-16 Reset Vector to Shadow DRAM Register Bit

7	6	5	4	3	2	1	0
PCIDV1 4Fh		Mis	cellaneous Cont	rol Register C - B	Byte 1		Default = 20h
							BIOS access after soft reset: 0 = ROM 1 = DRAM

912-2000-015 Page 66

4.5.5 SRAM Support

FireStar supports many varieties of synchronous SRAMs. Table 4-17 shows the signals associated with L2 cache SRAM.

In addition to the standard synchronous SRAMs, FireStar supports pipelined synchronous SRAMs as well as the Sony Sonic-2WP (cache module). Table 4-23 at the end of this section gives an SRAM cycle comparison chart.

Table 4-17 L2 Cache Signal Set

Signal Name	Signal Description
TAG[7:0]	Tag Data Lines: TAG0 becomes the dirty bit when CACS# is used.
TAGWE#	Tag Write Enable Line
CACS#+DIRTY	Cache Chip Select or Dirty: Using CACS# save power, but separate DIRTY allows 8-bit tag to expand cacheable area.
GWE#	Global Write Enable: Write command to L2 cache indicating that all bytes will be written.
BWE#	Byte Write Enable: Write command to L2 cache indicating that only bytes selected by BE[7:0]# will be written.
ADSC#	Controller Address Strobe: For a synchronous L2 cache operation, this pin is connected to the ADSC# input of the synchronous SRAMs.
ADV#	Advance Output: For synchronous cache L2 operation, this pin becomes the advance output and is connected to the ADV# input of the synchronous SRAMs.
CDOE#	Cache Output Enable: This signal is connected to the output enables of the SRAMs of the L2 cache in both banks to enable data read.

4.5.5.1 SRAM Requirements

Table 4-18 gives configuration parameters, while Tables 4-19 and 4-20 outline the read/write cycle lengths and their speed requirements.

4.5.5.2 Pipelined Synchronous SRAM Support

Pipelined synchronous SRAMs are less expensive than their counterpart BiCMOS synchronous SRAMs (standard synchronous SRAMs). The timing requirement of the ADV# pin assertion is different for these SRAMs, and this is enabled by setting SYSCFG 17h[1] = 1 (i.e., enabling pipelined synchronous SRAM). Table 4-21 lists the registers provided for SRAM support.

Table 4-18 Data SRAM Synchronous Configurations - Typical

Cache Size	Qty	Size
256K Bytes	2	32Kx32
512K Bytes	4	64Kx18

Table 4-19 SRAM Cycle Lengths

	Sync SRAMs					
Speed	Standard	Pipelined Burst*				
Read Burst Cyc	eles					
50MHz	2-1-1-1	2-1-1-1 1-1-1-1				
60MHz	3-1-1-1	3-1-1-1 1-1-1-1				
66MHz	3-1-1-1	3-1-1-1 1-1-1-1				
Write Burst Cyc	cles					
50MHz	2-1-1-1	2-1-1-1 1-1-1-1				
60MHz	3-1-1-1	3-1-1-1 1-1-1-1				
66MHz	3-1-1-1	3-1-1-1 1-1-1-1				

*This timing is for a single-bank. Leadoff cycle will be increased by one clock for a double-bank solution when it is a pipelined cycle due to the turn-around time of two banks and to prevent data contention between the banks.

Table 4-20 Tag and Data SRAM Speed Requirements

Para.	Description	50 MHz	60 MHz	66 MHz			
Sync SF	AM Data						
tCD	Clock Access Time	12ns (2-1-1-1)/ 12ns (3-1-1-1)	9ns	9ns			
SRAM T	ag for Sync Cac	he System					
tAA	Address Access Time	10ns (2-1-1-1)/ 20ns (3-1-1-1)	15ns	12ns			

Table 4-21 Register Bits Associated with SRAM Support

7	6	5	4	3	2	1	0
SYSCFG 02h	•	•	Cache Cont	rol Register 1			Default = 00h
L2 cache si If SYSCFG 0Fh[0] = 0 00 = 64KB 01 = 128KB 10 = 256KB 11 = 512KB	ize selection: If SYSCFG 0Fh[0] = 1 00 = 1 MB 01 = Reserved 10 = Reserved 11 = Reserved	L2 cache v 00 = L2 cache w 01 = Adaptive wr 10 = Adaptive wr 11 = L2 cache wr	vrite policy: rite-through riteback Mode 1 riteback Mode 2	L2 cache operation = Disable 01 = Test Mode 1 Write (Tag of through SYS 10 = Test Mode 2	lata write- SCFG 07h) 2; External Tag data read from 7h)	DRAM posted write: 0 = Disable 1 = Enable	CAS precharge time: 0 = 2 CPUCLKs 1 = 1 CPUCLK
SYSCFG 03h			Cache Cont	rol Register 2			Default = 00h
		to L2	time for writes cache: 10 = 3-X-X-X 11 = 2-X-X-X	to L2 o	burst reads cache: 10 = X-2-2-2 11 = X-1-1-1	to L2 00 = 5-X-X-X	time for reads cache: 10 = 3-X-X-X 11 = 2-X-X-X
		I		I			
(2) It will be a 3-	03h[3:2] = 11, then -1-1-1 cycle follow -1-1-1 cycle follow	ed by a 2-1-1-1 cy	ng is valid. cle, or a 3-1-1-1 c	=	e pipelined cycles,		Default = 00h
SYSCFG 0Fh			PCI Master Burst	Control Register	r 2		Default = 00h
							Cache size selection: This bit along with SYSCFG 02h[1:0] defines the L2 cache size. $0 = < 1MB \\ 1 = 1MB$

Page 68 912-2000-015

Revision: 1.0

Table 4-21 Register Bits Associated with SRAM Support (cont.)

7	6	5	4	3	2	1	0	
SYSCFG 10h	0h Miscellaneous Control Register 1							
		Leadoff cycle for a pipelined read: $0 = 3-X-X-X$ read followed by a 3-X-X-X pipelined read cycle $1 = 3-X-X-X$ read followed by a 2-X-X-X pipelined read cycle						
SYSCFG 11h			Miscellaneous C	Control Register	2		Default = 00h	
					Page miss posted write: 0 = Enable 1 = Disable			
SYSCFG 17h			PCI Cycle Co	ntrol Register 2			Default = 00h	
						Sync SRAM type (if SYSCFG 11h[3] = 1): 0 = Standard 1 = Pipelined		

4.5.5.3 Sony SONIC-2WP (Cache Module) Support

The Sony SONIC-2WP is a single chip, writeback cache subsystem that integrates 256KB of cache memory, tag RAM and all other associated control logic. The integrated 256KB cache is direct-mapped and it supports 3-1-1-1 burst cycles, and operates at 3.3V. If this chip is used, SYSCFG 00h[5] should be set to 1. This causes a few changes in the signal functions of FireStar. The TAG1 and the TAG2 signals are connected to the START# signal from the Sony cache module. This signal is asserted by the Sony cache module when a CPU cycle translates to a read miss, write miss, or a write-

through cycle. The assertion of this signal by the cache module causes FireStar to take control of the KEN# and BRDY# signals which it shares with the cache module. The TAG3 signal is connected to the BOFF# signal from the Sony cache module. The remainder of the TAG lines should be unconnected. All the other cache control signals of FireStar are not required and should be no connects. The ADS# input of FireStar should be connected to the SADS# output from the cache module. One note of caution, CPU pipelining must be disabled if using this cache module (i.e., set SYSCFG 02h[3:2] = 00).

Table 4-22 Cache Module Register Support

7	6	5	4	3	2	1	0
SYSCFG 00h Byte Merge/Prefetch & Sony Cache Module Control Register D							
		Sony SONIC- 2WP support enable:(1) 0 = No Sony SONIC- 2WP installed 1 = Sony SONIC- 2WP installed					
(1) If bit 5 is set,	ensure that the L	2 cache has been	disabled (i.e., set	SYSCFG 02h[3:2]	= 00).		1

Table 4-23 SRAM Comparisons

Cycles	Sync	Pipelined Sync	Pipelined BSRAM	Sony Cache Module
Read hit	3-1-1-1	3-1-1-1	3-1-1-1	3-1-1-1
CPU pipelined RH	1-1-1-1	1-1-1-1	1-1-1-1	3-1-1-1 ⁽¹⁾
2 BKs pipelined RH	1-1-1-1(2)	2-1-1-1 ⁽²⁾	2-1-1-1	3-1-1-1 ⁽¹⁾
Write hit	3-1-1-1	3-1-1-1	3-1-1-1	3-1-1-1
Writeback	N	N+4	N+4	N+BOFF
PCI read	x-2-2-2	x-3-3-3	x-3-3-3	x-2-2-2 ⁽³⁾
PCI write	x-2-2-2	x-2-2-2	x-2-2-2	x-2-2-2 ⁽³⁾
Cost	High	Low	Low	High

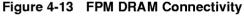
- 1) No CPU pipelined for Sony Cache Module.
- 2) Data bus conflict for sync. SRAM, minimum data bus conflict for pipelined SRAM with 82C700 OE# control.
- 3) L2 needs "castout" dirty line before master access.

Page 70 912-2000-015

4.6 DRAM Controller

The DRAM controller within FireStar uses a 64-bit wide DRAM data bus interface. It also uses the page mode technique for faster data access from the DRAMs.

Page mode is always used in FireStar for CPU accesses, both for bursts and between bursts. Page mode is performed by keeping RAS active while reading or writing multiple words within a DRAM page by changing only the column address and toggling CAS with the new column address. The DRAM page size is fixed at 4KB.


Non-ISA refresh is used to increase the CPU bandwidth by not having to put the CPU on hold every 15µs to refresh the DRAM. The DRAM can be refreshed in the background while the CPU is accessing the internal cache.


Asymmetric as well as **symmetric** DRAM sizes are supported.

- Banks 0-3 support:
 - 12x12, 12x11, 12x10, 12x9, 12x8, 11x11, 11x10, 11x9, 11x8, 10x10, 10x9, 10x8, and 9x9 DRAMs.
- Banks 4-5 support:
 - 12x12, 12x11, 11x11, 11x10, 10x10, 10x9, and 9x9 DRAMs only.
- MA12 Support:
 - In place of either of the RAS3# or RAS4# pin

4.6.1 FPM and EDO DRAM Support

The DRAM controller supports Fast Page Mode (FPM) and Extended Data Out (EDO) DRAMs. It can also be configured to support FPM and EDO DRAMs in different banks at the same time. Figure 4-13 gives the connectivity information for FPM DRAM.

4.6.1.1 DRAM Type Detection Algorithm

FireStar can support both FPM and EDO DRAMs at the same time in different banks. The DRAM controller provides a mechanism by which the BIOS can easily determine the type of DRAM in each bank. After the CAS pulse is negated, EDO DRAMs continue to drive data out whereas FPM DRAMs will tristate their data buffers. If the bank is populated with FPM DRAM, and if the signal that is generated by the controller to latch the data from a location that is being read is delayed, the data that is read back will be incorrect. However, EDO DRAMs will still return the correct data. This principle is used to detect the type of DRAM in each bank. To test the DRAM type, the BIOS can set SYSCFG 1Fh[6] and write a data value to an address within the bank being tested, and read back the data from the same location. If the data that is read back is the same as the data written earlier, the bank contains EDO DRAM. If the data is different, the bank contains FPM DRAM.

After identifying the banks that are populated, the BIOS can use the following algorithm to determine the banks that are populated with EDO DRAM and program EDO timing for those banks. To perform type detection, EDO read timing has to be enabled (X-2-2-2).

To detect if a bank has EDO DRAM or FPM DRAM, follow these steps for each bank that is detected as non-empty in the DRAM sizing algorithm:

- Set SYSCFG 14h[7] = 1 and PCIDV0 44h[0] = 1 (enables clocked mode in the DBC).
- Set SYSCFG 1Ch[0] = 1 (global control for enabling X-2-2-2 burst timing).

- 3. Enable the bank to be tested by setting the size in SYSCFG 13h or 14h, and also by setting the asymmetricity bits in SYSCFG 24h. Disable all other banks.
- 4. Set the appropriate bit in SYSCFG 1Ch[7:2] (enable X-2-2-2 burst timing on a bank-by-bank basis; bit 7 for Bank 5, bit 2 for Bank 0).
- 5. Set SYSCFG 1Fh[6] = 1 (enable EDO DRAM testing).
- 6. Write an address at a 4KB boundary within the enabled bank (ADDR) with pattern 55555555h.
- 7. Write any other valid address with pattern 00000000h to clear the bus capacitance.
- 8. Read from address ADDR. If the data read back is 55555555h, the bank contains EDO DRAM. If the data that is read back is not 55555555h, the bank contains FPM DRAM. If the bank is detected as FPM DRAM, reset the corresponding bit in SYSCFG 1Ch[7:2].
- 9. Set SYSCFG 1Fh[6] = 0.
- Continue from Step 3 and repeat all the steps until all the banks are identified.
- 11. Set SYSCFG 1Ch[0] = 0 to turn off X-2-2-2 burst read cycles. This bit can be turned on again for systems that use EDO DRAM.
- 12. Re-enable all the banks by programming the size registers SYSCFG 13h and/or SYSCFG 14h. Also program SYSCFG 24h for asymmetric DRAMs, and exit the routine. At this time, SYSCFG 1Ch[7:2] will be programmed to set the type of DRAM in each bank.

After identifying the DRAM type in each bank, the read and write timing must be programmed.

Table 4-24 DRAM Detection Register Bits

7	6	5	4	3	2	1	0	
SYSCFG 14h	Memory Decode Control Register 2 Default = 0							
Data buffer control during configuration cycles: 0 = Normal 1 = Generate internal HDOE# signal Must = 1 for EDO timing.	Full decode 000 = 0Kx36 001 = 256Kx36 (2010 = 512Kx36 (4011 = 1Mx36 (8N	2MB) 101 = 4 4MB) 110 = 8	3 (RAS3#): Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)	SMRAM control: Inactive SMIACT#: 0 = Disable SMRAM 1 = Enable SMRAM(1) Active SMIACT#: 0 = Enable SMRAM for both Code and Data(1) 1 = Enable SMRAM for Code only(1)	Full decode 000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (4 011 = 1Mx36 (8N	2MB) $101 = 44MB$) $110 = 8$	2 (RAS2#): 2Mx36 (16MB) 4Mx36 (32MB) 4Mx36 (64MB) 6Mx36 (128MB)	

Page 72 912-2000-015

7	6	5	4	3	2	1	0		
PCIDV0 44h	PCIDV0 44h Data Path Register 1 Default = 0								
							Memory read accesses in the DBC: 0 = FP Mode 1 = EDO/ SDRAM		
SYSCFG 1Ch			EDO DRAM C	ontrol Register			Default = 00h		
in X-2-2-2 bu	Bank 4: 0 = FPM DRAM 1 = EDO DRAM the pulse is one Corst to EDO DRAM do by this bit apply	at 50/60/66MHz.	SYSCFG 14h[7] a	and PCIDV0 44h[0] must be set in pr	ior to setting this I	oit. X-2-2-2 burst		
SYSCFG 13h			Memory Decode	Control Register	1		Default = 00h		
Reserved	Full decode 000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (3 011 = 1Mx36 (8M	2MB) 101 = 4 4MB) 110 = 8	1 (RAS1#): Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)	SMRAM: 0 = Disable 1 = Enable See SYSCFG 14h[3]	Full decode 000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (3 011 = 1Mx36 (8M	2MB) 101 = 4 4MB) 110 = 8	0 (RAS0#): Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)		
SYSCFG 1Fh			EDO Timing C	Control Register			Default = 00h		
	0 = Normal (fast page mode) 1 = Detect EDO								

912-2000-015 Revision: 1.0

EDO Support 4.6.2

FireStar provides the capability to use EDO DRAMs in a system. EDO devices are very similar to devices that incorporate FPM accesses. However, the use of EDO DRAMs boosts the system performance considerably over conventional FPM DRAMs. This boost in performance stems from the different way in which the memory bus is controlled.

In conventional FPM DRAMs, the memory bus is turned on by the falling edge of CAS# and is turned off (High-Z) when CAS# returns to high. The FPM DRAMs only guarantee data to be valid for 5ns (which is typically too brief for systems operating at full speed). To compensate, CAS# must be held low for an extended period until the data can be read from the bus.

In contrast, EDO devices turn on the memory bus when CAS# falls low but do not turn off the bus when CAS# returns to high. Instead, the data remains valid until the next falling edge of CAS#. Because the data remains valid until the falling edge of the next CAS#, the transfer of memory data to the latch in the memory controller can be overlapped with the next column precharge. This extra time that the data remains valid resolves the system problem described above.

The extended data time allows the system to run with a minimum CAS# low time. This increases the system performance by decreasing the page access cycle time. Control of the memory bus can be obtained by the OE# and CAS# signals.

FireStar allows the user to populate the system with up to six banks of EDO DRAMs. Individual bits in SYSCFG 1Ch need to be set to a "1" for each bank that uses EDO DRAMs. Timing can be programmed to achieve a 6-2-2-2 read cycle at 50MHz when EDO DRAMs are used with FireStar.

FireStar also provides the flexibility to mix and match EDO DRAM SIMMs and conventional FPM DRAMs among the different banks. As an example, EDO DRAMs in Banks 0 and 2 could be used and FPM DRAMs in the other banks. There are no restrictions in terms of which bank(s) can contain EDO SIMMs and which can contain FPM DRAMs. However, care must be taken to ensure that the SIMMs that make-up the 64bit data path to DRAM are all EDO DRAMs or all FPM DRAMs.

In a system, all banks that have been populated with EDO DRAMs will have the same DRAM timings. Likewise, all banks that are populated by FPM DRAMs will have the same DRAM timings.

Table 4-25 **FDO Associated Register Bits**

lable 4-25 EDO Associated Register Bits								
7	6	5	4	3	2	1	0	
SYSCFG 14h Memory Decode Control Register 2								
Data buffer control during configuration cycles: 0 = Normal								
1 = Generate internal HDOE# sig- nal								
Must = 1 for EDO timing.								
SYSCFG 1Ch			EDO DRAM C	ontrol Register			Default = 00h	
Bank 5: 0 = FPM DRAM 1 = EDO DRAM	Bank 4: 0 = FPM DRAM 1 = EDO DRAM	Bank 3: 0 = FPM DRAM 1 = EDO DRAM		Bank 1: 0 = FPM DRAM 1 = EDO DRAM	Bank 0: 0 = FPM DRAM 1 = EDO DRAM		CAS pulse width during DRAM accesses: 0 = CAS pulse width deter- mined by SYSCFG 01h[3] 1 = CAS pulse width is 1 CPUCLK ⁽²⁾	

(2) The width of the pulse is one CPUCLK for read accesses to banks that are populated with EDO DRAMs (selected by bits [7:2]), resulting in X-2-2-2 burst to EDO DRAM at 50/60/66MHz. SYSCFG 14h[7] and PCIDV0 44h[0] must be set in prior to setting this bit. X-2-2-2 burst cycles enabled by this bit apply only during CPU read bursts to EDO DRAM banks that are enabled in SYSCFG 1Ch[7:2].

912-2000-015 Page 74

Table 4-25 EDO Associated Register Bits (cont.)

7	6	5	4	3	2	1	0
	I	l	I	<u>I</u>	I .	l .	I
SYSCFG 1Fh			EDO Timing (Control Register			Default = 00h
0 = Normal 1 = Generate conflict dur- ing EDO detection (bit 6 set) if necessary	0 = Normal (fast page mode) 1 = Detect EDO						
SYSCFG 26h			UMA Conti	ol Register 1			Default = 00h
				5-2-2-2 EDO DRAM read timing at 66MHz in a cacheless system: 0 = Disable 1 = Enable			
SYSCFG 27h			Miscellaneous (Control Register	4		Default = 00h
Master to EDO DRAM read cycle controlled by DWE#: 0 = Disable 1 = Enable							
PCIDV0 44h			Data Pati	Register 1			Default = 00h
1			Data i ati	i ilegister i			Delault = 0011
			Data 1 att	Memory read accesses in the DBC If PCIDV0 44h[0] = 1 and 47h[7] = 1: 0 = SDRAM 1 = Reserved			Memory read accesses in the DBC: 0 = FP Mode 1 = EDO/ SDRAM
PCIDV0 45h				Memory read accesses in the DBC If PCIDVO 44h[0] = 1 and 47h[7] = 1: 0 = SDRAM 1 = Reserved			Memory read accesses in the DBC: 0 = FP Mode 1 = EDO/
		Ping-pong buffer reset of CPU read EDO is qualified with HDOE#. 0 = Disable 1 = Enable		Memory read accesses in the DBC If PCIDV0 44h[0] = 1 and 47h[7] = 1: 0 = SDRAM			Memory read accesses in the DBC: 0 = FP Mode 1 = EDO/ SDRAM
		buffer reset of CPU read EDO is qualified with HDOE#. 0 = Disable	Data Path Co	Memory read accesses in the DBC If PCIDVO 44h[0] = 1 and 47h[7] = 1: 0 = SDRAM 1 = Reserved			Memory read accesses in the DBC: 0 = FP Mode 1 = EDO/ SDRAM

SDRAM Support 4.6.3

FireStar provides the capability to use SDRAM DIMM modules in a system design. Up to four banks of SDRAM banks are supported. The SDRAM devices accept all its input command signals at the rising edge of system clock. The clocking allows data pipelining within the SDRAM device and data output in a continuous stream on every clock. Because of this, an SDRAM-based design boosts the memory performance considerably over FPM/EDO DRAMs. Table 4-26 gives a summary of SDRAM cycle lengths.

SDRAM Commands 4.6.3.1

With SDRAM, external control signals are latched with the rising edge of clock pulses and specific high and low combinations are recognized as commands. The SDCS# (SDCS[3:0]#), SDRAS#, SDCAS#, SDWE#, and MA address lines define the inputs commands which become active on the positive transition of SDCKE.

FireStar issues the following SDRAM COMMANDs:

- BANK ACTIVE
- BANK PRECHARGE
- PRECHAGE ALL
- WRITE
- READ
- MODE REGISTER SET
- · AUTO REFRESH

FireStar does not support the following commands:

- READ WITH AUTOPRECHARGE
- WRITE WITH AUTOPRECHARGE
- CLOCK SUSPEND MODE
- SELF REFRESH

SDRAM READ and WRITE Commands

To avoid bus contention on the memory bus, FireStar ensures a dead cycle between write data and read data commands. During read cycles, SDDQM[7:0]# are used as the standard output enable function. During write cycles, these outputs act as a mask for input data buffer of the SDRAM.

4.6.3.2 **SDRAM** Initialization

FireStar allows SDRAM devices to stabilize and will not toggle any input command signal for 100ms. The first command will be the PRECHARGE ALL banks. After precharging, the mode register will be programmed based on the register setting. The following fields will be affected by this programming:

- Burst length: 1, 2, 4, 8 or full page
- · Wrap Type: Sequential or interleaved
- CAS# latency: 1, 2 or 3

SDRAM refreshing is done in the similar fashion of FPM and EDO DRAMs. Burst refresh should never be enabled when SDRAM is being used in the system.

Table 4-27 shows the register bits associated for configuring SDRAM in a FireStar-based system.

Unbuffered DIMMs 4.6.3.3

FireStar supports up to four banks of unbuffered SDRAM DIMMs connectors on a system motherboard. The maximum clock frequency is 66MHz. Clock should be connected to each of the DIMM connector.

MA[10:0] are connected as the row address of the DIMM. MA11 is used as the bank select pin. SDCS# pins are used as the bank select outputs.

Table 4-26 SDRAM Cycle Lengths

CPU Bus Speed	Page Hit Leadoff	Page Miss No Precharge	Page Miss Precharge
Read Burst Cycle			
66MHz, CAS Latency = 3	7 cycles	10 cycles	13 cycles
66MHz, CAS Latency = 2	6 cycles	9 cycles	12 cycles
Write Burst Cycle			
From ADS# to WRITE command	5 cycles	8 cycles	11 cycles

912-2000-015 Page 76

Table 4-27 SDRAM Configuration Registers

TUDIC T-Z1	-	garation ricg					
7	6	5	4	3	2	1	0
SYSCFG 0Eh		I	PCI Master Burst	Control Register	r 1		Default = 00h
	ISA/DMA						
	master through						
	internal MRD#/						
	MWR#:						
	0 = Disable						
	1 = Enable						
	This bit must						
	be turned off						
	for DMA sup-						
	port with						
	SDRAM.						
SYSCFG 28h			SDRAM Con	trol Register 1			Default = 00h
	SE	RAM CAS# laten	cy:	Write-through:	SDR	AM burst length co	ontrol:
	001 = 1			0 = Sequential	000 = 1		
	' 010 = 2			1 = Interleaved	010 = 4		
	011 = 3				All other co	mbinations = Res	erved
	All other co	mbinations = Res	erved				
SYSCFG 29h			SDRAM Con	trol Register 2			Default = 00h
01001 0 2311	1		CDITAIN COIL				
				Bank 3 SDRAM:	Bank 2 SDRAM:	Bank 1 SDRAM:	Bank 0 SDRAM:
				0 = Disable 1 = Enable			
				I = Eliable	I = CIIADIE	I = CIIADIO	I = Eliable
SYSCFG 2Eh			UMA Contr	ol Register 2			Default = 00h
Allow SDRAM							
self-refresh in							
Suspend mode:							
0 = Disable							
(SDRAM							
engages							
auto-							
refresh							
mode)				I	I	l	
1 '							
1 = Enable							
1 = Enable (need to							
1 = Enable (need to enable							
1 = Enable (need to enable SDRAM							
1 = Enable (need to enable SDRAM self-refresh							
1 = Enable (need to enable SDRAM self-refresh if SYSCFG							
1 = Enable (need to enable SDRAM self-refresh							

Table 4-27 SDRAM Configuration Registers (cont.)

7	6	5	4	3	2	1	0
PCIDV0 44h			Data Path	n Register 1			Default = 00h
				Memory read accesses in the DBC If PCIDV0 44h[0] = 1 and 47h[7] = 1: 0 = SDRAM 1 = Reserved			Memory read accesses in the DBC: 0 = FP Mode 1 = EDO/ SDRAM
PCIDV0 47h			Data Path Co	ntrol Register 4			Default = 00h
SDRAM memory read accesses in DBC: 0 = Disable 1 = Enable							
PCIDV0 48h			Data Path Co	ntrol Register 5			Default = 00h
		During refresh cycles if this bit = 1, the RAS# corresponding to the bank with size 0 will not be generated for SDRAM.			000 = Norm 001 = NOF 010 = All b 011 = Mod 100 = CBF	DRAM mode sele nal SDRAM mode command enable anks precharge e register comma cycle enable mbinations = Res	e nd enable
PCIDV0 4Eh			SDRAM Co	ntrol Register			Default = 00h
SDRAM + L2 + pipelining:(1) 0 = Disable 1 = Enable	SDRAM + L2 + pipelining:(1) 0 = Disable 1 = Enable	6 CLK SDRAM leadoff: 0 = Disable 1 = Enable			Reserved		
(1) Bits 7 and 6 l	nave been implem	ented to solve two	problems with th	e DIRTY signal in	systems that have	SDRAM + L2 + I	oipelining.

Page 78 912-2000-015

4.6.3.4 SDRAM Detection Algorithm

The following steps detail (in chronological order) the FPM/EDO/SDRAM detection algorithm for FireStar.

- 1. Power on.
- 2. Wait for 200 µs. Ensure that L1 and L2 cache are off.
- If any of the RAS lines are to be mapped as PIO or alternate function, program the associated registers at this time.
- Set SYSCFG 14h[7] = 1, and PCIDV0 44h[0] = 1 in order to enable the clocked mode of operation in the DBC (Data Buffer Controller) module.
- Set SYSCFG 28h according to the following options to set up the operating mode parameters for SDRAM operation. Also set SYSCFG 29h = 00h.

For CAS Latency = 3, interleaved burst (Intel), set SYSCFG 28h = 3Ah (Default)

For CAS Latency = 3, linear burst (Cyrix), set SYSCFG 28h = 32h

For CAS Latency = 2, interleaved burst (Intel), set SYSCFG 28h = 2Ah

For CAS Latency = 2, linear burst (Cyrix), set SYSCFG 28h = 22h

6a. Enable the CPU-to-DRAM buffer without byte merge:

SYSCFG 01h[2] = 1 SYSCFG 02h[1:0] = 11 SYSCFG 2Ch[0] = 1 PCIDV0 44h[4] = 1

6b. Also set the following bits to enable read-around:

SYSCFG 2Ch[5] = 1PCIDV0 45h[5:4] = 11

Note: Step 6a must be performed while testing SDRAM.
SDRAM will not work if the CPU-to-DRAM buffer is turned off.

If SDRAM is present in the system, step 6b must be performed before testing the L2 cache. SDRAM will not work with L2 cache if step 6B is not performed.

- Set PCIDV0 48h[2:0] = 010 for bank precharge command for SDRAM banks.
- 8. Set X = 0 (X is bank count variable).
- Set the size corresponding to Bank X in SYSCFG 13h[6:4], 13h[2:0], 14h[6:4], and 14h[2:0] to 2MB. Set the size for all other banks to 0MB. Set the DRAM type for Bank X as "SDRAM" in SYSCFG 29h[3:0], and also set the DRAM type for the bank as "EDO" in SYSCFG 1Ch[5:2].

- 10. Read memory location 0h in order to precharge all open pages in Bank X, if Bank X is populated with SDRAM.
- 11. Set X = X + 1.
- 12. If X = 3, go back to Step 9. If X = 4, set the size for all banks as 0MB, SYSCFG 29h[3:0] = 0000, and SYSCFG 1Ch[7:2] = 000000. Continue with Step 13.
- 13. Set SYSCFG 29h[3:0] = 0000, and SYSCFG 1Ch[5:2] = 0000 for Fast Page Mode DRAM operation only.
- 14. Set PCIDV0 48h[5] = 1 to disable RASx# generation to a bank with 0 MB during refresh cycles.
- 15. Enable chosen refresh mode.
- 16. Wait for eight refresh periods and then set PCIDV0 48h[2:0] = 000.
- 17. Follow the algorithm on page 86 for Banks 0-5. Store the information, without programming the FireStar registers. Reset all the bank sizes to 0MB after completing the detection. Also set SYSCFG 29h[3:0] = 0000, and SYSCFG 1Ch[7:2] = 000000. If all the banks are identified with either Fast Page Mode or EDO DRAM, skip to Step 29. Else, continue with Step 18.
- 18. Disable refresh (in sequence):

PCIDV1 47h[6] = 0 PCIDV1 64h[0] = 1 SYSCFG 2Eh[6] = 0 SYSCFG 2Fh[2:0] = 000 SYSCFG 27h[2:0] = 000

- 19. Set PCIDV0 47h[7] = 1 to enable the SDRAM data path in the DBC module.
- 20. Set the DRAM type only for bank not detected with either FPM DRAM or EDO DRAM, to "SDRAM" in SYSCFG 29h[3:0] and SYSCFG 1Ch[5:2]. Also set the size corresponding to the current bank to 2MB in SYSCFG 13h[6:4], 13h[2:0], 14h[6:4], or 14h[2:0]. Set the bank size for all other banks to 0MB.
- 21. Set PCIDV0 48h[2:0] = 001 to enable NOP command. Read from address 0h to force the current SDRAM bank to the NOP state.
- 22. Set PCIDV0 48h[2:0] = 100 for SDRAM refresh mode. Read from address 0h eight times.
- 23. Set PCIDV0 48h[2:0] = 011 to enable Mode Register Set command.
- 24. Read from the following addresses to load the 3CLK/ 2CLK CAS latency, interleaved/linear access, and burst length of 4 information into the current SDRAM bank.

For CAS Latency = 3, interleaved burst (Intel), read from address 000001D0h (Default)

Preliminary 82C700

For CAS Latency = 3, linear burst (Cyrix), read from address 00000190h

For CAS Latency = 2, interleaved burst (Intel), read from address 00000150h

For CAS Latency = 2, linear burst (Cyrix), read from address 00000110h

- 25. Set PCIDV0 48h[2:0] = 100 for SDRAM refresh mode. Read from address 0h eight times.
- 26. Set PCIDV0 48h[2:0] = 000 to enable normal SDRAM mode.
- 27. Detect SDRAM presence or absence on the current DRAM bank by writing a known pattern to an address within the size enabled for this bank, reading back from the same address, and comparing the size.
- 28. Store the SDRAM presence or absence information. If any non-FPM/EDO banks remain, go to Step 20. Else, program all the bank sizes to 0MB, and continue with Step 29.
- 29a. Retrieve information about the presence or absence of FPM/EDO/SDRAM in each of the banks and program the following registers accordingly:

For banks detected with FPM DRAM, set the corresponding bits in SYSCFG 29h[3:0] and SYSCFG 1Ch[7:2] = 0.

For banks detected with EDO DRAM, set the corresponding bits in SYSCFG 29h[3:0] = 0, and SYSCFG 1Ch[7:2] = 1.

For banks detected with SDRAM, set the corresponding bits in SYSCFG 29h[3:0] = 1, and SYSCFG 1Ch[7:2] = 1.

29b. If all the banks are FPM/EDO DRAM, the CPU-to-DRAM buffer may be turned off, and may again be enabled with or without DRAM byte merge based on the setup option. The read-around feature can also be turned off and may be enabled based on the setup option. If none of the banks are SDRAM, set PCIDV0 47h[7] = 0.

To turn off the CPU-to-DRAM buffer, set the following registers:

PCIDV0 44h[4] = 0SYSCFG 2Ch[0] = 0 To turn off the read-around feature, follow these steps: PCIDV0 45h[5:4] = 00SYSCFG 2Ch[5] = 0

If SDRAM is detected in any of the banks, the CPU-to-DRAM buffer, and the read-around feature MUST NOT be turned off. Also, on the current silicon revision, if SDRAM is detected, DRAM byte merge MUST NOT be turned on, even if enabled in the setup.

- 30. Set PCIDV0 48h[2:0] = 000 for normal SDRAM mode.
- 31. Enable chosen refresh mode.
- 32. Wait for eight refresh periods.
- 33. For the banks populated with FPM or EDO DRAM, follow the algorithm page 86 to detect the size. For banks populated with SDRAM, detect the size by using standard procedure.
- 34. Program the size information in the FireStar registers and exit.

Note: SDRAM is only supported on Banks 0-3. Bank 4 can only be FPM/EDO DRAM. Bank 4 support can be enabled by setting SYSCFG 19h[3] = 1, and by programming SYSCFG 19h[2:0] for size. Bank 5 can only be enabled by setting SYSCFG 19h[7] in which case L2 cache cannot be supported. Bank 5 size information can be programmed in SYSCFG 19h[6:4].

912-2000-015 Page 80

4.6.4 DRAM Buffering

Deep buffering is one of the major performance enhancements in FireStar. It incorporates deep buffers in the CPU-to-DRAM and PCI-to-DRAM data paths, which enables read prefetching and write posting in the data paths.

- · Deep buffering for DRAM performance
 - Six guad-word CPU-to-DRAM write posting
 - 24 double-word PCI-to-DRAM write posting
 - 24 double-word DRAM-to-PCI read prefetch

Table 4-28 lists the registers/bits that are associated with DRAM Buffering.

4.6.4.1 CPU-to-DRAM Deep Buffer

A six quad-word deep FIFO is built into the DBC in the CPU-to-DRAM path. These deep buffers are used by FireStar to buffer CPU-to-DRAM data. Once the DRAM is free, the buffered data is dispatched into the DRAM. This way the system level latencies caused by shared resources are minimized.

4.6.4.2 PCI-to-DRAM Deep Buffer

A 24 double-word buffer has been designed into the PCI-to-DRAM path. During PCI master write bursts, the master posts data into this buffer. Once CPU-to-DRAM cycles are completed, the posted data will be written back in to the DRAM. This avoids any stalling in the PCI and full bus bandwidth is utilized.

Table 4-28 DRAM Buffering Related Registers/Bits

		ing riciated ri	9				
7	6	5	4	3	2	1	0
PCIDV0 44h			Data Path	Register 1			Default = 00h
FIFO for CPU write to PCI: 0 = Disable 1 = Enable	FIFO for PCI read from DRAM: 0 = Disable 1 = Enable	FIFO for PCI write to DRAM: 0 = Disable 1 = Enable	FIFO for CPU write to DRAM: 0 = Disable 1 = Enable				
SYSCFG 2Ah			DOLLO DRAMO	ontrol Register 1			Default = 00h
			PCI TRDY# wait state control with PCI-to-DRAM deep buffer: 0 = 0WS (X-1-1-1) 1 = 1WS (X-2-2-2)	Write burst with PCI-to-DRAM deep buffer: 0 = Disable 1 = Enable	Read burst with PCI-to-DRAM deep buffer: 0 = Disable 1 = Enable		PCI-to-DRAM deep buffer size: 0 = 16 dword 1 = 24 dword
SYSCFG 2Ch		С	PU-to-DRAM Buf	fer Control Regis	ster		Default = 00h
CPU-to-PCI read and CPU- to-DRAM write concurrency: 0 = Disable 1 = Enable	This bit needs SYSCFG 2Ch[5] to be enabled. When set (to 1), the cache write to CPU-to-DRAM buffer becomes more aggresive. Will save approximately 3 clocks over the previous method. Not supported.	When set (to 1) along with CPU-to-DRAM buffer and PBSRAM, the DRAM controller will first supply the data to the CPU before writing the previous data back to DRAM during a cache miss dirty cycle.(1)	CPU-to-PCI write and CPU- to-DRAM read concurrency: 0 = Disable 1 = Enable	Enable internal LMEM# during special cycles: 0 = No 1 = Yes	BOFF# assertion during DRAM read cycles: 0 = Disable 1 = Enable	Data merging when CPU owns DRAM bus: 0 = Possible only when GUI owns DRAM bus (UMA fea- ture - not supported) 1 = Always possible	Allow data collection while CPU-to-DRAM FIFO is flushing: 0 = Disable (2) 1 = Enable

⁽¹⁾ Bit 5's function needs the CPU-to-DRAM buffer to be enabled. DRAM processing for the read will start concurrently while data from cache will be written to the CPU-to-DRAM buffer.

⁽²⁾ BOFF# is generated for the next DRAM write cycle as long as there is data in the FIFO.

4.6.5 Programming the DRAM Parameters

There are various parameters that can be obtained in the DRAM state machine - drive strengths, number of banks, bank size, DRAM type, and timing parameters.

4.6.5.1 Drive Strengths

Programmable current drive for the MA[12:0], RAS[5:0]# and the DWE# lines is provided. If SYSCFG 18h[6,4] = 10, then the current drive on these lines is 4mA (refer to Table 4-29). In this case, two F244 buffers will be required to drive each pair of DRAM banks. If SYSCFG 18h[6,4] = 01, then the current drive on these lines is increased to 16mA and it should be possible to drive the first pair of banks that are populated with DRAMs that are 4, 8, or 16 bits wide without any buffers.

Note that on the FireStar ACPI version the DWE line can be programmed for either 16mA or 20mA. These bits must be programmed prior to accessing any location in DRAM; they must be programmed before sizing the DRAM.

4.6.5.2 Number of DRAM banks

FireStar supports up to six banks of DRAM. The default condition is four banks of DRAM supporting up to 512Mbytes of system memory.

RAS4# and RAS5# are selected through SYSCFG 19h[7] (RAS5#), and 19h[3] (RAS4#). Table 4-30 shows the bits control full memory decode and the RAS selection bits.

Table 4-29 Drive Strength Control Bits

7	6	5	4	3	2	1	0
SYSCFG 18h			Interface Co	ntrol Register			Default = 00h
Reserved	Drive strength on RAS lines: 0 = 16mA 1 = 4mA	CAS lines voltage selection: 0 = 5.0V 1 = 3.3V	Drive strength on memory address lines and write enable line: 0 = 4mA 1 = 16mA				
SYSCFG 18h - F	S ACPI Version		Interface Co	ntrol Register			Default = 00h
Drive strength on SDRAS and SDCAS lines: 0 = 16mA 1 = 4mA	Drive strength on RAS lines: 0 = 16mA 1 = 4mA	CAS lines voltage selection: 0 = 5.0V 1 = 3.3V	Drive strength on memory address lines: 0 = 4mA 1 = 16mA	Drive strength on write enable line: 0 = 16mA 1 = 20mA			

Table 4-30 RAS Selection Bits

7	6	5	4	3	2	1	0
SYSCFG 19h			Memory Decode	Control Registe	r 3		Default = 00h
Pin functionality:	1	e for logical Bank YSCFG 19h[7] is	, ,	Bank 4 (RAS4#):	Full decode 000 = 0Kx36	4 (RAS4#): 2Mx36 (16MB)	
0 = GWE# 1 = RAS5#	000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (4 011 = 1Mx36 (8N	2MB) 101 = 4 4MB) 110 = 8	Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)	0 = Disable 1 = Enable	001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8N	4MB') $110 = 8$	4Mx36 (32MB) BMx36 (64MB) 6Mx36 (128MB)

Page 82 912-2000-015

4.6.5.3 DRAM Size

The DRAM bank size is set by programming groups of bits in SYSCFG 13h, 14h, 19h, and 24h. There is no required ordering for these selections: Any desired bank can be populated or skipped. For example, if in the course of testing system DRAM the BIOS POST code should find Bank 3 (RAS3#) defective, it should simply set that bank to "disabled." The DRAM controller will automatically map around it and provide a contiguous memory map to the system.

The bank size is determined by the number of rows and columns implemented by the DRAM chips that populate the bank. In this discussion, the term "symmetric" is used for DRAMs that have either an equal number of rows and columns, or one more row address line than the number of column address lines. The term "asymmetric" is used for DRAMs in which the number of row address lines exceed the number of column address lines by at least two. For example, DRAMs with 12 rows and 12 columns (12x12) are considered symmetric, DRAMs with 12 rows and 11 columns (12x11) are also considered symmetric. However, 12x10 DRAMs are considered asymmetric.

Banks 0-3 can be programmed to support symmetric or asymmetric DRAMs (12x12, 12x11, 12x10, 12x9, 12x8, 11x11, 11x10, 11x9, 11x8, 10x10, 10x9, 10x8, and 9x9). However, Banks 4-5 can only support symmetric DRAMs (12x12, 12x11, 11x11, 11x10, 10x10, 10x, and 9x9).

Table 4-31 shows the register bits that pertain to bank size. The DRAM size for Banks 0-3 is controlled by SYSCFG 13h-14h and SYSCFG 24h. However, the size for Banks 4-5 is controlled only by SYSCFG 19h. For Banks 0-3, if the correspond asymmetric bits in SYSCFG 24h are set to 00, and if the size is programmed in SYSCFG 13h or 14h, the DRAM controller will assume that the respective banks are populated with symmetric DRAMs.

Table 4-32 shows the register bits that need to be programmed for Banks 0-3 for various DRAM sizes.

Table 4-33 and Table 4-34 show the CPU address to memory address map. A3 and A4 must go through an internal burst counter, for the generation of the MA address to the DRAMs.

Table 4-31 DRAM Configuration Related Register Bits

7	6	5	4	3	2	1	0		
SYSCFG 13h			Memory Decode	Control Register	· 1		Default = 00h		
	Full decode	e for logical Bank	1 (RAS1#):		Full decod	e for logical Bank	0 (RAS0#):		
	000 = 0Kx36	100 = 2	2Mx36 (16MB)		000 = 0Kx36	100 = 2	2Mx36 (16MB)		
	001 = 256Kx36 (2	2MB) $101 = 4$	Mx36 (32MB)		001 = 256Kx36 (Mx36 (32MB)		
	010 = 512Kx36 (4	,	Mx36 (64MB)		010 = 512Kx36 (Mx36 (64MB)		
	011 = 1Mx36 (8M)	1B) 111 = 1	6Mx36 (128MB)		011 = 1Mx36 (8N)	/IB) 111 = 1	6Mx36 (128MB)		
0.00000101					•		B (!! 00!		
SYSCFG 14h			Memory Decode	Control Register	2		Default = 00h		
	Full decode	e for logical Bank	3 (RAS3#):		Full decod	e for logical Bank	2 (RAS2#):		
	000 = 0 Kx 36		2Mx36 (16MB)		000 = 0Kx36		2Mx36 (16MB)		
	001 = 256Kx36 (2		Mx36 (32MB)		001 = 256Kx36 (Mx36 (32MB)		
	010 = 512Kx36 (4		Mx36 (64MB)		010 = 512Kx36 (Mx36 (64MB)		
	011 = 1Mx36 (8N	1B) 111 = 1	6Mx36 (128MB)		011 = 1Mx36 (8N)	/IB) 111 = 1	6Mx36 (128MB)		
SVSCEG 10h			Mamary Dagada	Control Posistor	. 2		Dofault - 00h		
SYSCFG 19h			Memory Decode	Control Register			Default = 00h		
SYSCFG 19h		e for logical Bank	5 (RAS5#)	Control Register	Full de∞d	e for logical Bank			
SYSCFG 19h	if S	e for logical Bank YSCFG 19h[7] is	5 (RAS5#) set:	Control Register	Full decod	100 = 2	4 (RAS4#): 2Mx36 (16MB)		
SYSCFG 19h	if S 000 = 0Kx36	e for logical Bank YSCFG 19h[7] is 100 = 2	5 (RAS5#) set: 2Mx36 (16MB)	Control Register	Full decod 000 = 0Kx36 001 = 256Kx36 (100 = 2 2MB) 101 = 4	4 (RAS4#): 2Mx36 (16MB) 4Mx36 (32MB)		
SYSCFG 19h	if S 000 = 0Kx36 001 = 256Kx36 (2	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4	5 (RAS5#) set: !Mx36 (16MB) !Mx36 (32MB)	Control Register	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (100 = 2 2MB) 101 = 4 4MB) 110 = 8	4 (RAS4#): 2Mx36 (16MB) 1Mx36 (32MB) 8Mx36 (64MB)		
SYSCFG 19h	if S 000 = 0Kx36 001 = 256Kx36 (2 010 = 512Kx36 (4	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8	5 (RAS5#) set: 2Mx36 (16MB) 4Mx36 (32MB) 4Mx36 (64MB)	Control Register	Full decod 000 = 0Kx36 001 = 256Kx36 (100 = 2 2MB) 101 = 4 4MB) 110 = 8	4 (RAS4#): 2Mx36 (16MB) 4Mx36 (32MB)		
SYSCFG 19h	if S 000 = 0Kx36 001 = 256Kx36 (2	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8	5 (RAS5#) set: !Mx36 (16MB) !Mx36 (32MB)	Control Register	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (100 = 2 2MB) 101 = 4 4MB) 110 = 8	4 (RAS4#): 2Mx36 (16MB) 1Mx36 (32MB) 8Mx36 (64MB)		
SYSCFG 19h	if S 000 = 0Kx36 001 = 256Kx36 (2 010 = 512Kx36 (4	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8 1B) 111 = 1	5 (RAS5#) set: 2Mx36 (16MB) 4Mx36 (32MB) 4Mx36 (64MB)	J	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8N	100 = 2 2MB) 101 = 4 4MB) 110 = 8	4 (RAS4#): 2Mx36 (16MB) 1Mx36 (32MB) 8Mx36 (64MB)		
SYSCFG 24h	if S 000 = 0Kx36 001 = 256Kx36 (2 010 = 512Kx36 (4	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8 1B) 111 = 1	5 (RAS5#) set: 2Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)	Configuration Re	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8N	100 = 2 2MB) 101 = 4 4MB) 110 = 8 MB) 111 = 1	4 (RAS4#): 2Mx36 (16MB) 4Mx36 (32MB) 4Mx36 (64MB) 6Mx36 (128MB)		
SYSCFG 24h Logical Bank	if S 000 = 0Kx36 001 = 256Kx36 (2 010 = 512Kx36 (2 011 = 1Mx36 (8M) 3 DRAM type:	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8 1B) 111 = 1	5 (RAS5#) set: 2Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB) 7mmetric DRAM (220)	Configuration Re	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8M) gister	100 = 2 2MB) 101 = 4 4MB) 110 = 8 MB) 111 = 1	4 (RAS4#): 2Mx36 (16MB) 4Mx36 (32MB) 5Mx36 (64MB) 6Mx36 (128MB) Default = 00h 0 DRAM type:		
SYSCFG 24h Logical Bank 00 = Sym DR	if S 000 = 0Kx36 001 = 256Kx36 (2 010 = 512Kx36 (2 011 = 1Mx36 (8M) 3 DRAM type:	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8 1B) 111 = 1 Asy Logical Bank 00 = Sym DR.	5 (RAS5#) set: 2Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB) 7mmetric DRAM (220)	Configuration Re	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8M) gister 1 DRAM type:	100 = 2 2MB) 101 = 4 4MB) 110 = 8 MB) 111 = 1 Logical Bank 00 = Sym DR	4 (RAS4#): 2Mx36 (16MB) 4Mx36 (32MB) 5Mx36 (64MB) 6Mx36 (128MB) Default = 00h 0 DRAM type:		
SYSCFG 24h Logical Bank 00 = Sym DR 01 = Asym DI	if S 000 = 0Kx36 001 = 256Kx36 (2 010 = 512Kx36 (2 011 = 1Mx36 (8M) 3 DRAM type:	e for logical Bank YSCFG 19h[7] is 100 = 2 2MB) 101 = 4 4MB) 110 = 8 1B) 111 = 1 Asy Logical Bank 00 = Sym DR. 01 = Asym DR	5 (RAS5#) set: 2Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB) cmmetric DRAM (220) 2 DRAM type:	Configuration Re Logical Bank 00 = Sym DR.	Full decod 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8M) gister 1 DRAM type: AM RAM - x8 type	100 = 2 2MB) 101 = 4 4MB) 110 = 8 MB) 111 = 1 Logical Bank 00 = Sym DR 01 = Asym DI	4 (RAS4#): 2Mx36 (16MB) 4Mx36 (32MB) 5Mx36 (64MB) 6Mx36 (128MB) Default = 00h 0 DRAM type: AM		

Preliminary **82C700**

Table 4-32 Programming Size Registers

DRAM Size	Bank Size Setting in SYSCFG 13h or 14h	Bank Asymmetricity Setting in SYSCFG 24h
12x12	128MB	Symmetric
12x11	64MB	Symmetric
12x10	32MB	x10
12x9	16MB	x9
12x8	8MB	x8
11x11	32MB	Symmetric
11x10	16MB	Symmetric
11x9	8MB	х9
11x8	4MB	x8
10x10	8MB	Symmetric
10x9	4MB	Symmetric
10x8	2MB	x8
9x9	2MB	Symmetric

Table 4-33 CPU Address to Memory Row/Column Address Map

		x8 /IB)		x9 MB)		к10 МВ)		x11 MB)		x12 BMB)		x8 /IB)		х9 /IB)		к10 МВ)		x11 MB)
Mem Addr.	Col	Row	Col	Row	Col	Row	Col	Row	Col	Row	Col	Row	Col	Row	Col	Row	Col	Row
MA0	А3	A12	A 3	A12	А3	A12	A 3	A12	A3	A12	А3	A12	A 3	A12	А3	A12	А3	A12
MA1	A4	A13	A4	A13	A4	A13	A4	A13	A4	A13	A4	A13	A4	A13	A4	A13	A4	A13
MA2	A 5	A14	A 5	A14	A 5	A14	A 5	A14	A 5	A14	A 5	A14	A 5	A14	A 5	A14	A5	A14
МАЗ	A6	A15	A6	A15	A6	A15	A6	A15	A6	A15	A6	A15	A6	A15	A6	A15	A6	A15
MA4	A 7	A16	A7	A16	A 7	A16	A7	A16	A 7	A16	A 7	A16	A7	A16	A 7	A16	A7	A16
MA5	A8	A17	A8	A17	A8	A17	A8	A17	A8	A17	A8	A17	A8	A17	A8	A17	A8	A17
MA6	A9	A18	A9	A18	A9	A18	A9	A18	A9	A18	A9	A18	A9	A18	A9	A18	A9	A18
MA7	A10	A19	A10	A19	A10	A19	A10	A19	A10	A19	A10	A19	A10	A19	A10	A19	A10	A19
MA8	A11	A20	A11	A20	A11	A20	A11	A20	A11	A20	A11	A20	A11	A20	A11	A20	A11	A20
MA9	A22	A11	A22	A21	A22	A21	A22	A21	A22	A21	A22	A11	A22	A21	A22	A21	A22	A21
MA10	A24	A21	A24	A22	A24	A23	A24	A23	A24	A23	A24	A21	A24	A22	A24	A23	A24	A23
MA11	A26	A22	A26	A23	A26	A24	A26	A25	A26	A25	A26	A22	A26	A23	A26	A24	A26	A25

Note: Signals that are shaded are driven, but should be ignored by DRAM.

Page 84 912-2000-015

Table 4-34 CPU Address to Memory Row/Column Address Map

	10x8 (2MB)		1	10x9 (4MB)		10x10 (8MB)		9x9 (2MB)	
Addr.	Col	Row	Col	Row	Col	Row		Col	Row
MA0	A3	A12	A3	A12	A3	A12		A3	A12
MA1	A4	A13	A4	A13	A4	A13		A4	A13
MA2	A5	A14	A5	A14	A 5	A14		A 5	A14
MA3	A6	A15	A6	A15	A6	A15		A6	A15
MA4	A7	A16	A7	A16	A7	A16		A 7	A16
MA5	A8	A17	A8	A17	A8	A17		A8	A17
MA6	A9	A18	A9	A18	A9	A18		A9	A18
MA7	A10	A19	A10	A19	A10	A19		A10	A19
MA8	A11	A20	A11	A20	A11	A20		A11	A20
MA9	A22	A11	A22	A21	A22	A21	1	A22	A21
MA10	A24	A21	A24	A22	A24	A23		A24	A22
MA11	A26	A22	A26	A23	A26	A24		A26	A23

Note: Signals that are shaded are driven, but should be ignored by DRAM.

Preliminary 82C700

DRAM Sizing Algorithm

This subsection describes the DRAM detection and sizing algorithm on FireStar. The algorithm will detect all the possible DRAM configurations listed in Table 4-32.

This discussion assumes that only Banks 0 through 3 are used in the system.

DRAM Detection and Sizing Algorithm

- 1. Turn L1 and L2 cache off.
- Set i = 0 (bank number to be tested).
- 3. DRAM detection:
 - If i = 4, exit. If not, set the size for Bank i to be 128MB.
 - Set the size for all other banks as 0MB in SYSCFG 13h and 14h
 - Write address 00000000h with pattern 5555555h.
 - Read from address 0000000h.
 - If the pattern that is read back is not 55555555h,
 Bank i does not contain any DRAM. Increment i, and go back to Step 3.
 - If the pattern that is read back is 55555555h, Bank i contains DRAM. Continue with Step 4.
- 4. Test of 128MB (12x12):
 - Bank i was set for 128MB in the previous step.
 - Write address 00000000h with pattern 55555555h.
 - Write address 04000000h (A26 = 1) with pattern AAAAAAAh.
 - Read from address 00000000h.
 - If it is 55555555h, Bank i contains 128MB. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the pattern that is read back is not 55555555h, Bank i has less than 128MB. Continue with Step 5.
- 5. Test of 64MB (12x11):
 - Set the size for Bank i as 64MB. Set the size for all other banks as 0MB.
 - Write address 00000000h with pattern 5555555h.
 - Write address 01000000h (A24 = 1) with pattern AAAAAAAh.
 - Write address 02000000h (A25 = 1) with pattern FEDCBA98h.
 - Read from address 00000000h.
 - If it is 55555555h, Bank i contains 64MB. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the pattern that is read back is not 55555555h, Bank i has less than 64MB. Continue with Step 6.

6A. Test of 32MB (11x11):

- Set the size for Bank i as 32MB.

- Set the size for all other banks as 0MB.
- Write address 00000000h with pattern 5555555h.
- Write address 01000000h (A24 = 1) with pattern AAAAAAAh.
- Read from address 00000000h.
 - If it is 55555555h, Bank i contains 11x11 32MB DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the pattern that is read back is not 55555555h,
 Bank i has either 12x10 32MB, or less than 32MB of DRAM. Continue with Step 6B.

6B. Test of 32MB (12x10):

- The DRAM size was set as 32MB in Step 6A. Set the asymmetric bits corresponding to Bank i in SYSCFG 24h as x10.
- Write address 00000000h with pattern 5555555h.
- Write address 00400000h (A22 = 1) with pattern AAAAAAAh.
- Write address 01000000h (A24 = 1) with pattern FEDCBA98h.
- Read from address 00000000h.
 - If it is 55555555h, Bank i contains 12x10 32MB DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the pattern that is read back is not 55555555h,
 Bank i has less than 32MB of DRAM. Continue with Step 7A.

7A. Test of 16MB (12x9):

- Set the size for Bank i as 16MB.
- Also set the asymmetric DRAM bits for Bank i in SYSCFG 24h as x9.
- Write address 00000000h with 5555555h.
- Write address 00000800h (A11 = 1) with pattern AAAAAAAh.
- Write address 00800000h (A23 = 1) with data FEDCBA98h.
- Read from address 00000000h.
 - If it is 55555555h, Bank i has 12x9 DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the data that is read back is not 55555555h, continue with Step 7B.

7B. Test of 16MB (11x10):

- Set the size for Bank i as 16MB.
- Also set the asymmetric DRAM bits for Bank i in SYSCFG 24h as "00".
- Write address 00000000h with 5555555h.
- Write address 00400000h (A22 = 1) with pattern AAAAAAAh.

Page 86 912-2000-015

- Write address 00800000h (A23 = 1) with data FEDCBA98h.
- Read from address 00000000h.
 - If it is 55555555h, Bank i has 11x10 DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the data that is read back is not 55555555h, continue with Step 8A.

8A. Test of 8MB (12x8, 11x9, or 10x10):

- Set the size for Bank i as 8MB.
- Also set the asymmetric DRAM bits for Bank i in SYSCFG 24h as x8.
- Write address 00000000h with 55555555h.
- Write address 00400000h (A22 = 1) with data AAAAAAAh.
- Read from address 00000000h.
 - If it is 55555555h, Bank i has 12x8 or 10x10 DRAM; continue from Step 8B.
 - If the data that is read back is not 55555555h, go to Step 8C.

8B. Distinguish between 12x8 and 10x10:

- The size for Bank i was set as 8MB, 12x8. Address 00000000h must still have 5555555h.
- Write address 00200000 with data AAAAAAAA (A22 = 0, A21 = 1).
- Read from address 00000000h.
 - If it is pattern 55555555h, Bank i has 12x8 DRAM.
 Store this information, for updating the size registers
 13h and 14h after exiting from this program. Increment i and continue with Step 3.
 - If the data that is read back is not 55555555h, Bank i has 10x10 DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Reset the bits corresponding to Bank i in SYSCFG 24h to 00b. Increment i and continue with Step 3.

8C. Test of 8MB (11x9):

- Set the asymmetric DRAM bits for Bank i in SYSCFG 24h as x9.
- Write address 00000000h with 55555555h.
- Write address 00400000h (A22 = 1) with data AAAAAAAh.
- Write address 00000800h (A11 = 1) with data FEDCBA98h.
- Read from address 00000000h.
 - If it is 55555555h, Bank i has 11x9 DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i and continue from Step 3.
 - If the data that is read back is not 55555555h, continue with Step 9A.

9A. Test of 4MB (11x8):

- Set the size for Bank i as 4MB.
- Also set the asymmetric DRAM bits for Bank i in SYSCFG 24h as x8.
- Write address 00000000h with 5555555h.
- Write address 00200000h (A21 = 1) with data AAAAAAAh.
- Read from address 00000000h.
 - If it is 55555555h, Bank i has 11x8 DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i and continue from Step 3.
 - If the data that is read back is not 55555555h, go to Step 9B.

9B. Test of 4MB (10x9) and 2MB (10x8 or 9x9):

- Set the size for Bank i as 4MB.
- Also set the asymmetric DRAM bits for Bank i in SYSCFG 24h as "00".
- Write address 00000000h with 5555555h.
- Write address 00000800h (A11 = 1) with pattern AAAAAAAh.
- Write address 00200000h (A21 = 1) with data FEDCBA98h
- Read from address 00000000h.
 - If it is 55555555h, Bank i has 4MB (10x9) DRAM.
 Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i, and continue from Step 3.
 - If the data that is read back is AAAAAAAA, Bank i has 2MB (10x8) DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Set the asymmetric bits corresponding to this bank in SYSCFG 24h for "x8" DRAM. Increment i and continue from Step 3.
 - If the data that is read back is FEDCBA98h, Bank i has 2MB (9x9) DRAM. Store this information, for updating the size registers 13h and 14h after exiting from this program. Increment i and continue from Step 3.
- EXIT: Follow the guidelines specified in Table 4-32 for programming DRAM size and asymmetricity for each bank. Set the appropriate bits and exit from DRAM sizing routine.

Note: After a write, and before a read operation, another valid address must be written with data 00000000h to clear bus capacitance.

DRAM Cycles 4.6.6

The fastest possible burst read is 6-2-2-2 which means the first quad-word is received in six clocks and the next three quad-words are received after two clocks each. For a cache based system, it would mean the bursting to the cache and CPU for read miss cycles or write miss cycles. Table 4-35 summarizes the DRAM cycle lengths and the following subsections describe the read/write cycle operations.

4.6.6.1 **DRAM Read Cycle**

The DRAM read cycle begins with the DRAM controller detecting a page hit or a page miss cycle at the end of the first T2. Based on the status of the current open page and the active RASx#, a page hit, a page miss with RAS inactive, or a page miss with RAS active cycle is executed.

Page Miss with RASx# High Cycle: The row address is generated from the CPU address bus. (Refer back to Table 4-33 and Table 4-34 for the row/column address mux map.) After RASx# goes active, the row address is changed on the next clock edge (programmable to be two CLKs) to the column address. The CASx# will be active two CLKs after the column address is generated.

Page Miss with RASx# Low Cycle: RAS is first precharged for the programmed number of CLKs and then driven active. after which it will be the same as a page miss with RASx# high cycle.

Page Hit Cycle: The SYSC (system controller) generates the column address from the CPU address bus and CASx# is driven active for two clocks. Data flow from the CPU data bus to the memory data bus and vice versa is controlled by the

internal DBCOE#, MMDOE#, MDOE#, and HDOE# signals from the SYSC to the DBC. Data from the DRAM is latched by the DBC on the rising edge of each DLE (for CPU reads from DRAM, the DLE[1:0]# signals are identical to the CAS signal). The latched data is valid on the CPU data bus until the next rising edge of CASx#.

During this time, the next read is started, CASx# signals are precharged for one or two clocks (programmable via SYSCFG 02h[1]), and the next data from the DRAM is accessed and latched. The DBC latches the data from the DRAM and holds the data for the CPU while the DRAM controller begins the read for the next word in the burst cycle. The burst read from the DRAM is in effect pipelined into the CPU data bus by FireStar. This scheme reduces the constraints on the board layout so that routing for the CPU data bus, MD data bus, and CASx# signal lines are less critical and performance can be maintained.

Page Hit Cycle (Extended): Wait states can be added if slower DRAMs are used. In this mode, data from the DRAM is latched by the DBC at the end of each CAS cycle similar to the default mode. The only difference between the two modes is that the CAS low time on reads is increased by one T-state. This eases up on the page mode cycle time and CAS access time parameters.

The DRAM read cycle uses a CAS signal that is active for multiples of T-state boundaries rather than half T-state boundaries. This allows additional address decode setup time and MA bus setup time at the start of the cycle, making the fastest burst cycle 7-2-2-2.

Table 4-35 DRAM Cycle Lengths

CPU Bus Speed	Page Hit Leadoff	Page Miss RAS High Leadoff	Page Miss RAS Active Leadoff	CPU Pipeline Reduces Lead- off Cycle by:	Burst Cycle Length	Continued Burst if Pipelined
Read Burst Cycle						
50MHz FPM DRAM	6 clocks	9 clocks	9+precharge	1 clock	X-2-2-2	X-2-2-2
50MHz EDO DRAM	6 clocks	9 clocks	9+precharge	1 clock	X-2-2-2	X-2-2-2
60/66MHz FPM DRAM	6 clocks	9 clocks	9+precharge	1 clock	X-3-3-3	X-3-3-3
60/66MHz EDO DRAM	6 clocks	9 clocks	9+precharge	1 clock	X-2-2-2	X-2-2-2
Write Burst Cycle						
50MHz FPM/EDO DRAM		4-7-3-3	4-(7+pre)-3+3	1 clock	X-3-3-3	X-3-3-3
60/66MHz FPM/EDO DRAM		4-7-3-3	4-(7+pre)-3+3	1 clock	X-3-3-3	X-3-3-3
50/60/66MHz FPM/EDO DRAM Single Write	3	4	4			3

Single writes can be pipelined. Single reads are not pipelined.

912-2000-015 Page 88

4.6.6.2 DRAM Write Cycle

Posted writes to DRAM improves the write cycle timing relative to the CPU and allows FireStar to perform an independent write burst cycle to DRAM without holding the CPU. FireStar maintains a deep data buffer for DRAM writes so that the CPU write cycle is completed without waiting for the external DRAM cycle. For a burst write cycle, the leadoff cycle time is reduced to four clocks even if the cycle is a nonpage hit cycle. For a page hit cycle, the burst write can be completed in 4-3-3-3 with posted write enabled. The posted write buffer in the DBC is controlled by the DLE[1:0]# signals from the SYSC. Effectively, the rising edge of these signals

will latch the high 32-bit and the low 32-bit new data respectively, from the CPU bus to the posted write buffer.

Single level posted write cycles are employed to achieve a 4-3-3-3 burst at 66MHz. The data from the CPU is latched in the write buffer of the DBC until CAS goes active one T-state after the first T2 (on a page hit). This provides a fast write mechanism and two wait state writes are maintained for the leadoff cycle within a page (even at 66MHz). The CAS pulse width can be extended by one more T-state to ease the timing constraints on the CAS pulse width requirement for speeds above 66MHz.

Table 4-36 DRAM Operation Programming Bits

	•	lion i rogiann	<u> </u>							
7	6	5	4	3	2	1	0			
SYSCFG 01h			DRAM Cont	trol Register 1			Default = 00h			
Row address HOLD after RAS# active: 0 = 2 CPUCLKs 1 = 1 CPUCLK	RAS# active/ inactive when starting a master cycle: 0 = Active (normal page mode) 1 = Inactive	width used d 00 = 7 0 01 = 6 0 10 = 5 0	pulse uring refresh: CPUCLKs CPUCLKs CPUCLKs CPUCLKs	CAS pulse width during reads: 0 = 3 CPUCLKs 1 = 2 CPUCLKs For 1 CPUCLK width, refer to SYSCFG 1Ch[0].	CAS pulse width during writes: 0 = 3 CPUCLKs 1 = 2 CPUCLKs	prechar 00 = 6 0 01 = 5 0 10 = 4 0	AS ge time: CPUCLKs CPUCLKs CPUCLKs CPUCLKs			
SYSCFG 02h			Cacha Cont	rol Register 1			Default = 00h			
CVCCE0 10h			EDO DDAMG			DRAM posted write: 0 = Disable 1 = Enable	CAS precharge time: 0 = 2 CPUCLKs 1 = 1 CPUCLK Default = 00h			
SYSCFG 1Ch			EDO DRAM C	Control Register			CAS pulse width during DRAM			
							accesses: 0 = CAS pulse width determined by SYSCFG 01h[3] 1 = CAS pulse width is 1			
							CPUCLK ⁽²			

⁽²⁾ The width of the pulse is one CPUCLK for read accesses to banks that are populated with EDO DRAMs (selected by bits [7:2]), resulting in X-2-2-2 burst to EDO DRAM at 50/60/66MHz. SYSCFG 14h[7] and PCIDV0 44h[0] must be set in prior to setting this bit. X-2-2-2 burst cycles enabled by this bit apply only during CPU read bursts to EDO DRAM banks that are enabled in SYSCFG 1Ch[7:2].

Table 4-36 DRAM Operation Programming Bits (cont.)

7	6	5	4	3	2	1	0	
SYSCFG 0Ch	h DRAM Hole Higher Address							
	Fast BRDY# generation for DRAM write page hits. BRDY# for DRAM writes generated on:							
	0 = 4 th CPUCLK 1 = 3 rd CPUCLK							

4.6.6.3 DRAM Refresh Logic

FireStar supports the following types of refresh schemes:

- Normal refresh
- Non-ISA refresh
- Burst refresh

During normal refresh, the CPU bus is put on BOFF# and the DRAM bus is refreshed. This is the default condition at power-up.

In non-ISA refresh, once the REFRESH# signal is generated internally, the DRAM will be refreshed in the background while the CPU is accessing the internal cache. Non-ISA refresh is performed independently of the CPU and does not suffer from the performance restriction of losing processor bandwidth by forcing the CPU into its hold state. Since non-ISA refresh delivers higher system performance, it is recommended over normal refresh. As long as the CPU does not try to access local memory or the ISA bus during a non-ISA refresh cycle, refresh will be transparent to the CPU. The CPU can continue to execute from its internal and secondary caches as well as execute internal instructions during non-ISA refresh without any loss in performance due to refresh arbitration. If a local memory or ISA bus access is required during a non-ISA refresh cycle, wait states will be added to the CPU cycle until the resource becomes available. Non-ISA refresh also separates refreshing of the ISA bus and local DRAM.

In non-ISA refresh mode, the internal REFRESH# signal is not used. FireStar generates an internal refresh input from the system frequency and does a refresh in the background when the DRAM bus is available. Table 4-37 shows the refresh logic associated register bits.

The DRAM controller arbitrates between CPU DRAM accesses and DRAM refresh cycles, while the ISA bus controller arbitrates between CPU accesses to the ISA bus, DMA and ISA refresh. The ISA bus controller asserts the RFSH# and MRD# commands and outputs the refresh address during ISA bus refresh cycles.

FireStar implements refresh cycles to the local DRAM using CAS-before-RAS timing. The CAS-before-RAS refresh uses less power than RAS-only refresh which is important when dealing with large memory arrays. CAS-before-RAS refresh is used for both normal and non-ISA refresh to DRAM memory.

The periodic REFRESH# request signal that occurs every 15µs, originates from the counter/timer of the integrated 82C206. Requests for refresh cycles are generated by two sources: the counter/timer of the integrated 82C206 or 16-bit ISA masters that activate refresh when they have bus ownership. These ISA masters must supply refresh cycles because the refresh controller cannot preempt the bus master to perform the necessary refresh cycles. 16-bit ISA masters that hold the bus longer than 15µs must supply refresh cycles.

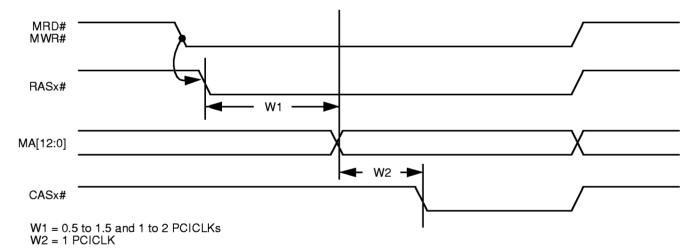
Page 90 912-2000-015

Table 4-37 Refresh Logic Register Bits

Table 4-37	Refresh Logi	c Register Bit	s				
7	6	5	4	3	2	1	0
SYSCFG 12h			Refresh Co	ntrol Register			Default = 00h
		00 = From CPU0 machine	based on 32KHz	Refresh on: 00 = Every REFF falling edge	FRESH#/32KHz REFRESH#/ Ig edge		
SYSCFG 27h			Miscellaneous C	Control Register	X		Default = 00h
					000 = Di: 001 = Re 010 = Re 011 = Re 100 = 66 101 = 60 110 = 50	served	al refresh pin U clock U clock U clock U clock
SYSCFG 2Eh			UMA Contr	ol Register 2			Default = 00h
Allow SDRAM self-refresh in Suspend mode: 0 = Disable (SDRAM engages autorefresh mode) 1 = Enable (need to enable SDRAM self-refresh if SYSCFG 12h[5:4] = 01 or 10)	Allow RFSH# signal from IPC to connect to DRAM controller: 0 = Disable 1 = Enable						
PCIDV1 64h			PCI Master Co	ntrol Register 1			Default = 10h
							ISA refresh: 0 = Enable 1 = Disable, to increase PCI master bandwidth

Table 4-37 Refresh Logic Register Bits (cont.)

7	6	5	4	3	2	1	0
PCIDV1 64h - FS	S ACPI Version		PCI Master Co	ontrol Register 1			Default = 10h
						Synchronize reset for refresh logic (for improved timing): 0 = Enable 1 = Disable	ISA refresh: 0 = Enable 1 = Disable, to increase PCI master bandwidth


4.6.7 **DRAM DMA/Master Cycles**

For DMA and master cycles, the DRAM controller operates such that the MRD# and MWR# signals generate RASx# synchronously. The generation of the DRAM column address is then synchronized with PCICLK. The synchronization can be programmed to be 0.5 to 1.5 PCICLKs and 1.0 to 2.0 PCI-CLKs. The generation of CASx# is always one PCICLK after the generation of the column address. The cycles can thus be completed without adding wait states. For cases when the

CPU writeback cache is enabled, wait states need to be added to the DMA/master cycles. This is because the CPU can request a primary cache castout (always a burst write to the DRAMs) and only after the castout is completed can the requested data from the DRAM be fetched.

ISA masters which ignore IOCHRDY may not work when CPU writeback is enabled.

Figure 4-14 ISA Master Synchronization

912-2000-015 Page 92

4.6.8 DRAM Hole Control

FireStar allows system "holes" in DRAM, to which accesses can go to the PCI bus. DRAM holes can be set through

SYSCFG 06h[7], 09h[7:0], 0Ah[7:0], 0Bh[7:0], 0Ch[3:0]. Table 4-38 shows these register bits.

Table 4-30 DitANTION CONTROL REGISTERS	Table 4-38	DRAM Hole	Control Related	Registers
--	------------	-----------	------------------------	-----------

7	6	5	4	3	2	1	0
SYSCFG 06h			Shadow RAM C	ontrol Register 3	}		Default = 00h
DRAM hole in system memory from 80000h- 9FFFFh: ⁽¹⁾							
0 = No hole in memory							
1 = Enable hole in memory							

(1) This setting gives the user the option to have some other device in the address range 80000h-9FFFFh instead of system memory. When bit 7 is set, the 82C700 will not start the system DRAM controller for accesses to this particular address range.

SYSCFG 09h	System Memory	Function Register	Default = 00h
DRAM Hole B size:	DRAM Hole B control mode:	DRAM Hole A size:	DRAM Hole A control mode:
00 = 512KB 10 = 2MB	00 = Disable	00 = 512KB 10 = 2MB	00 = Disable
01 = 1MB	01 = WT for L1 and L2	01 = 1MB	01 = WT for L1 and L2
Address for this hole is specified	10 = Non-cacheable for L1 and L2	Address for this hole is specified	10 = Non-cacheable for L1 and L2
in SYSCFG 0Bh[7:0] and 0Ch[3:2]	11 = Enable hole in DRAM	in SYSCFG 0Ah[7:0] and 0Ch[1:0]	11 = Enable hole in DRAM

SYSCFG 0Ah DRAM Hole A Address Decode Register 1

Default = 00h

DRAM Hole A starting address:

- These bits along with SYSCFG 0Ch[1:0] are used to specify the starting address of DRAM Hole A.
- These bits, AST[7:0], map onto HA[26:19] lines.

SYSCFG 0Bh

DRAM Hole B Address Decode Register 2

Default = 00h

DRAM Hole B starting address:

- These bits along with SYSCFG 0Ch[3:2] are used to specify the starting address of DRAM Hole B.
- These bits, BST[7:0], map onto HA[26:19] lines.

SYSCFG 0Ch	DRAM Ho	le Higher Address	Default = 00h
		DRAM Hole B starting address:	DRAM Hole A starting address:
		These bits are used in conjunction with the bits in SYSCFG 0Bh to specify the starting address of DRAM Hole B. These bits, BST[9:8], map onto HA[28:27].	These bits are used in conjunction with the bits in SYSCFG 0Ah to specify the starting address of DRAM Hole A. These bits, AST[9:8], map onto HA[28:27].

4.7 CPU Pipelining Control

Depending on the configuration of cache and DRAM, NA# to the CPU must be generated at different times during burst reads or writes. The registers that control NA# generation to the CPU are in summarized in Table 4-39. During CPU bursts, NA# may be generated at three different points. These are controlled by SYSCFG 08h[2], 0Eh[2], 11h[4], and 1Fh[5].

Table 4-39 NA# Generation Control

7	6	5	4	3	2	1	0
SYSCFG 00h		Byte Merge/l	Prefetch & Sony	Cache Module Co	ontrol Register		Default = 00h
				Byte/word merging with CPU pipelining (NA# genera- tion) support: 0 = Disable 1 = Enable			
SYSCFG 08h			CPU Cache C	ontrol Register			Default = 00h
					CPU address pipelining for DRAM burst cycles: 0 = Disable 1 = Enable (Allow: X-2-2-3-2-2-2 if SYSCFG 1Fh[5] = 1 or X-2-2-2-2-2-2 if SYSCFG 1Fh[5] = 0 or X-2-2-2-X-2-2-2 if SYSCFG 1Fh[5] = 0 and 11[4] = 1)		
SYSCFG 0Eh			PCI Master Burst	Control Registe	r 1		Default = 00h
					Generate NA# for every single transfer cycle: 0 = Disable 1 = Enable		

Page 94 912-2000-015

Table 4-39 NA# Generation Control (cont.)

14016 4-39	TUA# Generali	on Control (00111.7				
7	6	5	4	3	2	1	0
SYSCFG 0Fh			PCI Master Burst	Control Register	r 2		Default = 00h
				New mode of single cycle NA#: 0 = No change in cache write hit timing 1 = Cache write hit single transfer cycles will take 3 CLKS to comple if the line is already dirty			
SYSCFG 11h			Miscellaneous (Control Register :	2		Default = 00h
			CPU address pipelining for DRAM burst cycles: 0 = Controlled by SYSCFG 08h[2] and 1F[5] 1 = Slow pipe- lining (allow X-2-2-X- 2-2-2 when SYSCFG 08h[2] = 1 and 1F[5] = 0				
SYSCFG 17h	Generate NA# for PCI slave access in async PCICLK mode: 0 = No 1 = Yes		PCI Cycle Co	ntrol Register 2			Default = 00h

Table 4-39 NA# Generation Control (cont.)

7	6	5	4	3	2	1	0
SYSCFG 1Fh	EDO Timing Control Register						Default = 00h
		NA# generation for burst DRAM accesses: 0 = Aggressive (X-2-2-2-2-2-2-2-2) f SYSCFG 08h[2] = 1) 1 = Controlled by SYSCFG 08h[2] Also see SYSCFG 11h[4]					
SYSCFG 23h		oreer a ringing	Pre-Snoon C	ontrol Register			Default = 00h
7 1301 4 2311			Tre-shoop o	Half clock shift			Delault = doll
				of cache hit latching when fast NA is enabled: 0 = Disable 1 = Enable			
SYSCFG 27h	SYSCFG 27h Miscellaneous Control Register 4						
				Fast NA# with L2 cache: 0 = Disable 1 = Enable			

Page 96 912-2000-015 Revision: 1.0

4.8 PCI Bus Interface

FireStar supports up to four PCI bus masters. Both synchronous and asynchronous modes of operation of the PCI bus, with respect to the CPU, are supported. FireStar supports a 32-bit PCI implementation and supports PCI bus operating frequencies up to 33MHz. It also functions as the PCI-to-ISA expansion bridge and performs the required data path conversion between the 32-bit PCI bus and the 8/16-bit ISA bus.

4.8.1 PCI Master Cycles

A PCI master is always allowed to access the system memory and system I/O spaces. Refer to Table 4-40.

4.8.1.1 System Memory Access

The PCI master asserts FRAME# and puts out the address on the AD[31:0] bus. FireStar decodes that address and provides the data path to the PCI master to access system memory. If the access is to the system memory space, then FireStar acts as the PCI slave and it generates the appropriate control signals to snoop the L1 cache for every access, or for every access to a new line (if the line comparator is enabled).

Table 4-11 and Table 4-12 (on page 59) describe the sequence of events that take place during a master read/write cycle from/to system memory. Listed below is the data flow path for all such accesses by a PCI master.

PCI Master Access Bits

4.8.1.2 X-1-1-1 Support on PCI Master Cycles

During PCI master read and write burst cycles into DRAM, FireStar has the capability to do X-1-1-1 cycles on the PCI bus. This increases the PCI bandwidth. With the pre-snoop feature of FireStar, a PCI master can sustain bursting to DRAM till a 4K page boundary is reached.

4.8.1.3 Non-Local Memory Access

The PCI master asserts FRAME# and outputs the address on AD[31:0]. If the access is not to the system memory area, FireStar does not assert the internal LMEM#.

All other PCI slaves have up to three PCICLKs after the start of the PCI cycle to assert DEVSEL#. All read/write access from/to PCI slaves is done directly over AD[31:0].

If no PCI slave responds within three PCICLKs after the start of the cycle, then FireStar starts an ISA cycle. For a read access from the ISA bus, the ISA device outputs the data on SD[15:0] or SD[7:0], depending on whether it is a 16- or 8-bit slave. FireStar latches this data and then performs the appropriate data bus conversions and steering (based on the IOCS16#, MEMCS16#, SBHE# signals) and puts the data out on AD[31:0]. For a write access to the ISA bus, the PCI master puts out the data on AD[31:0]. FireStar latches this data and then performs the appropriate data bus conversions and steering (based on the IOCS16#, MEMCS16#, SBHE# signals) and outputs the data on SD[15:0] or SD[7:0], depending on whether it is a 16- or 8-bit slave.

PCIDV0 04h Command Register - Byte 0 Default = 07h Memory I/O access access (RO): (RO): Must = 1Must = 1 (always) (always) The 82C700 The 82C700 allows a PCI allows a PCI bus master bus master I/O access to memaccess at anv ory at anytime. time. (Default = 1) (Default = 1) 'n

PCIDV1 04h	Command Register - Byte 0		Default = 07h
		Memory access (RO):	I/O access (RO):
		Must = 1 (always)	Must = 1 (always)
		The 82C700 allows a PCI	The 82C700 allows a PCI
		bus master access to mem- ory at anytime.	bus master I/O access at any time.
		(Default = 1)	(Default = 1)

Table 4-40

4.8.1.4 PCI Master Pre-Snoop

Pre-snooping is a technique with the aid of which a PCI master can sustain bursting to the local memory till a 4K page boundary is reached. If pre-snooping is enabled, then on the first TRDY# of the PCI master cycle, the state machine within FireStar increments the HA[12:5] address lines by one and asserts EADS# to the CPU after that. By this time, the earlier

cache address would have been latched by HACALE. If the CPU responds with a HITM#, then the current PCI master cycle will be terminated at the cache line boundary to allow the writeback cycle to occur. Enabling pre-snooping allows FireStar to continue bursting past a cache line boundary. Table 4-41 shows the register bits associated with the presnoop feature.

Table 4-41	Pre-Snoop C	ontrol Registe	er Bits				
7	6	5	4	3	2	1	0
SYSCFG 0Dh			Clock Con	trol Register			Default = 00h
						Give FireStar control of the PCI bus on STOP# genera- tion after HITM# is active: 0 = No 1 = Yes ⁽²⁾	
	L control over the P ld be set to 1.	 CI bus until the wi	l riteback is comple	l ted. If PCI master	pre-snoop has be		 DFG 0Fh[7] = 1),
SYSCFG 0Fh			DCI Maeter Bure	Control Registe	r 2		Default = 001
PCI pre-snoop: 0 = Disable 1 = Enable ⁽¹⁾ Also see SYSCFG ODh[1].							
(1) FireStarger	nerates a pre-snoo	p cycle to the CPL	Jassuming that th	e PCI master will	do a burst.		
SYSCFG 16h			Dirty/Tag RAM	Control Register	•		Default = A0
				Pre-snoop control: 0 = Pre-snoop for starting address 0 only 1 = Pre-snoop for all addresses except those on the line boundary			
SYSCFG 1Eh			Contro	l Register			Default = 001
		Retry PCI pre- snoop HITM# cycle: 0 = Disable 1 = Enable					

Page 98 912-2000-015

Table 4-41 Pre-Snoop Control Register Bits (cont.)

7	6	5	4	3	2	1	0
SYSCFG 23h			Pre-Snoop Co	ontrol Register			Default = 00h
		Pre-snoop for PCI X-1-1-1 write invalidate: 0 = Disable 1 = Enable	Pre-snoop for PCI X-1-1-1 read multiple and read line: 0 = Disable 1 = Enable				

4.8.2 PCI Slave Cycles

4.8.2.1 CPU Master Cycles

Any CPU cycle that is not an access to the system memory area, FireStar translates that cycle to a PCI cycle and asserts FRAME# on the PCI bus. All PCI slaves have up to three PCICLKs after the start of the cycle within which to assert DEVSEL#. The data flow path would be similar to the ones described in the previous section.

4.8.2.2 PCI Byte/Word Merge

This feature, if turned on, allows successive 8-/16-bit writes from the CPU to a PCI slave, to be merged into a 32-bit entity and then sent out to the PCI slave.

To enable the byte/word merge feature, PCIDV1 4Eh[3], PCIDV1 4Eh[1], SYSCFG 17h[2], and SYSCFG 00h[4:3] should be set to 1. Refer to Table 4-42 for information on these register bits.

4.8.2.3 ISA Master Cycles

If the ISA master cycle is not a system memory access, then FireStar becomes the initiator and commences a PCI cycle. The data flow path for an ISA master to a PCI slave access is between the SD[15:0]/SD[7:0] lines and the AD[31:0] lines. FireStar handles all the data bus conversion and steering logic.

Table 4-42 Byte/Word Merge Feature Register Bits

7	6	5	4	3	2	1	0	
PCIDV1 4Eh	Miscellaneous Control Register C - Byte 0							
				Pipelined byte merge function: 0 = Disable 1 = Enable		Byte merge: 0 = Disable 1 = Enable		
SYSCFG 17h		PCI Cycle Control Register 2						
					Pipelining during byte merge: 0 = Disable 1 = Enable			
SYSCFG 00h		Byte Merge/l	Prefetch & Sony (Cache Module Co	ontrol Register		Default = 00h	
			Byte/word merge support: 0 = Disable 1 = Enable	Byte/word merging with CPU pipelining (NA# genera- tion) support: 0 = Disable 1 = Enable	Time-out counter for byte/word merge: 00 = 4 CPUCLKs 01 = 8 CPUCLKs 10 = 12 CPUCLKs 11 = 16 CPUCLKs Setting determines maximum time difference between two consecutive PCI byte/word writes to allow merging.		Enable internal HOLD requests to be blocked while perform- ing byte merge: 0 = Disable 1 = Enable	

Figure 4-15 CPU 32-Bit Read from PCI

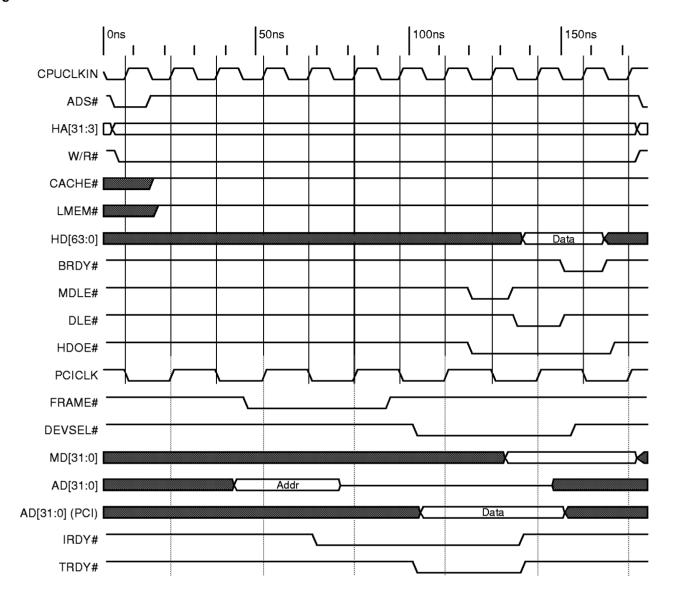


Figure 4-16 CPU 32-Bit Write to PCI

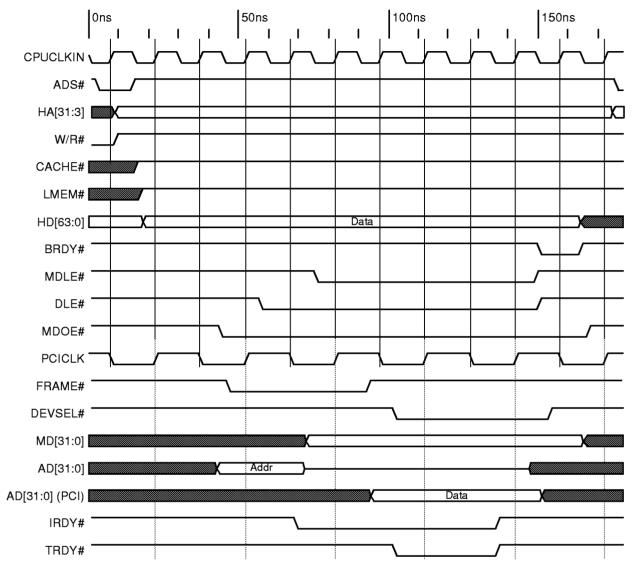
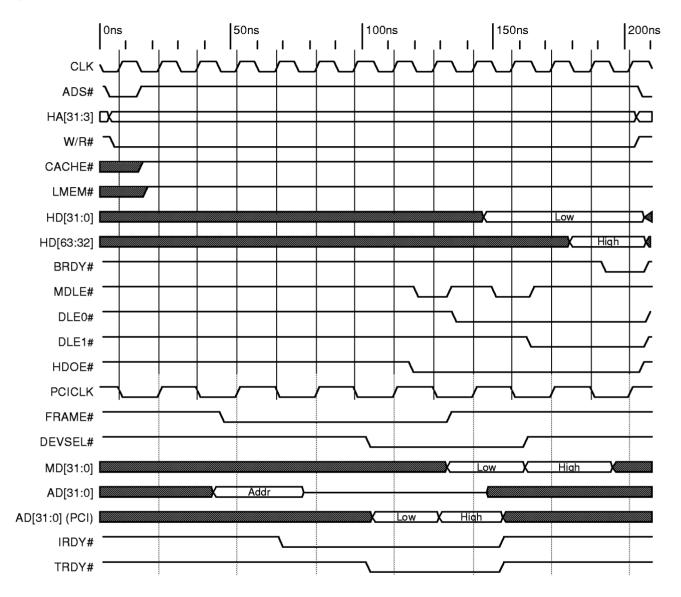



Figure 4-17 CPU 64-Bit Read from PCI

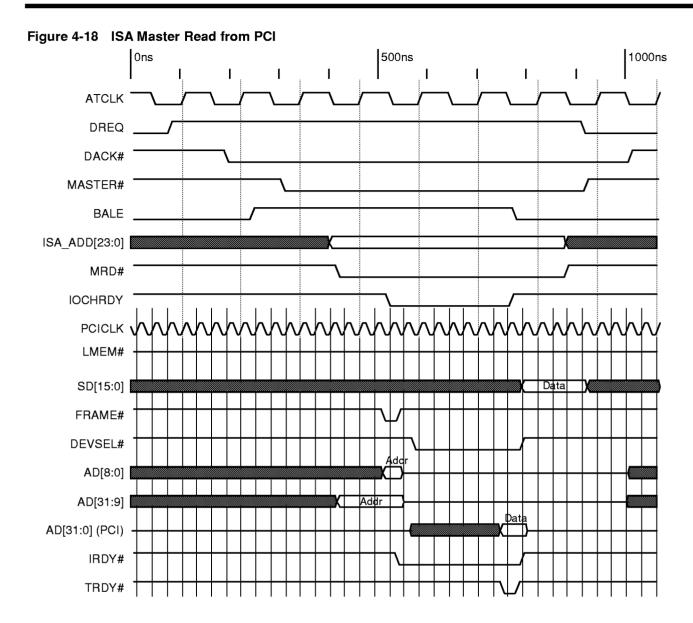


Figure 4-19 ISA Master Write to PCI

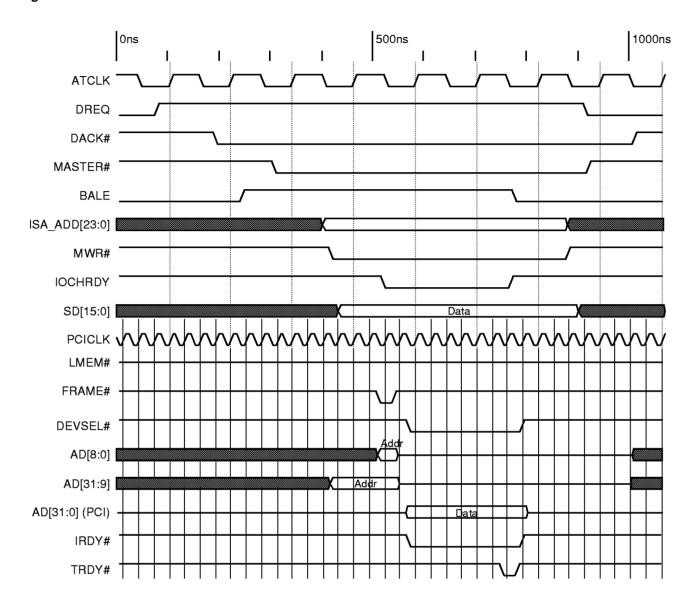


Figure 4-20 ISA Master Read from ISA Slave

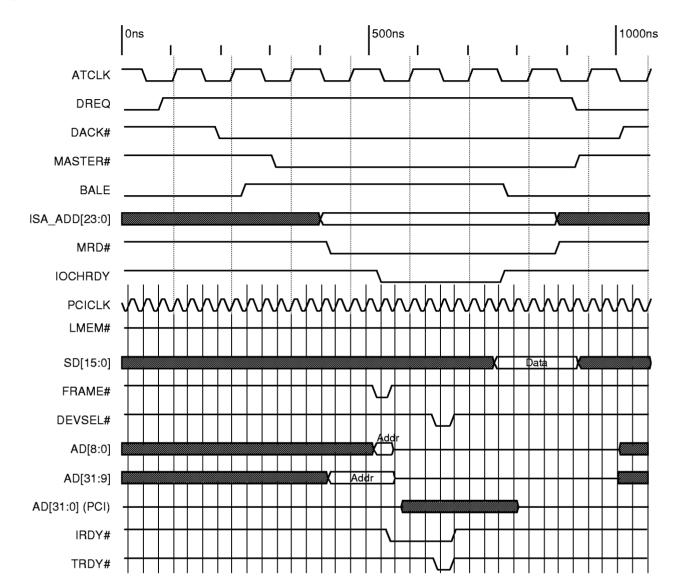
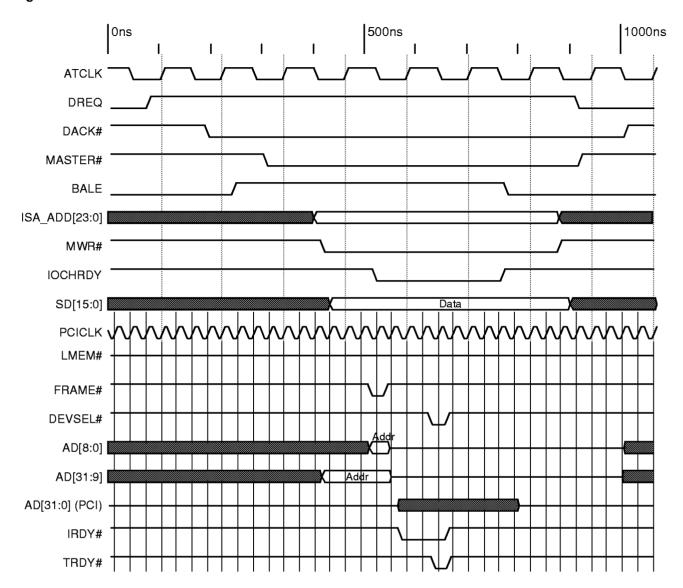



Figure 4-21 ISA Master Write to ISA Slave

4.8.3 **PCI** Arbitration

The PCI arbiter logic provides up to four external REQ#/GNT# signal pairs. These are utilized as follows.

- REQ0#/GNT0# always available for PCI bus master devices such as the 82C824 CardBus Controller.
- REQ1#/GNT1# always available for PCI bus master devices.
- REQ2#/GNT2# always available for PCI bus master devices.
- REQ3#/GNT3# available for PCI bus master devices when distributed DMA is not used. If unified memory architecture is adopted, these pins become UFBREQ# and UFBGNT# respectively.

Page 106 912-2000-015

4.9 ISA Bus Interface

The ISA bus state machine gains control when the decoding logic of FireStar detects that no PCI device has claimed the cycle. It monitors status signals M16#, IO16#, IOCHRDY, and NOWS# and performs the necessary synchronization of control and status signals between the ISA bus and the microprocessor. FireStar supports 8/16-bit memory and I/O devices located on the ISA bus.

An ISA bus cycle is initiated by asserting BALE in ISA-TS1 state. On the trailing edge of BALE, M16# is sampled for a memory cycle to determine the bus size. It then enters ISA-TC state and provides the command signal. For an I/O cycle, IO16# is sampled after the trailing edge of ALE until the end of the command. The command cycle is extended when IOCHRDY is detected inactive or the cycle is terminated when the zero wait state request signal (NOWS#) from the ISA bus is active. Upon expiration of the wait states, the ISA state machine terminates itself and passes an internal READY to the CPU state machine to output a synchronous BRDY# to the CPU. The ISA bus state machine also routes data and address when an ISA bus master or DMA controller accesses system memory.

The delay between back-to-back ISA cycles is programmable and can be configured by programming PCIDV1 43h[3:2]. See Table 4-43.

4.9.1 Data Bus Conversion/Data Path Control Logic

Data bus conversion from the 64-bit CPU bus to the memory bus is done by the data buffer controller within FireStar. The data bus conversion from the high order MD bus to the AD bus and the conversion to a 8/16-bit ISA bus is done by FireStar. It converts the CPU byte enables BE[7:0]# to address A2 and four byte enable signals C/BE[3:0]#, for the PCI bus. FireStar uses the C/BE[3:0]#, A2 and the other ISA address (A[1:0], SBHE# and IO16#/M16#) information to complete the 64-bit to 8/16-bit data conversion for the ISA bus. FireStar performs data bus conversion when the CPU accesses 16- or 8-bit devices through 16- or 32-bit instructions. It also handles DMA and ISA master cycles that transfer data between local DRAM or cache memory and locations on the ISA bus.

Table 4-43 Delay Back-to-Back ISA Cycle Register Bit

7	6	5	4	3	2	1	0
PCIDV1 43h Feature Control Register							
					? ATCLKs		

⁽¹⁾ When bits [3:2] take on the combination of 11, all back-to-back cycles are delayed by 12 AT clocks. This is different from the combinations of 00 and 01 because in the latter case, the delay will be inserted only when an I/O access is followed by a second I/O access with no other type of access occurring in between (e.g., a memory access).

4.9.2 Special Cycles

4.9.2.1 System ROM BIOS Cycles

FireStar supports both 8- and 16-bit EPROM cycles. If the system BIOS is 16 bits wide, ROMCS# should be connected to M16# through an open collector gate indicating to FireStar that a 16-bit EPROM is responding. The system BIOS resides on the XD bus.

ROMCS# can generated for both the E0000h-EFFFFh and F0000h-FFFFFh segments through PCIDV1 4Ah and 4Bh.

(Refer to Table 4-44.) If a combined video/system ROM BIOS is desired, these two segments should be used.

4.9.2.2 System Shutdown/Halt Cycles

The CPU provides special bus cycles to indicate that certain instructions have been executed or certain conditions have occurred internally. These special cycles, such as shutdown and halt, are covered by dedicated handling logic. FireStar will generate CPUINIT for a CPU shutdown cycle.

Table 4-44 Registers Associated with ROMCS#

7	6	5	4	3	2	1	0
PCIDV1 4Ah	ROM Chip Select Register 1						
ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for
F8000h-	F0000h-	E8000h-	E0000h-	D8000h-	D0000h-	C8000h-	C0000h-
FFFFFh:	F7FFFh:	EFFFFh:	E7FFFh	DFFFFh:	D7FFFh:	CFFFFh:	C7FFFh:
0 = Enable	0 = Enable	0 = Disable					
1 = Disable	1 = Disable	1 = Enable					
PCIDV1 4Bh	ROM Chip Select Register 2						
ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for	ROMCS# for
FFFF8000h-	FFFF0000h-	FFFE8000h-	FFFE0000h-	FFFD8000h-	FFFD0000h-	FFFC8000h-	FFFC0000h-
FFFFFFFh:	FFFF7FFFh:	FFFEFFFFh:	FFFE7FFFh:	FFFDFFFFh:	FFFFD7FFFh:	FFFCFFFFh:	FFFC7FFFh:
0 = Enable	0 = Enable	0 = Disable					
1 = Disable	1 = Disable	1 = Enable					

Page 108 912-2000-015

4.9.3 Local ISA Support Options

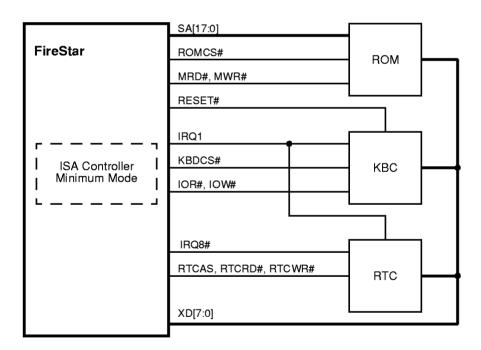
The FireStar solution assumes that ISA bus requirements will be minimal in most cases. However, it also makes options available for full ISA bus recovery. The ISA controller configurations are based on the following architecture.

- ISA bus address bits SA[23:0] are generated on dedicated pins.
- Data bits D[15:0] for ISA and Compact ISA cycles are accessed on dedicated pins SD[15:0]. Data bits XD[7:0] for X bus cycles are provided directly on XD[7:0].
- ISA-coupled docking solutions are possible, but are not encouraged. ISA is available on PCI-coupled docking solutions through the 82C825 PCI-ISA Bridge chip.

The configurations possible are described in the following sections.

4.9.3.1 No ISA Bus Configuration

It is possible to use FireStar in a configuration with no local ISA bus. In this case, there is no local X-bus support and all X-bus devices must be positively decoded on PCI by an external device.

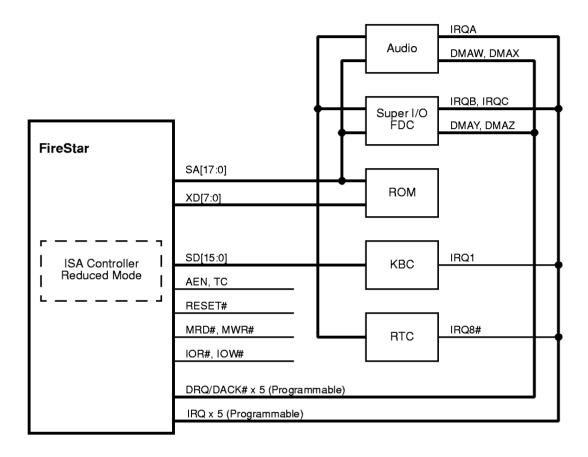

In this configuration, the primary IDE cable device is directly supported (no external buffers needed for isolation) on the SD[15:0] (Cable 0 data) and XD[7:0] buses. Address lines SA[15:0] can then be reassigned as the Cable 1 data bus. Various other pins are switched to directly support the second drive cable.

4.9.3.2 Minimum ISA Bus Configuration

The typical ISA bus utilization in a notebook or ISA-less desk-top system requires support for only three devices: the BIOS ROM, the keyboard controller, and the real-time clock (RTC). (Refer to Figure 4-22) FireStar provides direct support for these devices. Devices such as the super I/O chip and audio chip sit directly on PCI in this implementation. The complete set of ISA interface signals would never be required.

Because of the minimal signal set requirements in this mode, many ISA pins are recoverable on the chip and become useful as programmable input/output (PIO) pins as described elsewhere in this document. Typically about 25 pins would become available for other uses.

Figure 4-22 Minimum ISA Bus Configuration



4.9.3.3 Reduced ISA Bus Configuration

Notebook systems that must still rely on ISA devices often require only support for such components as the audio chip and floppy controller. This configuration is much simpler to implement and still leaves about 15 unused ISA pins available for other uses.

Figure 4-23 illustrates the reduced ISA application. Connections to the ROM, KBC and RTC are the same as shown in the previous figure.

Figure 4-23 Reduced ISA Bus Configuration

Page 110 912-2000-015 Revision: 1.0

4.9.3.4 Full ISA Bus Configuration

Full ISA support is possible with no external TTL. The complete 24-bit ISA address is provided. Certain pins, such as MASTER# or IOCHCK#, that are not always useful in a notebook design can be reassigned to other functions such as power control pins through the PIO pin feature. Figure 4-24 shows the configuration for full ISA application.

4.9.3.5 Compact ISA Support

The OPTi Compact ISA (CISA) interface provides full 16-bit support, using only 23 pins, to 100-pin devices such as the OPTi 82C852 PCMCIA Controller. Most signals are shared with existing ISA signals.

Pin Requirements

Compact ISA multiplexes address, IRQ, DRQ, and data all on the ISA SD bus and requires only two dedicated signal pins, CMD# and SEL#/ATB#. Four other signal pins, ATCLK, BALE, IOCHRDY, and RSTDRV, are shared with the standard ISA bus. SPKROUT replaces the SPKD signal on previous OPTi chipsets and allows all devices to combine their speaker outputs with no extra logic.

These minimal pin requirements make Compact ISA very practical for local 16-bit devices that are too slow to need PCI bus speeds.

Figure 4-24 Full ISA Bus Configuration

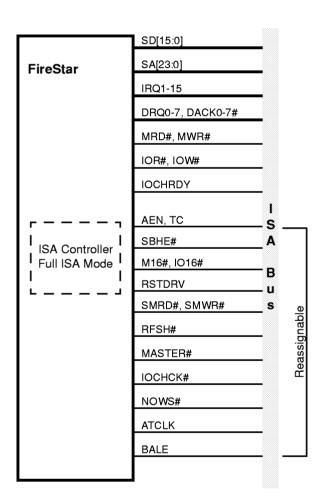
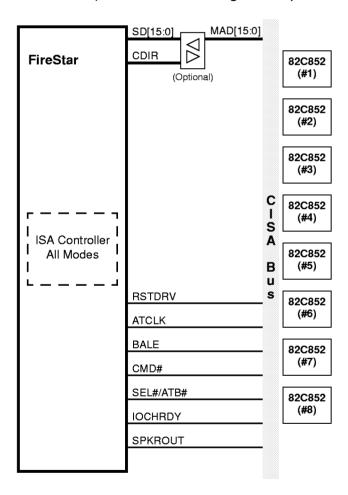



Figure 4-25 Compact ISA Support (available for all configurations)

4.9.3.6 Compact ISA Interface

FireStar incorporates the OPTi Compact ISA (CISA) interface. This interface allows connection of any Compact ISA peripheral device, such as the OPTi 82C852 PCMCIA Controller. The Compact ISA Specification is a separate document (Section Appendix A., "Compact ISA Specification") that describes the interface in detail.

The Compact ISA implementation must deal with certain issues that are specific to the interface architecture.

- ATCLK cannot be stopped without a specific stop clock cycle, since CISA depends on clock edges to transfer interrupts. FireStar can be programmed to generate this stop clock cycle, both automatically and manually.
- The CISA interface generates an AT Backoff (ATB#) signal to FireStar to make an interrupt or DMA request. The CISA interface is required to backoff any ISA cycle it has already started as long as it has not yet asserted ALE. ATB# will come, at latest, one-half ATCLK before ALE# would be asserted. Once ATB# is asserted, FireStar must inhibit all DMA activity and must prevent an EOI command

- to the interrupt controller from taking effect until ATB# is deasserted and the new DRQ/IRQ states are latched in.
- The FireStar Compact ISA involves two mandatory signals and one optional signal:
 - CMD# (O) Command, generated by FireStar to run CISA cycles. An external pull-up resistor is required on this line.
 - SEL#/ATB# (I) CISA peripheral device "selected" handshake input during AT cycles; AT backoff request between cycles; clock restart request during Idle mode. An external pull-up resistor is required on this line.
 - CDIR (O) Optional CISA buffer direction signal. For desktop-type designs where the CISA signals are buffered on the motherboard to connect through a long ribbon cable to 82C852 PCMCIA Controller(s). CDIR can be programmed on any available PIO pin.

The Compact ISA Control Registers located at SYSCFG F8h, F9h, and FAh enable the interface and control various features.

Table 4-45 Compact ISA Control Registers

7	6	5	4	3	2	1	0
SYSCFG F8h	SYSCFG F8h Compact ISA Control Register 1 Default =						
Inhibit MRD# and MWR# if SEL# asserted on memory cycle: 0 = No 1 = Yes	Inhibit MRD# and MWR# if SEL# asserted on DMA cycle: 0 = No 1 = Yes	Inhibit IOR# and IOW# if SEL# asserted on I/O cycle: 0 = No 1 = Yes	IRQ15 assignment: 0 = IRQ15 1 = RI	Reserved	Fast CISA memory cycle: 0 = Disable (ISA# = 0) 1 = Enable (ISA# = 1)	Reserved	Compact ISA interface: 0 = Disable 1 = Enable If disabled, can use pins as PIO pins.
SYSCFG F9h Compact ISA Control Register 2 Default							Default = 00h
SPKD signal driving: 0 = Always, per AT spec 1 = Sync, per CISA spec	End-of-Interrupt Hold - Delays 8259 recognition of EOI command to prevent false interrupts): 00 = None 01 = 1 ATCLK 10 = 2 ATCLKs 11 = 3 ATCLKs		Stop Clock Count bits - Stop clock cycle indication to CISA devices of how many ATCLKs to expect before the clock will stop: 000 = Reserved 001 = 1 ATCLK (Default) 111 = 7 ATCLKs			Generate CISA stop clock cycle (if not already stopped): 00 = Never 01 = On STPCLK# cycles to the CPU (hardware) 10 = Immediately (software) 11 = Reserved	
SYSCFG FAh Compact ISA Control Register 3 Default = 00h							
CDIR response to IDE cable 1 read 0 = Disable 1 = Enable	CDIR response to IDE cable 0 read 0 = Disable 1 = Enable	Rese	erved	Resume from Suspend on SEL#/ATB# low: 0 = Disable 1 = Enable	Rese	erved	Configuration cycle generation: 0 = No action 1 = Run cycle using scratchpad

Page 112 912-2000-015

Table 4-45	Compact ISA	Control	Registers	(cont.)

7	6	5	4	3	2	1	0
SYSCFG 6Bh			Resume So	urce Register			Default = 00h
DRAM Suspend mode refresh type: 0 = Slow refresh (normal) 1 = Self-refresh	PREQ# caused Resume (RO): 0 = No 1 = Yes	CLKRUN# caused Resume (RO): 0 = No 1 = Yes	Reserved: Write as read.	CISA SEL#/ATB# low caused Resume (RO): 0 = No 1 = Yes	SUSP/RSM caused Resume (RO): 0 = No 1 = Yes	RSMGRP caused Resume (RO): 0 = No 1 = Yes	RI caused Resume (RO): 0 = No 1 = Yes

- Compact ISA Interface Enable bit (SYSCFG F8h[0]):
 Provides master control over whole interface to support CISA. If this bit is 0, all Compact ISA functions are disabled and no address strobing occurs on the SD bus. No other Compact ISA register bits should be set when F8h[0] = 0.
- IRQ15 Assignment Bit (SYSCFG F8h[4]): Reassigns IRQ15 from the PCMCIA slot so that it can generate a Ring Indicator (RI) SMI instead.
- Inhibit Commands if SEL# Asserted (SYSCFG F8h[7:5]): These bits control whether commands will be hidden from ISA bus peripheral devices if the cycle is claimed by a CISA device. The feature allows devices that use the same memory or I/O space to avoid conflict with each other; CISA devices always preempt ISA devices. A separate bit is provided for memory signals during DMA, which would allow fly-by transfers to function between a PCMCIA DMA card and an ISA memory device.
- SPKD Signal Driving (SYSCFG F9h[7]): Selects the CISA scheme for shared audio outputs. Refer to the CISA specification for complete information.
- CISA Stop Clock Cycle Generation (SYSCFG F9h[1:0]): enables FireStar to generate the stop clock broadcast cycle on the CISA bus, after which it can stop the AT clock. There are two methods of generating a CISA stop clock cycle: hardware-controlled and software-controlled.
 - Hardware CISA Stop-Clock Control
 - Hardware-controlled CISA stop clock cycle generation occurs automatically, if ATCLK has not been stopped already, whenever SYSCFG F9h[1:0] = 01 and FireStar receives a stop grant cycle from the CPU. FireStar generates a stop request to the CPU when changing CPU speeds or stopping the CPU clock; the CPU responds with a stop grant.
 - When SYSCFG F9h[1:0] = 01 to enable automatic stop clock cycle generation on CISA, address phase 1 of each CISA cycle will not be generated until the cycle is decoded to be an ISA cycle. The logic adds in one extra AT clock before the cycle starts to properly start the CISA interface. Inhibition of CISA phase 1 generation saves power by avoiding unnecessary

- toggling on the MAD bus.
- When SYSCFG F9h[1:0] = 00 to disable hardware stop clock mode, FireStar's logic drives address phase 1 of each CISA cycle as soon as it detects ADS# active. In this mode, there is no AT clock startup delay. Software stop-clock control can still be used to stop the clock and save power.
- Software CISA Stop-Clock Control
 - Software-controlled CISA stop clock cycle generation occurs only when SYSCFG F9h[1:0] = 10. A CISA stop clock cycle is forced onto the CISA bus. Whenever F9h[1:0] = 10, F9h[7:2] bits written to this register are ignored so no "read/modify/write" procedure is required. This cycle is generated only once; the bits then revert to their previous setting (00 or 01).
- Stop Clock Count Bits (SYSCFG F9h[4:2]): Indicate to CISA devices how many ATCLKs to expect before the clock will stop. The default setting of one ATCLK is correct for most applications.
- CMD# State During Suspend: If the CISA bus devices are to be powered down during suspend mode, setting PCIDV1 73h[7:6] controls the CMD# line with the same timing as the PPWR0-1 lines so that there is no current leakage path.
- Resume from Suspend on SEL#/ATB# low: Setting SYSCFG FAh[3] = 1 allows CISA devices in stop clock mode to resume system operation by generating an interrupt. During normal operation when CISA devices are in stop clock mode, the SEL#/ATB# line acts as a CLKRUN# signal. This bit also allows the same signal to act as RSM#.
- CISA SEL/ATB# Low Caused Resume If SYSCFG FAh[3] = 1 to allow resume from SEL#/ATB#, SYSCFG 6Bh[3] reads 1 to identify the resume source as CISA.

Configuration Cycle Generation

FireStar can be programmed to generate one CISA configuration cycle, the Stop Clock Broadcast cycle, automatically after a period of inactivity. In order to provide for future Configuration Cycle possibilities, the FireStar CISA interface also includes a generic command generation scheme. This scheme takes advantage of the Scratchpad registers already present, and does not prevent their continued use as Scratchpad registers (see Table 4-46). They must be reprogrammed only in order to send out a configuration cycle.

To generate a configuration cycle:

- 1. Load the phase 1 word in SYSCFG 6Ch-6Dh.
- 2. Load the phase 2 word in SYSCFG 6Eh-6Fh.
- 3. Load the data phase word in SYSCFG 52h-53h.
- 4. Write SYSCFG FAh[0] = 1 to run the cycle.

The CISA interface will generate the desired configuration cycle. The cycle will always be a Broadcast (write) cycle, since there is no inherent means of receiving information back from the configuration cycle. Whenever SYSCFG FAh[0] = 1, the FAh[7:1] bits written to this register are ignored so no "read/modify/write" procedure is required. FAh[0] is automatically cleared to 0 after the cycle runs.

Table 4-46	Scratchpad F	Registers Use	d for CISA Co	onfiguration Cy	cles				
7	6	5	4	3	2	1	0		
SYSCFG 52h	FG 52h Scratchpad Register 1								
	General purpose storage byte: - For CISA Configuration Cycles: Data phase information, low byte								
SYSCFG 53h	SYSCFG 53h Scratchpad Register 2 Default = 00								
General purp	oose storage byte.		-	_					
- For CISA (- For CISA Configuration Cycles: Data phase information, high byte								
SYSCFG 6Ch			Scratchpa	nd Register 3			Default = 00h		
	oose storage byte		23.2						
	Configuration Cycle	s: Address phase	1 information, lov	v byte					
0/0050 051							D (!! 00!		
SYSCFG 6Dh			Scratchpa	d Register 4			Default = 00h		
	oose storage byte	^	4 :	.h. h., #					
- For CISA C	Configuration Cycle	s: Address priase	i information, nig	jn byte					
SYSCFG 6Eh			Scratchpa	nd Register 5			Default = 00h		
General purp	oose storage byte								
- For CISA (Configuration Cycle	s: Address phase	2 information, lov	v byte					
SYSCFG 6Fh			Scratchpa	nd Register 6			Default = 00h		
General purp	oose storage byte		-	-					
- For CISA (- For CISA Configuration Cycles: Address phase 2 information, high byte								

SYSCFG FAh	Compact ISA Control Register 3					
CDIR response to IDE cable 1 read 0 = Disable 1 = Enable	CDIR response to IDE cable 0 read 0 = Disable 1 = Enable	Reserved	Resume from Suspend on SEL#/ATB# low: 0 = Disable 1 = Enable	Reserved	Configuration cycle generation: 0 = No action 1 = Run cycle using scratchpad	

Page 114 912-2000-015

4.9.4 Additional ISA Features

To minimize the performance impact of ISA devices on system performance, FireStar adds several enhancements to the standard ISA subsystem.

4.9.4.1 PCI Positive Decode for ISA

FireStar accommodates the remote ISA bus of the 82C825 ISA Docking Station Bridge through a positive decode of all known device accesses on the local ISA bus. In this way, the only cycles passed through to the docking station PCI bus (for claiming by the secondary ISA bus bridge, the 82C825) are those that more likely than not belong to a docking station device. This method is very practical for a notebook design, since the access ranges of the devices that reside on the local ISA bus are generally all known in advance.

The PMU of the FireStar chip provides power management of on-board devices through ten access event PMIs, of which six are fixed and four are programmable. These same decode ranges are used to determine whether a device on the ISA bus is local and should be claimed without waiting for other PCI devices to respond. Cycles claimed by the chip in this way are always claimed with fast DEVSEL# assertion.

When positive decode occurs, the cycle can either be mapped to a high-order base address to prevent other PCI devices from claiming it, or it can be generated in its normal address space. The SYSCFG registers in Table 4-47 indicate a "positive decode" option and a "positive decode, SMI" option to select the mode desired.

Table 4-47 PCI Positive Decode Ranges for ISA Devices

14016 4-41	able 4-47 PCI Positive Decode Hanges for ISA Devices							
7	6	5	4	3	2	1	0	
SYSCFG AEh			GNR_ACCESS	Feature Register	•		Default = 03h	
GNR set select: 0 = GNR1-4 1 = GNR5-8	Reserved	GNR2 cycle decode type: 0 = I/O	GNR1 cycle decode type: 0 = I/O	GNR2 base address: A0 (I/O)	GNR1 base address: A0 (I/O)	GNR2 mask bit: A0 (I/O)	GNR1 mask bit: A0 (I/O)	
		1 = Memory	1 = Memory 1 = Memory A14 (Memory) A14 (Memory)		A14 (Memory)	A14 (Memory)	A14 (Memory)	
SYSCFG 5Ah if	AEh[7] = 0		PMU Ever	ıt Register 3			Default = 00h	
GNR1_TIMER PMI#11 GNR1_ACCESS PMI#15: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		_		_		LCD_ACCE 00 = Disable 01 = Reserve	01 = Reserved 10 = Reserved	
SYSCFG 5Ah if	AEh[7] = 1		PMU Ever	nt Register 3			Default = 00h	
00 = Disable 01 = Positive	01 = Positive decode 10 = Positive decode, SMI							
SYSCFG D8h if	AEh[7] = 0		PMU Ever	Default = 00h				
HDU_TIMER PMI#19 HDU_ACCESS PMI#23: 00 = Disable 01 = Reserved 01 = Reserved 11 = SMI		COM2_ACC 00 = Disable 01 = Positive	01 = Positive decode 10 = Positive decode, SMI 01 = Positive decode, SMI 10 = Positive decode, SMI			GNR2_TIMER PMI#16 GNR2_ACCESS PMI#20: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		
SYSCFG D8h if	AEh[7] = 1		PMU Ever	it Register 5			Default = 00h	
		Rese	erved			_		

7	6	5	4	3	2	1	0			
SYSCFG E9h if	AEh[7] = 0		PMU Event Register 7							
GNR4_TIMER PMI#30 GNR4_ACCESS PMI#32: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI		GNR3_TIMER PMI#29 GNR3_ACCESS PMI#31: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI		GNR4_ ACCESS PMI#32 on current access: 0 = No	GNR4_ ACCESS PMI#32 on next access: 0 = No	GNR3_ ACCESS PMI#31 on current access: 0 = No	GNR3_ ACCESS PMI#31 on next access: 0 = No			
11 = SMI		11 = SMI		1 = Yes	1 = Yes	1 = Yes	1 = Yes			
SYSCFG E9h if	AEh[7] = 1		PMU Ever	nt Register 7			Default = 00h			
_		GNR7_TIMER PMI#29 GNR7_ACCESS PMI#31: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		GNR8_ ACCESS PMI#32 on current access: 0 = No 1 = Yes	GNR8_ ACCESS PMI#32 on next access: 0 = No 1 = Yes	GNR7_ ACCESS PMI#31 on current access: 0 = No 1 = Yes	GNR7_ ACCESS PMI#31 on next access: 0 = No 1 = Yes			
SYSCFG D5h			X Bus Positive	Decode Register			Default = 00h			
	ve decode	I/O Ports 00 = Rese 01 = Positi	RTCRD/WR#, RTCAS I/O Ports 70h-71h: 00 = Reserved 01 = Positive decode 10 = Reserved		KBDCS# I/O Ports 60, 64, 62, 66, 92h: 00 = Reserved 01 = Positive decode 10 = Reserved		I/O Ports 60, 64, 62, 66, 92h: 00 = Reserved 01 = Positive decode		ROMCS# memory segments C000h-F000h: 00 = Reserved 01 = Positive decode 10 = Reserved	
11 = Reser		11 = Resei		11 = Reserved		11 = Reserved				
(1) I/O 20, 21, A	0, A1, 40-43, 00-0	F, C0-CF, page re	gisters, high page	registers, 22, 24,	23 if Index = $01h$)	1				

Page 116 912-2000-015

4.9.4.2 Remote ISA Support

Another means by which FireStar supports dual ISA buses is to claim unclaimed accesses on the PCI bus and forward them to ISA. The feature works as follows. A cycle is presented on the PCI bus, whether by the CPU or by a local PCI master. The 82C824 CardBus/Docking Controller is programmed to claim these cycles directly and pass them to the 82C825 PCI-ISA Bridge for claiming on the docking ISA bus. The 82C824 also retries these cycles to FireStar until it can respond appropriately, so as not to tie up the local PCI bus waiting for ISA to respond.

If the 82C825 determines that no ISA device is positively claiming the cycle, it will generate a Target Abort to the 82C824. However, the 82C824 chip does not generate Target Abort to FireStar; it simple ignores the subsequent retry attempt by FireStar (or other PCI master). When the 82C824 chip ignores the retry, FireStar claims it on the subtractive decode clock and completes the cycle.

This mechanism must be very well defined, since there is no inherent means for ISA bus devices to claim a cycle. For a generic access, the operation takes place as follows.

- 1. FireStar remaps the access to the ISA Remap Address range and awaits a response.
- 2. The 82C824 must be programmed to claim this range, so it will always claim the remapped cycle.
- 3. The 82C824 then passes the access to the docking station, where the 82C825 claims it and runs an ISA cycle.
- 4. The 82C825 uses the scheme described in the "Claiming ISA Cycles" below to determine whether the cycle has been "claimed" by an ISA device.
- 5. The 82C825, 82C824, and FireStar complete their cycles and return any data needed as explained in the "Action After the ISA Cycle" section below.

Claiming ISA Cycles

Because ISA does not provide any acknowledgment that a cycle was claimed by a local device, the 82C825 logic uses a special protocol to determine whether or not to claim the cycle.

Positive ISA Decode: The 82C825 logic waits to determine whether the peripheral device has responded by asserting M16#, IO16#, or NOWS#, or by deasserting IOCHRDY. Any of these signalling events indicates that an ISA device is responding to the cycle and the 82C825 logic can positively claim the cycle without waiting for its completion. These events can be individually masked through 82C825 programming if desired.

Write Cycle: If none of the events mentioned above has been detected during a write cycle, the 82C825 generates a Target Abort to the 82C824 secondary PCI bus. The 82C824 ignores the next retry from the master on the primary PCI bus. FireStar then runs the cycle on the local ISA bus. The write will therefore occur to both ISA buses.

Read Cycle: If none of the events mentioned above has been detected during a read cycle, the 82C825 can still determine whether a device is responding by observing the ISA data bus. If SD[7:0] = FFh, the 82C825 generates a Target Abort and the action proceeds as above for a write cycle. However, if SD[7:0] is any value other than FFh, the 82C825 claims the cycle. Only data bits [7:0] are important for this determination, because M16# and IO16# were not sampled active.

Note that the special case, where FFh is valid read data from a docking station ISA device, is handled correctly in this situation. Once the docking station aborts the cycle, FireStar retries the cycle on the local ISA bus where no device should respond. Since the local SD bus is required to implement pull-up resistors, the correct data value of FFh will still be returned.

Action After the ISA Cycle

Once the ISA cycle is complete on the docking station ISA bus, the 82C825 will either terminate the cycle normally on PCI or will generate Target Abort.

82C825 Normal Termination: Normal termination indicates that an ISA device has responded to the cycle. The 82C825 finishes out the cycle on the secondary PCI bus, and the 82C824 finishes out the retried cycle on the primary PCI bus.

82C825 Target Abort: Target Abort termination indicates that the 82C825 could not conclusively determine that an ISA device accepted the cycle. The 82C824 must in this case ignore the next retry on the primary PCI bus. FireStar claims this cycle and passes it to the local ISA bus.

4.9.5 PC98 Support Features

The NEC PC98 system architecture uses different I/O ports for many peripheral devices in the system. System vendors who accommodate this architecture do so by providing the DMA controller, interrupt controller, and RTC in a separate chip.

FireStar makes provisions for this architecture through a strap-selected option. Refer to Section 3.4, "Strap Selected Options" for information. When enabled, the following changes take place in the FireStar logic.

- FireStar ignores accesses to the I/O address ranges 000-06Fh, 080-0FFh. These cycles will go to the PCI bus and will not be claimed by FireStar until after the subtractive decode clock. If no one else claims the cycle, it gets forwarded to ISA but no FireStar device responds.
- Accesses in the I/O address range 070-07Fh are handled as shown in Table 4-48. No access is provided to the RTC/NMI ports normally available at 070-071h.
- The feature described in the Section 5.1.1, "System Configuration Register Index/Data Programmable", which allows Port 022-024h accesses to be remapped elsewhere, defaults to 01h so that all FireStar SYSCFG registers are accessed at 122-124h instead. This includes the single DMA control data register at 023h index 01h, which gets moved to 123h. BIOS can later overwrite the remap selection to move it to another I/O address if desired.

Table 4-48 I/O Address Range 070-07Fh Accesses

I/O Access to:	Go to this Timer Port:	Comparable to ISA Port:
070h	Ignored	
072h	Timer Channel 0	040h
072h	Ignored	
073h	Timer Channel 1	041h
074h	Ignored	
075h	Timer Channel 2	042h
076h	Ignored	
077h	Timer Control	043h
078h-07Fh	Ignored	

These changes allow FireStar to be used with an external PCI-to-Cbus bridge chip to implement a PC98-compatible system.

The NEC PC98 I/O address space is used shown in Table 4-49. Of these functions, FireStar provides only the Timer.

Table 4-49 PC98 I/O Address Space

		<u>.</u>
I/O Port	Even Address	Odd Address
0-F	Interrupt Controller	DMA Controller
10-1F		DMA Controller
20-2F	Calendar Clock	DMA Bank Register
30-3F	Serial Port	System Port
40-4F	Parallel Printer Port	Key I/F
50-5F	NMI Control	
60-6F	CRTC Text	(Reserved)
70-7F	CRTC	Timer
80-8F	Hard Disk Interface	BRANCH
90-9F	1MB FDD Interface	99-:GPIB Switch,9F:6800 Board
A0-AF	CRTC Graphics	Character Pattern ROM
B0-BF	Communication control adapter-RS-232-C extender	BE:1M/640KB FDD Exchange
C0-CF	C8-:640KB FDD Interface	GPIB
D0-FF	F8-:NDP	
100-17F	Open	Open
180-18F	188-:Sound Board	
190-19F	Open	Open
1A0-1AF	EGC Extended Address	
1B0-1FF	Open	Open

Page 118 912-2000-015 Revision: 1.0

4.9.6 Interrupt Support

FireStar supports a total of six interrupt schemes.

- 1. Standard ISA interrupts can be brought in directly.
- PCI interrupts PCIRQ0#, PCIRQ1#, PCIRQ2#, and PCIRQ3# can be mapped internally to any available IRQ line.
- PCI IRQ driveback cycles can generate any ISA interrupt. The 82C824 uses this scheme to generate interrupts in a parallel format back to FireStar over PCI.
- Compact ISA IRQ/DRQ driveback cycles can generate any ISA interrupt or DMA request. The 82C852 uses this scheme to generate interrupts in a parallel format back to FireStar over ISA.

- The Intel Serial IRQ scheme uses two wires, SIN# and SOUT#, along with the PCICLK to transmit interrupts in a serial format.
- The Compaq Serial IRQ scheme uses a single wire, IRQSER, along with the PCICLK to transmit interrupts in a serial format.

The FireStar support provided for each of these interrupt mechanisms is described next.

4.9.6.1 ISA IRQ Implementation

Pins are provided to support ISA interrupts and PCI interrupts; the pins are assignable (see Table 4-50) to one type of interrupt or to the other (but not both at the same time).

When the pins are assigned as ISA interrupts, they can input either a single ISA interrupt or can mux in four interrupts.

Table 4-50 IRQ Programmable Register Bits

7	6	5	4	3	2	1	0
PCIDV1 B0h			IRQA Interrupt S	Selection Register Default = 03			
Engage pull- down on IRQA? 0 = No 1 = Yes	Reserved		Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interru 0000 = Disable 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	'	Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12
PCIDV1 B1h			IRQB Interrupt S	Selection Register	r		Default = 04h
Engage pull- down on IRQB? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interruj 0000 = Disable 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	'	Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12
PCIDV1 B2h			IROC Interrupt 9	Selection Registe	,		Default = 05h
Engage pull- down on IRQC? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)		ot selection on IR	27 1100 = 28# 1101 = 29 1110 =	IRQ5): IRQ11 IRQ12
PCIDV1 B3h			IRQD Interrupt S	Selection Register	r		Default = 06h
Engage pull- down on IRQD? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interruj 0000 = Disable 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5		Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12

Table 4-50 IRQ Programmable Register Bits (cont.)

7	6	5	4	3	2	1	0
PCIDV1 B4h			IRQE Interrupt S	Selection Register	r		Default = 07h
Engage pull-	Rese	erved	Interrupt	Interrup	IRQ7):		
down on IRQE?			source:	0000 = Disable	e 0110 = IR0	Q6 1011 =	IRQ11
0 = No			0 = ISA (edge)	0001 = IRQ1	0111 = IRC	27 1100 =	IRQ12
1 = Yes			1 = PCI (level)	0010 = Rsvd	1000 = IR0	Q8# 1101 =	Rsvd
				0011 = IRQ3	1001 = IR0		IRQ14
				0100 = IRQ4	1010 = IR0	Q10 1111 =	IRQ15
				0101 = IRQ5			
PCIDV1 B5h			IRQF Interrupt S	Selection Register	r		Default = 09h
Engage pull-	Rese	erved	Interrupt	Interru	pt selection on IR	QF pin (Default =	IRQ9):
down on IRQF?			source:	0000 = Disable	e 0110 = IR0	Q6 1011 =	IRQ11
0 = No			0 = ISA (edge)	0001 = IRQ1	0111 = IRC	27 1100 =	IRQ12
1 = Yes			1 = PCI (level)	0010 = Rsvd	1000 = IR0		
				0011 = IRQ3	1001 = IR0		
				0100 = IRQ4	1010 = IR0	Q10 1111 =	IRQ15
				0101 = IRQ5			
PCIDV1 B6h			IDOC Interviews 6	Solostian Desiste	-		Default = 0Ah
				Selection Register			
Engage pull-	Rese	erved	Interrupt	I		QG pin (Default = I	
down on IRQG?			source:	0000 = Disable			·
0 = No			0 = ISA (edge)	0001 = IRQ1	0111 = IRC	••	IRQ12
1 = Yes			1 = PCI (level)	0010 = Rsvd	1000 = IR0		
				0011 = IRQ3	1001 = IR0		
				0100 = IRQ4 0101 = IRQ5	1010 = IR	210 1111 =	IRQ15
				0101 = IRQ5			
PCIDV1 B7h			IRQH Interrupt S	Selection Register	r		Default = 0Bh
Engage pull-	Rese	erved	Interrupt	Interrup	t selection on IRC	QH pin (Default = I	RQ11):
down on IRQH?			source:	0000 = Disable	e 0110 = IR0	Q6 1011 =	IRQ11
0 = No			0 = ISA (edge)	0001 = IRQ1	0111 = IRC		IRQ12
1 = Yes			1 = PCI (level)	0010 = Rsvd	1000 = IR0	Q8# 1101 =	Rsvd
			' '	0011 = IRQ3	1001 = IR	Q9 1110 =	IRQ14
				0100 = IRQ4	1010 = IR0	Q10 1111 =	IRQ15
				0101 = IRQ5			

Page 120 912-2000-015

4.9.6.2 PCI PCIRQx# Implementation

Any of the IRQA-F pins that are not dedicated to ISA IRQs can be used as PCI PCIRQ0-3# simply by setting the corresponding PCIDV1 B0h-B5h[4] = 1 to switch the input from edge mode to level mode.

If all ISA IRQs are needed along with all PCI interrupts, PCI interrupts are available as PIO options. Each PCIRQx# line then becomes individually mappable to ISA IRQs. In the case where PCIRQx# functions are selected on PIO pins, the registers shown in Table 4-51 select the ISA interrupt to which the PCI interrupt will be routed.

4.9.6.3 PCI IRQ Driveback Implementation

IRQ driveback on the FireStar chip is implemented mainly as it is in the Viper-N+ chipset, and is enabled by writing any non-zero IRQ driveback address to PCIDV1 54h-57h (refer to Table 4-52

The following features have been added to the FireStar implementation.

 IRQ2 generates an SMI#. Note that the sense of IRQ2 is still active high. In this way, devices that use IRQ driveback can generate SMI# simply by routing their normal interrupt to IRQ2 without needing to change the polarity of the interrupt generation logic. IRQ13 generates an NMI. This feature allows PCI-to-ISA bridges such as the 82C825 chip to return the CHCK# signal from the ISA bus across the PCI bus. The sense of IRQ13 is active high, like all interrupts generated through IRQ driveback.

PCI Interrupt Sharing across FireBridge (82C814)

FireStar provides registers PCIDV1 B8h and B9h to select the ISA IRQs to which FireBridge PCIRQs will be routed. If this routing is used (required for any FireBridge system), IRQs and PCIRQs from the corresponding FireStar IRQ pin is automatically blocked (even if this pin is set to select PCI interrupts).

The only way to share the same PCI interrupt on both the docking station and the local system is to use a PIO pin to route the PCIRQ line. For example, the Baby AT board allows PCIRQ lines to be routed from either ISA IRQF, G, and H or from PIO pins DRQE, F, and G (jumpers J20 and J21). Only if the PIO pins are used can PCIRQ0# from the docking side be routed to the same IRQ as PCIRQ0# on the FireStar Side.

In FireStar ACPI version, this restriction is removed and is controlled by PCIDV1 4Fh[7] (refer to Table 4-53).

Table 4-51 PCI Interrupt Selection Registers

7	6	5	4	3	2	1	0
PCIDV1 B8h			PCI Interrupt Se	lection Register	1		Default = 00h
Interrupt selection on PIO PCIRQ1# input (Default = Disable):				Interrupt sele	ction on PIO PCIF	RQ0# input (Defa	ult = Disable):
0000 = Disable				0000 = Disabl	e 0110 =	= IRQ6	1011 = IRQ11
0001 = IRQ1	0111 =	: IRQ7	1100 = IRQ12	0001 = IRQ1	0111 =	₌IRQ7	1100 = IRQ12
0010 = Rsvd	1000 =	= IRQ8#	1101 = Rsvd	0010 = Rsvd	1000 =	= IRQ8#	1101 = Rsvd
0011 = IRQ3	1001 =	= IRQ9	1110 = IRQ14	0011 = IRQ3	1001 =	= IRQ9	1110 = IRQ14
0100 = IRQ4	1010 =	= IRQ10	1111 = IRQ15	0100 = IRQ4	1010 =	= IRQ10	1111 = IRQ15
0101 = IRQ5				0101 = IRQ5			
PCIDV1 B9h			PCI Interrupt Se	lection Register 2	2		Default = 00h
Interrupt sele	ction on PIO PCIF	RQ3# input (Defa	ılt = Disable):	Interrupt selection on PIO PCIRQ2# input (Default = Disable):			
0000 = Disabl	e 0110 =	₌ IRQ6	1011 = IRQ11	0000 = Disabl	e 0110 =	₌ IRQ6	1011 = IRQ11
0001 = IRQ1	0111 =	: IRQ7	1100 = IRQ12	0001 = IRQ1	0111 =	: IRQ7	1100 = IRQ12
0010 = Rsvd	1000 =	= IRQ8#	1101 = Rsvd	0010 = Rsvd	1000 =	= IRQ8#	1101 = Rsvd
0011 = IRQ3	1001 =	= IRQ9	1110 = IRQ14	0011 = IRQ3	1001 =	= IRQ9	1110 = IRQ14
0100 = IRQ4	1010 =	= IRQ10	1111 = IRQ15	0100 = IRQ4	1010 =	= IRQ10	1111 = IRQ15
0101 = IRQ5				0101 = IRQ5			

Table 4-52 IRQ Driveback Address Registers

7	6	5	4	3	2	1	0			
PCIDV1 54h	PCIDV1 54h IRQ Driveback Address Register - Byte 0									
	IRQ driveback protocol address bits [7:0]:									
When an external device logic, such as the 82C824 PC Card Controller or the 82C814 Docking Controller, must generate an interrupt from any source, it follows the IRQ Driveback Protocol and toggles the REQ# line to the 82C700. Once it has the bus, it writes the changed IRQ information to the 32-bit I/O address specified in this register. The 82C700 interrupt controller claims this cycle and latches the new IRQ values. This register defaults to a value of 00h, which disables the IRQ driveback scheme.										
PCIDV1 55h				ress Register - B col address bits [1	•		Default = 00h			
PCIDV1 56h		IRO	Driveback Add	ress Register - B	yte 2		Default = 00h			
		IRC	driveback protoc	ol address bits [23	3:16]					
PCIDV1 57h IRQ Driveback Address Register - Byte 3 D							Default = 00h			
IRQ driveback protocol address bits [31:24]										

Table 4-53 FireStar ACPI Interrupt Sharing Control Bit

7	6	5	4	3	2	1	0		
PCIDV1 4Fh	PCIDV1 4Fh Miscellaneous Control Register C - Byte 1								
Reserved									
PCIDV1 4Fh - FS	S ACPI Version	Mis	cellaneous Cont	rol Register C - E	Syte 1		Default = 20h		
Allow IRQA, B,H PCI IRQs (when programed as level IRQs) to									
be shareable with PIO PCI IRQ pins: 0 = Disable 1 = Enable									

Page 122 912-2000-015

4.9.6.4 Intel Serial IRQ Implementation

FireStar supports the Intel standard of Serial IRQs. This two wire approach is very similar to the one-wire Compaq approach, but permits interrupt sharing between two devices on the line without any possible contention between devices.

Only two control bits are required for the Intel serial IRQ scheme: PCIDV1 BBh[1:0]. Refer to Table 4-54.

Operation

The Intel Serial IRQ protocol requires two pins, the SIN# input and the SOUT# output. Once PCIDV1 BBh[0] is set to 1, IRQ15 automatically becomes SIN# and IRQSER becomes SOUT#. In addition to these pins, the CLKRUN# protocol must be enabled to use Intel Serial IRQs.

The sole function of SOUT# is to initiate a serial interrupt protocol sequence by generating a single low pulse; FireStar will never introduce other IRQs into the frame at the starting end. After the SOUT# pulse has been sent out, the Intel Serial IRQ (ISIRQ) logic will keep sampling the SIN# pin. Once the SIN# data pin is sampled low, the ISIRQ logic enters Start state.

The logic passes through all the SMI and IRQ states to sample the SIN# data pin for the corresponding SMI and IRQ values. All the sampled SMI and IRQ values are passed to the 8259 at the same time that they are sampled, without any delay. When all the SMI and IRQ states have been seen, the ISIRQ logic enters the Stop state.

Once in Stop state, the ISIRQ logic will decide whether to initiate another serial interrupt sequence or not by monitoring the PMU stop PCI clock request (CLKRUN#). If such a PMU request is pending, then the ISIRQ logic will stay in the Stop state until the PMU request is removed. If there is no PMU stop PCI clock request, the ISIRQ logic will initiate another serial interrupt sequence and mask the PMU stop PCI request until it has finished one complete serial interrupt sequence.

If the corresponding bit is set, then any IRR, ISR, or EOI instruction will delay the I/O cycle completion. The IOCHRDY deassertion time is equal to the number of Serial Interrupt devices plus 18 PCI clocks.

Table 4-54 Intel Serial IRQ Control Bits

7	6	5	4	3	2	1	0
PCIDV1 BBh			Serial IRQ Co	ntrol Register 2			Default = 00h
						SIRQ delays IRR accesses: 0 = No 1 = Yes	Intel SIRQ (Intel serial IRQ scheme): 0 = Disable 1 = Enable

4.9.6.5 Compaq Serial IRQ Implementation

The FireStar chipset supports the Compaq standard of Serial IRQs. This one wire approach is very compact compared to the Intel two-wire approach, but if two devices on the line want to share the same interrupt, there may be brief contention since both devices drive the line low on one clock and high on the clock that immediately follows. Because of this contention, OPTi cannot guarantee against chip hardware failure if interrupts are shared in this mode.

Operation

The Compaq Serial IRQ protocol requires one additional PCI sustained tristate pin, the IRQSER signal. For detailed Serial IRQ operation, refer to the "Serialized IRQ for PCI Systems" specification version 5.3.

After setting PCIDV1 BAh[0] = 1 to enable Compaq Serial IRQ (CSIRQ) mode, the CSIRQ controller initiates a Continuous mode Start frame. During the Data frame, the CSIRQ logic samples the IRQSER input for the corresponding SMI, IOCHCK#, and IRQ values, and then passes the sampled values to 8259.

At the end of the Data frame, the CSIRQ controller will sample the QUIET and HALT bits to determine whether the next Compaq Serial IRQ cycle will be Continuous mode, Quiet mode, or a temporary Halt state.

If the next cycle is sampled to be Continuous mode, IRQSER is asserted for three PCI clocks. Once the logic enters Idle state, it checks whether the PMU stop PCI clock request is pending. If so, the CSIRQ logic will stay in the Idle state until the PMU request is removed.

If the next cycle is sampled to be Quiet mode, IRQSER is asserted for two PCI clocks. Once the logic enters Idle state, it samples the IRQSER input to begin the Quiet mode cycle. Since FireStar has no control of the Start frame, this mode is not recommended for mobile application.

If the HALT bit is sampled active, then the CSIRQ logic asserts IRQSER for three PCI clocks to tell all the Serial IRQ devices that next cycle will be Continuous mode; the logic then enters Halt state. In Halt state, CSIRQ configuration can be changed. Clearing the HALT bit will immediately cause a Continuous mode Start frame to be generated.

OPTi.

Preliminary 82C700

If the corresponding bit is set, then any IRR, ISR, and EOI instructions will delay I/O cycle completion. The IOCHRDY de-assertion time is equal to the Serial IRQ cycle time in PCI clocks.

Since the Compaq Serial IRQ specification does not specify the behavior when PCI clock is stopped, FireStar implementation has considered this issue with both CLKRUN# and no CLKRUN# support. In both cases, the Serial IRQ controller always enters into the Idle state before the PCI clock is stopped. Once the PCI clock is restarted, a Continuous mode cycle will be initiated to collect new IRQ values from devices.

If new IRQ information needs to be sent to the FireStar during clock stop mode, the device can do so by asserting CLK-RUN# to wake up the PCI clock. However, devices without CLKRUN# support have to wait until the PCI clock is restarted by some other means.

Table 4-55 Compaq Serial IRQ Control Bits

7	6	5	4	3	2	1	0
PCIDV1 BAh			Serial IRQ Co	ntrol Register 1			Default = 00h
Compaq SIRQ HALT mode request: 0 = Active 1 = Halt	Compaq SIRQ QUIET mode request: 0 = Continuous 1 = Quiet		Compaq SIRQ data frame slots. Change only when the serial IRQ logic is disabled or in HALT state: 0 = 17 slots 1 = 21 slots	, ,	ange this setting I IRQ is disabled LT state: CLKs CLKs CLKs	SIRQ delays EOI accesses: 0 = No 1 = Yes	Compaq SIRQ (Compaq serial IRQ scheme): 0 = Disable 1 = Enable
PCIDV1 BBh			Serial IRQ Co	ntrol Register 2			Default = 00h
Compaq SIRQ in HALT state (RO): 0 = No 1 = Yes	Compaq SIRQ in QUIET state (RO): 0 = No 1 = Yes						

Note: QUIET - PCIDV1 BAh[6] requests the next Serial IRQ cycle to be Continuous or Quiet mode. In mobile applications, use Continuous mode only. This is to guarantee that the host gains control of the Serial IRQ for Suspend and APM stop clock. In applications where the PCI clock never stops, use either mode. PCIDV1 BBh[6] can be read to determine the current state of the logic.

HALT - PCIDV1 BAh[7] requests a temporary halt of the Serial IRQ controller as soon as the current cycle has returned to Idle state. Once in Halt state, the Serial IRQ configuration can be changed. After the logic has been put in Halt state, upon clearing this bit the logic will return to Continuous mode. PCIDV1 BBh[7] can be read to determine the current state of the logic.

Page 124 912-2000-015

4.10 Internal Integrated Peripherals Controller

The following subsections give detailed operational information about the FireStar internal integrated peripheral controller (IPC) which includes two 8237 DMA controllers, two 8259 interrupt controllers, one 8254 timer/counter and one 74612 memory mapper. It is register-compatible with the 82C206 chip.

For information on the design architecture of this unit, refer to the separate document on the 82C206 IPC. This document is available on request from OPTi.

4.10.1 IPC Configuration Programming

The sole configuration register (see Table 4-56) of the internal IPC, separate from those of the 82C700, is accessed by first writing the register index of interest to I/O Port 022h; the selected register information then becomes available for reading or writing at I/O Port 023h as opposed to Port 024h used by FireStar configuration registers.

Table 4-56 Internal IPC Configuration Bits.

7 6		5	4	3	2	1	0
ndex 01h: IPC Configurat	ion Regi	ster		•			<u> </u>
IPC register access wait states (ATCLKs): 00 = 1 wait states 01 = 2 wait states 10 = 3 wait states 11 = 4 wait states (Defau		16-bit wait st 00 = 1 wait sta 01 = 2 wait sta 10 = 3 wait sta 11 = 4 wait sta	ates: ⁽¹⁾ ate (Default) ates ates	1	ates ates	Delay DMA MEMR# 1 CLK from system MEMR#: 0 = Yes (AT- compatible, Default) 1 = No	DMA clock select: 0 = ATCLK/2, (Default) 1 = ATCLK

4.10.2 IPC Register Programming

The IPC provides two peripheral interrupt controllers that are register compatible with the 8259 part. The registers of this logic module are listed below. These registers are accessed directly through the I/O subsystem (no index/data method is used).

4.10.2.1 Initialization Command Words

The Initialization Command Words (ICWs) are shown first and must always be written in sequence starting with ICW1. Two I/O port groups are listed. The first group refers to INTC1, the interrupt controller for IRQ[7:0] (see Table 4-57); the second refers to INTC2, the interrupt controller for IRQ[15:8] (see Table 4-58).

Table 4-57 INTC1 Initialization Command Words

IUDIC T 01	iii i o i ii ii ii ii ii		una words				
7	6	5	4	3	2	1	0
Port 020h			ICW.	1 (WO)			
	Don't care		Always = 1	Trigger mode: 0 = Edge 1 = Level	Don't care	Cascade mode select: 0 = Yes (always) 1 = No	Don't care
Port 021h			ICW	2 (WO)			
V[7:3]	- Upper bits of inte	rrupt vector. For A	AT compatibility, wi	ite 08h.	Not used - lower bits of interrupt vector are generated by interrupt controller.		
Port 021h			ICW:	3 (WO)			
- S[7:0] - Sla	ave mode controller	connections. For	AT compatibility, v	write 04h (IRQ2).			
Port 021h			ICW-	4 (WO)			
	Don't care		Enable multiple interrupts: 0 = No	Don'	't care	Enable auto EOI command: 0 = No	Don't care

Table 4-58 INTC2 Initialization Command Words

7	6	5	4	3	2	1	0	
Port 0A0h			ICW1	(WO)				
Don't care			Always = 1	Trigger mode: 0 = Edge 1 = Level	Don't care	Cascade mode select: 0 = Yes (always) 1 = No	Don't care	
Port 0A1h ICW2 (WO)								
V[7:3]	- Upper bits of inte	rrupt vector. For A	T compatibility, wr	ite 70h.	Not used - lower bits of interrupt vector are generated by interrupt controller.			
Port 0A1h			ICW	3 (WO)				
		Don't care			ID[2:0] - Slave mode address. For AT compatibility, write 02h (IRQ2).			
Port 0A1h			ICW ⁴	I (WO)				
	Don't care		Enable multiple interrupts: 0 = No 1 = Yes	Don'	t care	Enable auto EOI command: 0 = No 1 = Yes	Don't care	

Page 126 912-2000-015

Enable Multiple Interrupts can be enabled to allow INTC2 to fully nest interrupts without being blocked by INTC1. Correct handling of this mode requires the CPU to issue a non specific EOI command to zero when exiting an interrupt service routine. If the feature is disabled, no command need be issued.

Automatic End-of-Interrupt can be enabled to allow the interrupt controller to generate a non specific EOI command on the trailing edge of the second interrupt acknowledge cycle from the CPU. The feature allows the interrupt currently

in service to be cleared automatically on exit from the service routine. This function should not be used with fully nested interrupts except by INTC1.

4.10.2.2 Operational Command Words

The Operational Command Words are used to program the interrupt controller during the course of normal operation. Two I/O port addresses are listed for each register. The first address refers to INTC1, the interrupt controller for IRQ[7:0]; the second refers to INTC2, the interrupt controller for IRQ[15:8].

Table 4-59 INTC1 and INTC2 Operational Command Words

Table 4-59	INTC1 and INTC2 Operational Command Words							
7	6	5	4	3	2	1	0	
Port 021h, 0A1h	n		OCW1 Ma	sk Register				
IRQ7/15:	IRQ6/14:	IRQ5/13:	IRQ4/12:	IRQ3/11:	IRQ2/10:	IRQ1/9:	IRQ0/8:	
0 = Enable	0 = Enable	0 = Enable	0 = Enable	0 = Enable	0 = Enable	0 = Enable	0 = Enable	
1 = Mask	1 = Mask	1 = Mask	1 = Mask	1 = Mask	1 = Mask	1 = Mask	1 = Mask	
Port 020h, 0A0h	n		OCW2 Comma	nd Register (WO)			
100 = Enable 001 = Genera 011 = Genera 101 = Rotate		EOI mode)I	Always = 0 for OCW2	Always = 0 for OCW2	= 0 L[2:0]:			
Port 020h, 0A0h	า		OCW3 Comma	nd Register (WO)			
Always = 0	Allow bit 5 changes: 0 = No 1 = Yes	Special mask mode: 0 = Disable 1 = Enable	Always = 0 for OCW3	Always = 1 for OCW3	Polled mode: 0 = Disable (generate interrupt) 1 = Enable (poll 020/0A0h	Allow bit 0 changes: 0 = No 1 = Yes	In-service access: 0 = 020/0A0h reads return IRR 1 = Return ISR	
					for interrupt)			
Port 020h, 0A0h	1	Interi	rupt Request Reg	nister OCW3[0] =	: 0 (BO)			
IRQ7/15 pending: 0 = No 1 = Yes	IRQ6/14 pending: 0 = No 1 = Yes	IRQ5/13 pending: 0 = No 1 = Yes	IRQ4/12 pending: 0 = No 1 = Yes	IRQ3/11 pending: 0 = No 1 = Yes	IRQ2/10 pending: 0 = No 1 = Yes	IRQ1/9 pending: 0 = No 1 = Yes	IRQ0/8 pending: 0 = No 1 = Yes	
Port 020h, 0A0h	า	Ir	n-Service Registe	er OCW3[0] = 1 (F	RO)			
IRQ7/15 in service: 0 = No 1 = Yes	IRQ6/14 in service: 0 = No 1 = Yes	IRQ5/13 in service: 0 = No 1 = Yes	IRQ4/12 in service: 0 = No 1 = Yes	IRQ3/11 in service: 0 = No 1 = Yes	IRQ2/10 in service: 0 = No 1 = Yes	IRQ1/9 in service: 0 = No 1 = Yes	IRQ0/8 in service; 0 = No 1 = Yes	
Port 020h, 0A0h	1	Po	lled Mode Regis	ter OCW3[2] = 1	(RO)			
Interrupt pending: 0 = No 1 = Yes	Not used					IRQ[2:0]: est priority interru	pt that is pending	

912-2000-015 Revision: 1.0

4.10.2.3 Interrupt Controller Shadow Registers

Values written to the interrupt controller are not always directly readable in the AT architecture. However, FireStar shadows these values as they are written so that they can be read back later through the configuration registers. Table 4-60 lists the correspondence of shadow indexes to the writeonly registers in the interrupt controllers.

4.10.3 DMA Controller Programming Registers

The integrated IPC provides two direct memory access controllers (DMAC1 and DMAC2) and their associated memory mappers that are register compatible with AT-type systems. The registers of this logic module are listed below. These registers are accessed directly through the I/O subsystem (no index/data method is used). Each DMAC has four DMA channels. Channels 3 through 0 are in DMAC1 and Channels 7 through 4 are in DMAC2. Table 4-61 and Table 4-62 list the register locations.

Interrupt Controller Shadow Register **Table 4-60** Index Values

Register	INTC1 Index	INTC2 Index
ICW1	80h	88h
ICW2	81h	89h
ICW3	82h	8Ah
ICW4	83h	8Bh
OCW2	85h	8Dh
ос w з	86h	8Eh

Table 4-61 DMA Address and Count Registers

	DMA Channel Address								
Name	0	1	2	3	4	5	6	7	
Memory Address	000h	002h	004h	006h	0C0h	0C4h	0C8h	0CCh	
Register	R/ W	R/ W	R/ W	R/W	R/W	R/W	R/W	R/W	
Count Register	001h	003h	005h	007h	0C2h	0C6h	0CAh	0CEh	
	R/W	R/ W	R/ W	R/ W	R/W	R/W	R/W	R/ W	
EISA High Byte Count	401h	403h	405h	407h	None	4C6h	4CAh	4CEh	
Register	R/ W	R/ W	R/ W	R/W		R/ W	R/W	R/W	
Page Address	087h	083h	081h	082h	08Fh	08Bh	089h	08Ah	
Register	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
EISA High Byte Page	487h	483h	481h	482h	None	48Bh	489h	48 A h	
Address Register	R/ W	R/W	R/W	R/W		R/W	R/W	R/ W	

Table 4-62 DMA Control and Status Registers

		Command Port Address		
Command	Function	DMA Channels 7-5	DMA Channels 3-0	
Mode Register	Sets the function type for each channel. Group can be read back - see "Reset Mode Register Readback Counter" command.	Read/Write 0D6h	Read/Write 00Bh	
Status Register	Returns channel request and terminal count information.	Read 0D0h	Read 008h	
Command Register	Sets the DMAC configuration.	Write 0D0h, Read 0D4h	Write 008h, Read 00Ah	
Request Register	Makes a software DMA request.	Read/Write 0D2h	Read/Write 009h	
Mask Register	Enables or masks DMA transfers on selected channels.	Read/Write 0DEh	Read/Write 00Fh	
Temporary Register	Not used in AT-compatible design.	Read 0DAh	Read 00Dh	

Page 128 912-2000-015

Table 4-63 DMAC1 Control and Status Bits

7	6	5	4	3	2	1	0	
Port 008h			DMAC1 Sta	atus Register				
Ch. 3 request pending:	Ch. 2 request pending:	Ch. 1 request pending:	Ch. 0 request pending:	Ch. 3 reached terminal count:	Ch. 2 reached terminal count:	Ch. 1 reached terminal count:	Ch. 0 reached terminal count:	
0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	
Port 00Bh			DMAC1 Me	ode Register				
Mode	select:	Address count:	Auto-initialize:	Transfe	r select:	Channe	el select:	
00 = Demand 01 = Single	10 = Block 11 = Cascade	0 = Increment 1 = Decrement	0 = Disable 1 = Enable	00 = Verify 01 = Mem. write	10 = Mem. read 11 = Reserved	00 = Ch. 0 01 = Ch. 1	10 = Ch. 2 11 = Ch. 3	
Port 009h DMAC1, DMA Request Register								
	R	eserved: Write as	0.		Request:	Channe	el select:	
					0 = Clear 1 = Set	00 = Ch. 0 01 = Ch. 1	10 = Ch. 2 11 = Ch. 3	
Port 008h			DMAC1 Com	mand Register				
DACK active sense:	DRQ active sense:	Extended write:	Rotating priority:	Compressed timing:	DMAC operation:	Channel 0 address hold:	Memory-to- memory:	
0 = Low 1 = High	0 = High 1 = Low	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Enable 1 = Disable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	
Port 00Fh			DMAC1 Ma	ask Register				
	Reserved:	Write as 0.		Channel 3:	Channel 2:	Channel 1:	Channel 0:	
				0 = Unmasked 1 = Masked	0 = Unmasked 1 = Masked	0 = Unmasked 1 = Masked	0 = Unmasked 1 = Masked	

912-2000-015 Revision: 1.0

Table 4-64 DMAC2 Control and Status Bits

7	6	5	4	3	2	1	0		
Port 0D0h			DMAC2 Sta	itus Register					
Ch. 7 request pending:	Ch. 6 request pending:	Ch. 5 request pending:	Ch. 4 request pending:	Ch. 7 reached terminal count:	Ch. 6 reached terminal count:	Ch. 5 reached terminal count:	Ch. 4 reached terminal count:		
0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes		
Port 0D6h	Port 0D6h DMAC2 Mode Register								
Mode	select:	Address count:	Auto-initialize:	Transfe	r select:	Channe	el select:		
00 = Demand 10 = Block	01 = Single 11 = Cascade	0 = Increment 1 = Decrement	0 = Disable 1 = Enable	00 = Verify 01 = Mem. write	10 = Mem. read 11 = Reserved	00 = Ch. 4 01 = Ch. 5	10 = Ch. 6 11 = Ch. 7		
Port 0D2h DMAC2 DMA Request Register									
TORTOBER	D	eserved: Write as		icquest negister	Request:	Channa	l Select:		
	1 11	eserved. Write as	····		0 = Clear 1 = Set	00 = Ch. 4 01 = Ch. 5	10 = Ch. 6 11 = Ch. 7		
Port 0D0h			DMAC2 Com	mand Register					
DACK active sense:	DRQ active sense:	Extended write:	Rotating priority:	Compressed timing:	DMAC operation:	Channel 0 address hold:	Memory-to- memory:		
0 = Low 1 = High	0 = High 1 = Low	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Enable 1 = Disable	0 = Disable 1 = Enable	0 = Disable 1 = Enable		
Port 0DEh			DMAC2 Ma	ask Register					
	Reserved:	Write as 0.		Channel 7:	Channel 6:	Channel 5:	Channel 4:		
				0 = Unmasked 1 = Masked	0 = Unmasked 1 = Masked	0 = Unmasked 1 = Masked	0 = Unmasked 1 = Masked		

Table 4-65 DMA Commands

		Command F	Port Address
Command	Function	DMA Channels 7-5	DMA Channels 3-0
Set Single Mask Bits Register	Sets or clears individual mask register bits without having to do a read/modify/write of the Mask Register.	Write 0D4h: Bits [1:0] select the channel, bit 2 selects the new mask bit value.	Write 00Ah: Bits [1:0] select the channel, bit 2 selects the new mask bit value.
Clear Mask	Unmasks all DMA channels at once.	Write any value to 0DCh.	Write any value to 00Eh.
Reset Mode Register Readback Counter	Resets the Mode Register readback function to start at register 0. The next four Mode Register reads then return Channels 0, 1, 2, and 3 for that DMAC.	Read 0DCh (then read 0D6h four times to get the Mode Register values).	Read 00Eh (then read 00Bh four times to get the Mode Register values).
Master Clear	Clears all values, masks all channels, just like a hardware reset.	Write any value to 0DAh.	Write any value to 00Dh.
Clear Byte Pointer Flip-Flop	Resets the byte pointer flip-flop so that the next byte access to a word-wide DMA register is to the low byte.	Write any value to 0D8h.	Write any value to 00Ch.
Set Byte Pointer Flip-Flop	Sets the byte pointer flip-flop so that the next byte access to a word-wide DMA register is to the high byte.	Read 0D8h.	Read 00Ch.

Page 130 912-2000-015

4.10.4 Timer Programming Registers

The integrated IPC provides an 8254-type timer with three channels that is register compatible with AT-type systems. The registers of this logic module are listed below. These reg-

isters are accessed directly through the I/O subsystem (no index/data method is used). Table 4-66 lists the register locations

Table 4-66 Timer Control and Status Registers

		Port Address Timer			
Name	Function	Channel 0	Channel 1	Channel 2	
Counter Registers Access	Used to write and read the word-wide count. Writes always program the base value. Reads return either the instantaneous count value or the latched count value.	040h	041h	042h	
Counter Mode Command	Selects the operational mode for each timer counter.	perational mode for each timer counter. Write 043h			
Counter Latch Command	Latches the count from the selected register for reading at the associated counter register access port.	n, and/or 042h			
Readback Command	Selects whether count or status, or both, will be latched for subsequent reading at the associated counter register access port. If both are selected, status is returned first. This command can latch information from more than one counter at a time.	Write 043h th	en read 040h, 041l	n, and/or 042h	

Table 4-67 Timer Control Bits

7	6	5	4	3	2	1	0
Port 043h	Port 043h Counter Mode Command (WO)						
Counter 0 00 = Counter 0 01 = Counter 1 10 = Counter 2 11 = Readback of below) Port 043h	or select: command (see	Counter access: 00 = Counter latch command (see below) 01 = R/W LSB only 10 = R/W MSB only 11 = R/W LSB followed by MSB Counter Latch		Mode select: 000 = M0) Interrupt on terminal count 001 = M1) Hardware retrig. one-shot X10 = M2) Rate generator X11 = M3) Square wave generator 100 = M4) Software-triggered strobe 101 = M5) Hardware-triggered strobe			Count mode select: 0 = 16-bit binary 1 = 4-decade BCD
Counte 00 = Counter 0 01 = Counter 1	Counter select: Counter latch command = 00 00 = Counter 0		command = 00	Don't care			
Port 043h			Readback Co	ommand (WO)			
Readback o	Readback command = 11		0 = Yes	Counter 2 select: 0 = Yes 1 = No	Counter 1 select: 0 = Yes 1 = No	Counter 0 select: 0 = Yes 1 = No	Reserved: Write as 0.
Port 043h			Status I	Byte (RO)			
OUT signal status	Null count, counter con- tents valid: 0 = Yes 1 = No (being updated)		Return bits [5:	0] written in Count	er Mode Commar	nd (see above)	

912-2000-015 Revision: 1.0

4.10.4.1 Shadow Registers To Support Timer

Values written to the timer are not always directly readable in the AT architecture. However, FireStar shadows these values as they are written so that they can be read back later through the configuration registers. The values from index 90h to 96h are valid only when a Counter Mode Command byte for the counter has been written to the timer register at I/O Port 043h. Setting bits 043h[5:4] = 11 starts the sequence.

4.10.5 Writing/Reading I/O Port 070h

The AT architecture does not allow the readback of the NMI enable bit settings and the RTC index value written at I/O Port 070h. However, the FireStar logic makes the NMI Enable bit setting, along with the last RTC index value written to I/O Port 070h, available for reading in its shadow register set.

4.10.5.1 RTC Index Shadow Register

This shadow register is read as a normal FireStar configuration register: write 98h to I/O Port 022h followed immediately by an I/O read at I/O Port 024h.

Table 4-68 Timer Support Shadow Registers								
7	6	5	4	3	2	1	0	
Index 90h Channel 0 Low Byte								
- Timer Cha	annel 0 count low by	rte, A[7:0]						
Index 91h Channel 0 High Byte								
- Timer Channel 0 count high byte, A[15:8]								
		y,- ()						
Index 92h			Channel	1 Low Byte				
- Timer Cha	annel 1 count low by	/te, A[7:0]						
Index 93h			Channel	1 High Byte				
- Timer Cha	annel 1 count high b	yte, A[15:8]						
Index 94h			Obana - I	O Levy Drds				
	annel 2 count low by	ıte Δ[7:0]	Channel	2 Low Byte				
Timer one	armer 2 countries by	, r.c., r.(r.o)						
Index 95h			Channel :	2 High Byte				
- Timer Cha	annel 2 count high b	yte, A[15:8]						
Index 96h			Write Counter Hi	gh/Low Byte Late	ch			
U	nused	Ch. 2 read LSB toggle bit	Ch. 1 read LSB toggle bit	Ch. 0 read LSB toggle bit	Ch. 2 write LSB toggle bit	Ch. 1 write LSB toggle bit	Ch. 0 write LSI toggle bit	
Гable 4-69	RTC Index R	egister - I/O P	ort 070h (WO))				
Table 4-69	RTC Index R	egister - I/O Po	ort 070h (WO)	3	2	1	0	
	6	1	4	1	_	1	0	
NMI Enable: 0 = Disable	6	1	4	3	_	1	0	
7 NMI Enable:	6	1	4	3	_	1	0	
7 NMI Enable: 0 = Disable 1 = Enable	6	1	4 RT	3 C/CMOS RAM Inc	_	1	0	
7 NMI Enable: 0 = Disable	6	5	4 RT	3 C/CMOS RAM Inc	_	1	0	

Setting

Page 132 912-2000-015

4.10.6 IRQ8 Polarity

The recognition of the IRQ8 interrupt can be inverted through SYSCFG 50h[5]. In the normal AT architecture, IRQ8 is active low and driven by an open-collector output of the RTC against a pull-up resistor.

4.10.7 Fast GATEA20 and Reset Emulation

FireStar will intercept commands to Ports 060h and 064h so that it can emulate the keyboard controller, allowing the generation of the fast GATEA20 and fast INIT signals. The decode sequence is software transparent and requires no BIOS modifications to function. The fast GATEA20 generation sequence involves writing "D1h" to Port 064h, then writing data "02h" to Port 060h. The fast CPU "warm reset"

function is generated when a Port 064h write cycle with data "FEh" is decoded. A write to Port 064h with data "D0h" will enable the status of GATEA20 (bit 1 of Port 060h) and the warm reset (bit 0 of Port 060h) to be readable.

If keyboard emulation has been disabled (PCIDV1 41h[4] = 1), FireStar will still intercept reset and GATEA20 commands to Port 092h and generate CPUINIT to the CPU. However, FireStar has to be programmed to accept the KBRST# and KBA20M signals from the keyboard controller to generate CPUINIT and A20M# to the CPU because it will not intercept Port 060/064h commands. Figure 4-26 shows the connectivity when keyboard emulation has been disabled.

Table 4-71 IRQ8 Polarity Bit - SYSCFG 50h

7	6	6 5 4 3 2 1					
SYSCFG 50h		PMU Control Register 4 Default =					Default = 00h
		IRQ8 polarity: 0 = Active low 1 = Active high					

Table 4-72 Fast GATEA20 and Reset Emulation Related I/O Port Registers

7	6	5	4	3	2	1	0
Port 061h			Port B	Register			
System parity check (RO)	I/O channel check (RO)	Timer OUT2 detect (RO)	Refresh detect (RO)	I/O channel check: 0 = Enable 1 = Disable	Parity check: 0 = Enable 1 = Disable	Speaker output: 0 = Disable 1 = Enable	Timer 2 Gate: 0 = Disable (from CPU address) 1 = Enable

Port 060h & 064h

Keyboard I/O Control Registers

The 82C700 will intercept commands to Ports 060h and 064h so that it may emulate the keyboard controller, allowing the generation of the fast GATEA20 and fast CPURST signals. The decode sequence is software transparent and requires no BIOS modifications to function. The fast GATEA20 generation sequence involves writing 'D1h' to Port 64h, then writing data '02h' to Port 060h. The fast CPU warm reset function is generated when a Port 064h write cycle with data 'FEh' is decoded. A write to Port 064h with data D0h will enable the status of GATEA20 (bit 1 of Port 060h) and the system reset (bit 0 of Port 060h) to be readable

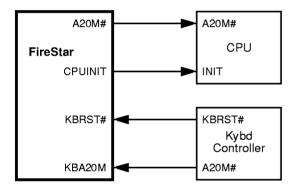

Port 092h	PS/2 Reset Control Register	rs De	fault = 00h
	Reserved	0 = A20M# (aut active clear 1 = A20M# inactive 1 = If	ust Reset comatically ars back to 0): NIT sent to the 3.3V

Table 4-73 Keyboard Emulation Disable Bit

7	6	5	4	3	2	1	0
PCIDV1 41h		Keyboard Controller Select Register					Default = 00h
RDKBDPRT (RO): Keyboard controller has received Command D0h and has not received the following 060h read.	WRKBDPRT (RO): Keyboard con- troller has received Com- mand D1h and has not received the following 060h write.	IMMINIT: Generate INIT immediately on FEh Command. 0 = Generate INIT immediately on FEh Command 1 = Wait for halt before INIT for key- board reset	KBDEMU: Keyboard emulation 0 = Enable 1 = Disable	KBDCS# includes Port 062h and 066h: 0 = Disable 1 = Enable		Reserved	

Figure 4-26 Connections with Keyboard Emulation Disabled

Page 134

4.11 Integrated Local Bus Enhanced IDE Interface

The IDE controller in FireStar is based on OPTi's Bus Master PCI IDE Module (MIDE) which is designed as a fast and flexible interface between the PCI bus and two channels of IDE devices (up to four devices). Each channel supports an integrated 8-level (32-byte) read prefetch FIFO and an 8-level (32-byte) posted write FIFO for bus mastering burst read and write operations on the PCI bus, substantially improving the performance over the typical slave IDE implementations. The Enhanced ATA Specification can be supported by programming the internal registers up to IDE PIO Mode 5 and Single-and/or Multi-Word DMA Mode 2 timing. The module is designed to be backward compatible to the Viper-N+ IDE interface.

When the internal IDE controller is disabled, FireStar passes the IDE cycles to the ISA bus if the cycles are not claimed on the PCI bus.

4.11.1 Performance and Power

Enhanced IDE uses the SD bus for its data transfers, but does not have to use slow ISA bus transfers because of its dedicated HDRD#, HDWR#, and DBE# signals. Essentially, the local bus IDE controller can run extremely short cycles because all timing aspects of the cycle are directly programmable to meet the capabilities of the drive being used.

FireStar's implementation of local bus IDE is designed to save power. The buffers to/from the IDE are tristated between cycles. Therefore, no power is wasted toggling the IDE data lines when the IDE is not in use.

4.11.2 Bus Mastering IDE Controller

FireStar features a new bus mastering IDE controller interface. Multiplexed operation allows the chip to very efficiently use only two dedicated pins (or four for four-drive bus mastering) yet still allows IDE operation that is fully concurrent with every other high-speed system activity.

The IDE controller operates in either programmed I/O (PIO) mode, bus mastering mode, or emulated bus mastering mode. In both cases, the control signals are multiplexed onto the XD[7:0] lines and the data is presented on the SD[15:0] bus. External buffers may be required to interface these signals to the IDE drive, but can be eliminated in certain designs.

Dedicated signal DBEW#, and optional signals DBEX#, DBEY#, and DBEZ# (on PIO pins), are provided to enable separate sets of buffers for each of the two supported drive channels (two drives per channel). The drive read and write commands come from the XD bus pins, qualified by DBE#. PCIDV1 AEh and AFh select the decoding that will take place at each DBE# pin (see Table 4-74).

Decoding for cable 0 can be disabled completely through PCIDV1 4Fh[5] if only cable 1 is used locally (for example, if a docking station is connected and system boot should occur from the docking station drive instead of from the local drive).

Bus mastering requires the addition of the DDRQ and DDACK# signal pair for each drive cable. The DDRQ0-1 signals are supported as separate inputs on the chip; DDACK0-1# are multiplexed onto the XD lines like the other control lines, since they are meaningful only when a cycle is taking place (DBE# signal active).

Table 4-74 IDE Pin Programming Registers

7 6 5 4 3 2 1 0 PCIDV1 AEh DBE# Select Register 1 Default = Reserved DBEX# selection: DBEW# selection: 000 = Disable (Default) 000 = Disable (Default) 000 = Disable (Default) 001 = DBE0#: Cable 0, Drives 0 and 1 (Default) 001 = DBE0#: Cable 0, Drives 0 and 1 (Default) 010 = DBE0-0#: Cable 0, Drive 0 010 = DBE0-0#: Cable 0, Drive 0									
Reserved DBEX# selection: Reserved DBEW# selection: 000 = Disable (Default) 001 = DBE0#: Cable 0, Drives 0 and 1 000 = DBE0#: Cable 0, Drives 0 and 1 (Default) 001 = DBE0#: Cable 0 001 = DBE0#: Cable 0 001 = DBE	7	6	5	4	3	2	1	0	
000 = Disable (Default) 000 = Disable 001 = DBE0#: Cable 0, Drives 0 and 1 001 = DBE0#: Cable 0 and 1 001 = DBE0#: Cable 0 and 1 001 = DBE0#: Cable 0 and 1 001	PCIDV1 AEh			DBE# Sele			Default = 01h		
011 = DBE0-1#: Cable 0, Drive 1 100 = Decode all IDE accesses 101 = DBE1#: Cable 1, Drives 0 and 1 110 = DBE1-0#: Cable 1, Drive 0 111 = DBE1-1#: Cable 1, Drive 1	Reserved	001 = DBE0# 010 = DBE0-0 011 = DBE0-1 100 = Decode 101 = DBE1# 110 = DBE1-0	e (Default) :: Cable 0, Drives 0#: Cable 0, Drive 1#: Cable 0, Drive e all IDE accesses :: Cable 1, Drives 0#: Cable 1, Drive	0 and 1 0 1 s 0 and 1	Reserved	001 = DBE0# 010 = DBE0- 011 = DBE0- 100 = Decod 101 = DBE1# 110 = DBE1-	e f: Cable 0, Drives (0#: Cable 0, Drive 1#: Cable 0, Drive e all IDE accesses f: Cable 1, Drives (0#: Cable 1, Drive	0 and 1(Default) 0 1 0 and 1	

Table 4-74 IDE Pin Programming Registers

7	6	5	4	3	2	1	0
PCIDV1 AFh	V1 AFh DBE# Selection			ct Register 2			Default = 00h
Reserved	DBEZ# selection: 000 = Disable (Default) 001 = DBE0#: Cable 0, Drives 0 and 1 010 = DBE0-0#: Cable 0, Drive 0 011 = DBE0-1#: Cable 0, Drive 1 100 = Decode all IDE accesses 101 = DBE1#: Cable 1, Drives 0 and 1 110 = DBE1-0#: Cable 1, Drive 0 111 = DBE1-1#: Cable 1, Drive 1			Reserved	000 = Disable 001 = DBE0# 010 = DBE0-0 011 = DBE0-1 100 = Decode 101 = DBE1# 110 = DBE1-0	DBEY# selection (Default) : Cable 0, Drives 0 #: Cable 0, Drive #: Cable 0, Drive all IDE accesses : Cable 1, Drives 0 #: Cable 1, Drives #: Cable 1, Drive	0 and 1 0 1 : 0 and 1
PCIDV1 4Fh		Mis	cellaneous Cont	rol Register C - E	Syte 1		Default = 20h
		Primary IDE interface (1F0h): 0 = Disable 1 = Enable (Default)					

4.11.2.1 Isolation of Drives

Most notebook designs require that each IDE drive on a cable be capable of individual power-down without affecting other drives in the system. For example, an IDE CD-ROM and IDE hard drive that share the same cable could be power-managed separately to avoid having to keep the CD-ROM alive while the hard drive is active (or vice-versa).

The FireStar solution includes programmable pin options described below to allow easier isolation in typical implementations.

4.11.2.2 IDE Control Pinout Options

FireStar provides several programmable pin options to optimize the system design and reduce the need for external TTL. Refer to Section 3.3, "Programmable I/O Pins" for information on assigning these pin functions.

• DBE0A/B# and DBE1A/B#

FireStar can be programmed to generate separate buffer enable signals for each drive on the cable. Normally each cable has its own buffer enable: DBE0# for cable 0, decoded from I/O ports 1F0-7+3F6-7h; and DBE1# for cable 1, decoded from I/O ports 170-7+376-7h. The A/B# feature takes this decoding one step further and selects "drive A" or "drive B" on the cable according to the value last written to bit 1F6h[4] for cable 0, or 176h[4] for cable 1.

Dedicated DDACK#

Bus mastering IDE drives must use one DDRQ/DDACK# pair per cable. The standard FireStar pinout provides DDRQ as dedicated inputs, but uses an XD bus pin qualified by DBE# to drive DDACK# to the drive. The total number of signals controlled by DBE# in this case is 9, a very inconvenient value for use with 8-bit TTL. Therefore, FireStar allows for up to two dedicated DDACK# pins, one for each cable.

P Dedicated DRD#, DWR#, DCS1#, DCS3#, DA[2:0]
In a small system, unused pins can be replaced with IDE control signals. This feature allows the designer to avoid using any TTL to support the IDE. This solution is especially well suited for an ISA-less system, so that the SD[15:0] bus can be used solely to support the IDE drives.

Figure 4-27 illustrates the connections typically required for a fully-isolated IDE drive.

Page 136 912-2000-015

Figure 4-27 IDE Interface Using Individual TTL

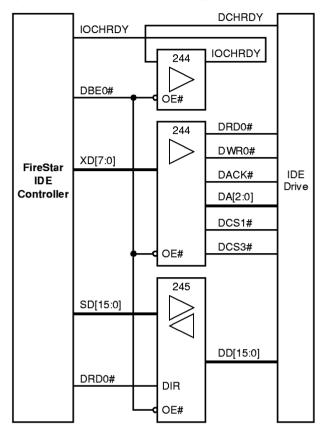


Figure 4-28 shows an implementation for a minimal system without separately buffered drives. A typical notebook design with few ISA-bus devices could use this approach. Note that PIO pins have been assigned IDE control functions DRD# and DWR# to allow a zero-TTL solution, yet some of the control signals still come from the XD[7:0] bus. The X-bus control lines will also toggle during cycles to the ROM, RTC, and KBC but will not have an effect on the IDE drive since DRD# and DWR# are inactive. If this situation is not acceptable and there are enough PIO pins free, all IDE control signals can be assigned to dedicated pins. Table 4-75 list the general IDE control line assignment.

Figure 4-28 IDE Interface Using Zero-TTL

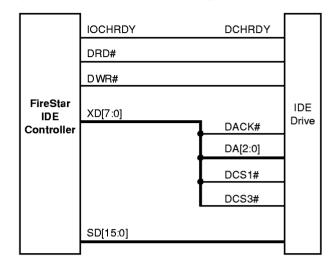


Table 4-75 General IDE Control Line Assignment

Table 4-75		DE CONTRO! EINE ASSIGNMENT
Primary Pin Name	IDE Signal	Description
SD[15:0]	DD[15:0]	IDE data bus
XD7	DCS3#	IDE chip select for 3F6-7h or 376-7h I/O access
XD6	DCS1#	IDE chip select for 1F0-7h or 170-7h I/O access
XD5	DDACK#	Bus master IDE DMA acknowledge
XD4	DA2	IDE address
XD3	DA1	
XD2	DA0	
XD1	DRD#	IDE drive read command line, qualified by DBE#
XD0	DWR#	IDE drive write command line, qualified by DBE#
Dedicated pin	DBE0#	Command buffer enable to IDE cable 0
Dedicated pin	DDRQ0	Bus mastering IDE drive DMA request line for cable 0
PIO pin	DBE1#	Command buffer enable to IDE cable 1
PIO pin	DDRQ1	Bus mastering IDE drive DMA request line for cable 1

4.11.2.3 Dedicated Secondary IDE Interface

In a true ISA-less system, where even the ROM is handled by an external device on the PCI bus, a large number of ISA support pins become available. These pins can be reassigned to independently support a second IDE drive with no external TTL. The primary ISA interface is also available to directly support a drive in this case. Either physical interface can be programmed to respond as:

- · Cable 0 Drive 0
- · Cable 0 Drive 1
- · Cable 1 Drive 0
- Cable 1 Drive 1

In No-ISA Mode, all SD, XD, SA, and ISA command signals stay low at reset so as not to drive signals to a possibly non powered drive. Table 4-76 lists the ISA pins that are reassigned to the primary and secondary IDE drive function.

Table 4-76 Control Line Assignment for two IDE Cables (No-ISA Mode)

Original Pin Name Drives Cable 0	Original Pin Name Drives Cable 1	IDE Signal Name	Description
SD[15:0]	SA[15:0]	DD[15:0]	IDE data bus
XD7	MRD#	DCS3#	IDE chip select for 3F6-7h or 376-7h I/O access
XD6	MWR#	DCS1#	IDE chip select for 1F0-7h or 170-7h I/O access
XD5	DBE0#	DDACK#	Bus master IDE DMA acknowledge
XD4	RTCWR#	DA2	IDE address
XD3	RTCRD#	DA1	
XD2	RTCAS	DA0	
XD1	IORD#	DRD#	IDE drive read command line
XD0	IOWR#	DWR#	IDE drive write command line
DDRQ0	PIOx	DDRQ	Bus master IDE drive DMA request line
IOCHRDY	PIOx	DCHRDY	Drive channel ready line

4.11.3 Programming the IDE Controller

The IDE controller has four register spaces that control it:

- SYSCFG SYSCFG registers are accessed by writing Port 022h with an index and writing or reading from Port 024h with a data value.
- PCIIDE The PCIIDE space is accessed through PCI Configuration Mechanism #1 by addressing Bus #0, Device #14h, Function #0.
- 3. IDE I/O The IDE I/O space is a register set that is hidden behind the IDE I/O ports, and is normally not accessible. A special sequence must be followed for enabling/disabling access to these registers. Unless otherwise noted, all references to IDE I/O space in this section pertain to this hidden space. These configuration registers share the I/O ports.
- 4. Bus Master IDE registers Mapped to system I/O space.

References to the IDE I/O space 10Fh-1F7h are used below. The same concepts apply to the 170h-177h space.

4.11.3.1 Enabling Access to IDE I/O Space

To enable access to the IDE I/O register space, the following procedure must be followed:

- Perform two consecutive 16-bit reads from I/O Port 1F1h.
 This operation makes the register space accessible for the next I/O operation.
- Perform an 8-bit write to I/O Port 1F2h with a value of 03h.
 This programming keeps the registers accessible indefinitely.

4.11.3.2 Disabling Access to IDE I/O Space

After enabling and programming the IDE I/O registers, these registers must be hidden from standard access before IDE operations can begin. Two options are available:

 Write Port 1F2h with a value of C3h to disable the IDE I/O register space and fully enable IDE operation, and also prevent any future access to this space until the next hardware reset.

Page 138 912-2000-015

 Write Port 1F2h with a value of 83h to disable the IDE I/O space and fully enable IDE operation, but leave open the future possibility of accessing this space by enabling the

space again as previously described in Section 4.11.3.1, "Enabling Access to IDE I/O Space".

Table 4-77 shows the registers associated with enabling and disabling access to the IDE I/O space.

Table 4-77 Enabling/Disabling Access to IDE I/O Space Registers

7	6	5	4	3	2	1	0				
I/O Address 1F1	h	ıW	ite Cycle Timing	ng Register - Timing 0 ⁽¹⁾ Default = xxl							
	Write pul	se width:			Write reco	very time:					
	mmed in this regis ICLKs (for a 16-bi r Table 4-83.			# The value programmed in this register plus two determines the rece							
(1) Timing 0 ca	(1) Timing 0 can be programmed only if IDE I/O 1F6h[0] = 0. The timing programmed into this register is applied for IDE accesses to drives										

as selected by 1F3h[3:2] and 1F3h[7].

I/O Address 1F1h Write Cycle Timing Register - Timing 1(1) Default = xxh Write pulse width: Write recovery time: The value programmed in this register plus one determines the DWR# The value programmed in this register plus two determines the recovpulse width in PCICLKs (for a 16-bit write from the IDE Data Register). ery time between the end of DWR# and the next DA[2:0]/DCSx# being See Table 4-82 or Table 4-83. presented (after a 16-bit write from the IDE Data Register), measured in PCICLKs. See Table 4-82 or Table 4-83. (Default = xxxx) (Default = xxxx)

Timing 1 can be programmed only if IDE I/O 1F6h[0] = 1. The timing programmed into this register is applied for IDE accesses to drives as selected by 1F3h[3:2] and 1F3h[7].

I/O Address 1F2	!h	Internal ID Register	Default = xxh			
Configuration disable (WO):	Configuration off (WO):	Reserved (RO): Write to 0. (Default = xxxx)	Reserved: Must be written 11. If not, all			
0 = Enable accesses to internal IDE control- ler registers 1 = Disable accesses to internal IDE con- troller reg- isters until another 2 consecu- tive I/O reads from 1F1h.	0 = Enable accesses to internal IDE control- ler registers 1 = Disable all accesses to internal IDE control- ler regis- ters until power- down or reset.		writes to the IDE I/O Registers will be blocked.			
(Default = 1)						

4.11.3.3 Setting up the IDE Controller

The steps described below must be followed prior to initializing the timing for the drives, for both PIO and bus mastering capability.

- Configure the PCI IDE module as PCI Device #14h, Function #0, by setting SYSCFG ADh[4] = 0.
- 2. Set the PCI bus frequency in IDE I/O 1F5h[0].
- 3. The 32-byte read prefetch FIFO should be enabled at PCIIDE 40h[5].
- Concurrent refresh and IDE cycles should be enabled at PCIDV1 52h[0].

- PCI IDE one wait state reads for primary and secondary channels should be enabled at IDE I/O Register 1F3h[4].
- 6. Read prefetch for primary and secondary channels should be enabled at IDE I/O Register 1F6h[6].
- 7. Enable master capability at PCIIDE 04h[2].
- Assign a non-conflicting I/O address for bus master IDE base address in PCIIDE 20h-23h. The I/O address must be less than 64KB.

Table 4-78 shows the register bits used for setting up the IDE controller.

Table 4-78 IDE Interface Control Registers

7	6	5	4	3	2	1	0				
SYSCFG ADh	SYSCFG ADh Feature Control Register 3 Default = 00										
			PCIIDE responds as: 0 = Device 14h, Function 0 1 = Device 01h, Function 1								
I/O Address 1F5	5h		Strap	Register			Default = xxh				
							PCI CLK speed: 0 = 33MHz 1 = 25MHz				
PCIIDE 40h			IDE Initialization	Control Registe	r		Default = 00h				
		Enhanced Slave: 0 = 82C621A- compatible mode, uses a 16- byte FIFO in PIO Mode 1 = Enhanced mode, uses a 32- byte FIFO in PIO Mode		Secondary IDE: 0 = Enable 1 = Disable This bit is effective only if PCIDV1 4Fh[6] = 1.							

Page 140 912-2000-015

Table 4-78 IDE Interface Control Registers (cont.)

		1					
7	6	5	4	3	2	1	0
PCIDV1 52h			Misc. Contro	Default = 00h			
							Concurrent refresh and IDE cycle: 0 = Disable 1 = Enable ISA devices that rely on accu-
							rate refresh addresses for proper opera- tion should dis- able this bit.
I/O Address 1F3	3h		Control	Register			Default = xxh
			Enable one wait state read: 0 = 2 WS minimum 1 = 1 WS minimum for data reads				
I/O Address 1F6	Sh		Miscellane	ous Register			Default = xxh
	Read prefetch: 0 = Disable 1 = Enable						
PCIIDE 04h			Command Re	egister - Byte 0			Default = 45h
					IDE controller becomes a PCI master to gen- erate PCI accesses: 0 = Disable 1 = Enable		
DOUBE OOK OOK		-					

PCIIDE 20h-23h

Bus Master IDE Base Address Register

Default = 00000001h

This register is the I/O base address indicator for the Bus Master IDE Registers. The address block has a size of 16 bytes.

- Bits [3:0] are read-only and default to 0001.
- Bits [31:4] are writable.

4.11.4 Programming Timing Information

The FireStar IDE controller of supports up to four IDE drives on two cables with independent timing requirements. After common or independent timing for all the drives is programmed, the IDE controller core tracks application software accesses to the IDE ports and automatically enables the programmed independent timing for the drive being accessed. Figure 4-29 shows the configuration for the IDE controller while operating in PIO Mode. Figure 4-30 depicts the timing parameters associated with PIO Mode drives.

A variety of options exist for programming the IDE timing for different drives. It is possible to program common PIO mode timing for all detected drives, customize independent timing for each drive, or enable bus mastering support on a driveby-drive basis. Follow either Section 4.11.4.1, "Enabling Common Timing for All Drives", or Section 4.11.4.2, "Enabling Independent Timing", to setup global timing or independent timing information for the drives.

Figure 4-29 PIO Mode Configuration

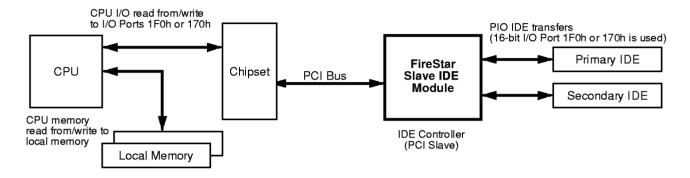
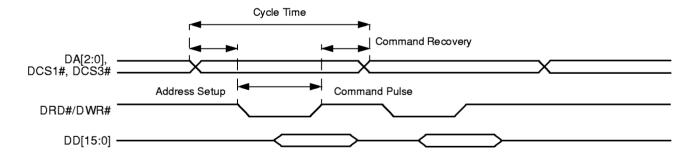



Figure 4-30 PIO Mode Cycle Timing

912-2000-015 Page 142

4.11.4.1 Enabling Common Timing for All Drives

Table 4-79 shows the registers associated with programming common timing for all enabled drives. Common IDE timing for all drives is enabled by the IDE controller until independent timing is programmed.

The default common timing for all drives is PIO Mode 0. Common PIO Modes 0-3 timing for all enabled drives can be programmed by setting PCIIDE 40h[1:0].

To enable common PIO Mode 4 or Mode 5 timing, first ensure that PIO Mode 3 is set up in PCIIDE 40h[1:0], as described above. Subsequently, the appropriate bits in PCIIDE 43h[7:0] can be set to enable Mode 4 or Mode 5 timing.

Table 4-79 IDE Timing Control "Common Timing"

Table 4-79	IDE Timing C	ontrol "Comn	non Timing"				
7	6	5	4	3	2	1	0
PCIIDE 40h			IDE Initialization	Control Registe	r		Default = 00h
PCIDE 4011					These bits cor 16-bit cycle tir devices and can	de: atrol the default mes for all IDE be overridden by g the IDE I/O sters. cle time (PIO cle time (PIO)	
PCIIDE 43h			IDE Enhanced	l Mode Register			Default = 00h
	le for Drive 1 on y Channel:	Enhanced Mod Secondary		Enhanced Mod		Enhanced Mod Primary	e for Drive 0 on Channel
Sets 16-bit cycle PIO Modes 4 and DMA Modes 1 ar	d 5 or Multi-Word	Sets 16-bit cycle PIO Modes 4 and DMA Modes 1 ar	l 5 or Multi-Word	Sets 16-bit cycle times for IDE PIO Modes 4 and 5 or Multi-Word DMA Modes 1 and 2.		Sets 16-bit cycle times for IDE PIO Modes 4 and 5 or Multi-Word DMA mode 1 and 2.	
00 = Disabled, co sponding Ti Set	ontrol by corre- ming Registers	00 = Disabled, co sponding Til Set	entrol by corre- ming Registers	00 = Disabled, control by corre- sponding Timing Registers Set		00 = Disabled, co sponding Ti Set	ontrol by corre- ming Registers
01 = PIO Mode 4 DMA Mode inactive for 3	1, command	01 = PIO Mode 4 DMA Mode inactive for 2	1, command	01 = PIO Mode 4 DMA Mode inactive for 2	1, command	01 = PIO Mode 4 DMA Mode inactive for	1, command
10 = PIO Mode 5	or Multi-Word 2, command	10 = PIO Mode 5 DMA Mode inactive for	2, command	10 = PIO Mode 5 DMA Mode inactive for	2, command	inactive for	2, command
11 = Reserved	70h/171h[3:0]	11 = Reserved Corresponding 1	70h/171h[3:0]	11 = Reserved Corresponding 1	F0h/1F1h[3:0]	11 = Reserved Corresponding 1	F0h/1F1h[3:0]

912-2000-015 Revision: 1.0

4.11.4.2 Enabling Independent Timing

If required, independent timing can be programmed for each drive in each channel, by accessing the IDE I/O register space. For every enabled drive, three timing choices are available: the common timing described earlier, Timing 0 or

Timing 1. Timing 0 and Timing 1 are two sets of timing that provide separate read/write pulse widths, read/write recovery times, common address setup time, and common channel ready hold times. The relevant timing registers for the primary channel are listed in Table 4-80.

Table 4-80 IDE Timing Control "Independent Timing"

Table 4-80	IDE Timing C	ontrol "Indep	endent Timin	g"			
7	6	5	4	3	2	1	0
I/O Address 1F	Oh	Re	ad Cycle Timing	Register - Timin	g 0 ⁽¹⁾		Default = xxh
pulse width in Po See Table 4-82 (Default = xxxx)	ammed in this regis CICLKs (for a 16-bi or Table 4-83	t read from the IDE	E Data Register).	ery time between presented (after in PCICLKs. See (Default = xxxx)	ammed in this regi the end of DRD# a 16-bit read from Table 4-82 or Tab	and the next DA[2 the IDE Data Reg ble 4-83.	2:0]/DCSx# being jister), measured
	n be programmed by 1F3h[3:2] and	-	6h[0] = 0. The tim	ing programmed in	nto this register is	applied for IDE ac	cesses to drives
I/O Address 1F	Dh	Re	ad Cycle Timing	Register - Timin	g 1 ⁽¹⁾		Default = xxh
pulse width in Po See Table 4-82 (Default = xxxx) (1) Timing 1 ca as selected I/O Address 1F The value progra	ammed in this regis CICLKs (for a 16-bi or Table 4-83. an be programmed by 1F3h[3:2] and Write pul ammed in this regis CICLKs (for a 16-bi	only if IDE I/O 1F6 1F3h[7]. Wr se width:	E Data Register). Sh[0] = 1. The tim ite Cycle Timing mines the DWR#	ery time between presented (after in PCICLKs. See (Default = xxxx) ing programmed in Register - Timing The value prograery time between presented (after in PCICLKs. See (Default = xxxx) ing programmed in PCICLKs.	ammed in this reginate end of DRD# a 16-bit read from a Table 4-82 or Table this register is $0^{(1)}$	and the next DA[2 the IDE Data Regole 4-83. applied for IDE accepted with the IDE Data Regole and the next DA[2 the IDE Data Regole and the DE Data Regole and the IDE Data Regole and IDE Data Regol	2:0]/DCSx# being gister), measured coesses to drives Default = xxh rmines the recov- 2:0]/DCSx# being
	an be programmed I by 1F3h[3:2] and	-	6h[0] = 0. The tim	(Default = xxxx)	nto this register is	applied for IDE ac	cesses to drives
I/O Address 1F	1h	Wr	ite Cycle Timing	Register - Timin	g 1 ⁽¹⁾		Default = xxh
The value progra	Write pul ammed in this regis CICLKs (for a 16-bi	se width: ter plus one detern	mines the DWR#	The value progra	_	and the next DA[2 the IDE Data Reg	rmines the recov- 2:0]/DCSx# being
	an be programmed by 1F3h[3:2] and		6h[0] = 1. The tim	ng programmed in	nto this register is	applied for IDE ac	cesses to drives

Page 144 912-2000-015

Table 4-80 IDE Timing Control "Independent Timing" (cont.)

7	6	5	4	3 2 1			0		
I/O Address 1F3	h		Contro	ol Register Default =					
Timing register value select:				Drive 1 timing select:	Drive 0 timing select:				
0 = Basic 1 = Enhanced				Basic (1F3h[7] = 0):	Basic (1F3h[7] = 0):				
				0 = Determined by PCIIDE 40h[1:0]	0 = Determined by PCIIDE 40h[1:0]				
				1 = Timing 1 Enhanced	1 = Timing 1 Enhanced				
				(1F3h[7] = 1): 0 = Timing 1 1 = Timing 0	(1F3h[7] = 1): 0 = Timing 1 1 = Timing 0				
Note: Bits 2, 3 ar grammed.		I Register should l or programming op		he Cycle Timing R	egisters and Misc	ellaneous Registe	r are pro-		
I/O Address 1F6	h		Miscellane	ous Register			Default = xxh		
		Address se The value progra register plus one address setup tin DRD# or DWR# DA[2:0], DCS3#, presented, meas CLKs. See Table 83. (Default = xx)	determines the ne between going active and DCS1# being ured in PCI-	The value progradetermines the notween DRDY# going inactive. S (Default = xxx)	f PCICLKs RD# or DWR#	Timing register load select: 0 = Timing 0 (1F0-1F1h accept Timing 0 values) 1 = Timing 1 (1F0-1F1h accept Timing 1 values)			
(1) Both Timing 0	and Timing 1 set	s have common a	ddress setup and	DRDY delay time:	s as programmed	in 1F6h[5:2].	· · · · · · · · · · · · · · · · · · ·		

912-2000-015 Revision: 1.0

Preliminary 82C700

Setting up independent timing for drives is a two step process. The first step is to load the timing information sets (common, Timing 0, Timing 1). The second step is to associate each drive with one of the preloaded timing sets. Figure 4-31 is a flow chart that describes how to program the drives

of the primary channel of the IDE interface with independent timing requirements, for the configuration recommended in Table 4-81. For the secondary channel, a similar procedure can be followed by changing all the indexes from 1Fxh to 17xh, and programming PCIIDE 43h[7:4].

Figure 4-31 IDE Interface Primary Channel Programming Flow Chart

Enter the IDE I/O Registers Programming Mode: Two consecutive (any other I/O cycle between these two reads will disable access to the IDE registers) 16-bit I/O reads from 1F1h followed by an 8-bit I/O write to 1F2h with a value of 03h.

Set the values for Timing 0:

- 1) Write 0 to 1F6[0] to load Timing 0 parameters.
- 2) First set proper values in registers 1F0h and 1F1h for read/write pulse width and recovery times, and then program PCIIDE 43h[1:0], according to Table 4-82 or Table 4-83, (Program PCIIDE 43h[5:4] for Drive 0 of secondary channel).

Set the values for Timing 1:

- 1) Write 1 to 1F6[0] to load Timing 1 parameters.
- 2) *First* set proper values in registers 1F0h and 1F1h for read/write pulse width and recovery times, and *then* program PCIIDE 43h[3:2], according to Table 4-82 or Table 4-83. (Program PCIIDE 43h[7:6] for Drive 1 of secondary channel).

Program the Address Setup Time and DRDY Delay Time:

- 1) Follow Table 4-82 or Table 4-83 to set proper values into registers 1F6h[5:4]. Reset 1F6h[3:1] to 0.
- 2) The address setup time and DRDY delay time are common to both Timing 0 and Timing 1. If they are not the same mode, program the slower timings for the address setup time.

Associate the drives with Common timings, Timing 0 parameters, or Timing 1 parameters: Follow Table 4-81 to set proper values in the registers 1F3h[7,3,2]. This should be done after all the read/write pulse and recovery, address setup, and DRDY delay have been set.

Exit the IDE I/O Registers Programming Mode: An 8-bit I/O write to 1F2h with a value of 83h.

Page 146 912-2000-015 Revision: 1.0

Loading Timing 0 and Timing 1 sets:

The parameters for Timing 0 are programmed by first setting IDE I/O 1F6h[0] = 0, followed by initializing IDE I/O 1F0h and 1F1h with the first set of read/write pulse widths and read/write recovery times. The parameters for Timing 1 are programmed by first setting IDE I/O 1F6h[0] = 1, followed by initializing IDE I/O 1F0h and 1F1h with a second set of read/write pulse widths and read/write recovery times.

Address setup time and channel ready hold time (DRDY) are common to both timing sets and are programmed in 1F6h[5:4] and 1F6h[3:1] respectively. Refer to Table 4-82 and Table 4-83 for information regarding the values that need to be programmed in the timing registers for different modes.

Associating drives with timing sets:

Each enabled drive can be associated with one of the preloaded timings according to Table 4-81, by programming IDE I/O registers 1F3h[7] and 1F3h[3:2] (these *must* be programmed after setting up the timing sets. For every enabled drive, the IDE controller allows two basic choices for timing control, "Basic", or "Enhanced", depending on the value of IDE I/O register 1F3h[7].

"Basic" choices (IDE I/O 1F3h[7] = 0):

- 1. The "common" timings as described in Section 4.11.4.1, "Enabling Common Timing for All Drives", where timing for all drives is determined by PCIIDE 40h[1:0] (Modes 0-3), or PCIIDE 43h[7:0] (Modes 4-5).
- Timing 0

"Enhanced" choices (IDE I/O 1F3h[7] = 1):

- 1. Timing 0.
- 2. Timing 1.

Table 4-82 and Table 4-83 show the timing and recommended register settings for various IDE modes defined in the Enhanced IDE Specifications. They include PIO transfer, Single-Word DMA transfer, and Multi-Word DMA transfer modes. The actual cycle time equals the sum of actual command active time and actual command inactive (command recovery and address setup) time. These three timing requirements should be met. In some cases, the minimum cycle time requirement is greater than the sum of the command pulse and command recovery time. This means either the command active (command pulse) or command inactive time (command recovery and address setup) can be lengthened to ensure that the minimum cycle times are met.

Table 4-81 Independent Timing Selection Options for Primary Channel

Drive 1 Timing	Drive 0 Timing	1F3h[7]	1F3h[3]	1F3h[2]
Common ⁽¹⁾	Common ⁽¹⁾	0	0	0
Common ⁽¹⁾	Timing 0	0	0	1
Timing 0	Common ⁽¹⁾	0	1	0
Timing 0	Timing 0	0	1	1
Timing 1	Timing 1	1	0	0
Timing 1 ⁽²⁾	Timing 0	1	0	1
Timing 0	Timing 1	1	1	0
Timing 0	Timing 0	1	1	1

- (1) Refer to PCIIDE 40h[1:0] for common timing values if PCIDV1 4Fh[6] = 1.
- (2) Recommended configuration.

Table 4-82 16-Bit Timing Parameters with 33MHz PCI Bus

			IDE Transfer Modes										
Parameter:		PIO Modes						Mult	i-Word Modes		Single-Word DMA Modes		
Register Bits	Dimension	0	1	2	3	4	5	0	1	2	0	1	2
R/W Command Pulse:	Bit values in hex	5	4	3	2	2	2	7	2	2	F	8	4
1F0h/170h/1F1h/ 171h[7:4], Index-0/1	Timing in PCICLKs ⁽¹⁾	6	5	4	3	3	3	8	3	3	16	9	5
17 m[7.4], mdex-0/1	Enhanced IDE Spec in ns ⁽²⁾	165	125	100	80	70	N/S	215	80	70	480	240	120
R/W Recovery Time:	Bit values in hex	9	4	0	0	0	0	6	0	0	D	4	0
1F0h/170h/1F1h/ 171h[3:0], Index-0/1	Timing in PCICLKs ⁽¹⁾	11	6	2	1	0	0	8	1	0	15	6	2
17 m[o.o], mdex-o/1	Enhanced IDE Spec in ns ⁽²⁾	N/S	N/S	N/S	70	25	N/S	215	50	25	N/S	N/S	N/S
Address Setup:	Bit values in hex	2	1	1	1	0	0	0	0	0	0	0	0
1F6h/176h[5:4]	Timing in PCICLKs ⁽¹⁾	3	2	2	2	1	1	1	1	1	1	1	1
	Enhanced IDE Spec in ns ⁽²⁾	70	50	30	30	25	N/S	N/A	N/A	N/A	N/A	N/A	N/A
DRDY:	Bit values in hex	0	0	0	0	0	0	0	0	0	0	0	0
1F6h/176h[3:1]	Timing in PCICLKs ⁽¹⁾	2	2	2	2	2	2	2	2	2	2	2	2
Enhanced Mode: ⁽³⁾ PCIIDE 43h bits [7:6], [5:4], [3:2], or [1:0]	Bit values in hex	0	0	0	1	2	2	0	1	2	0	0	0
Cycle Time	Timing in PCICLKs	20	13	8	6	5	4	17	5	4	32	16	8
	Enhanced IDE Spec in ns ⁽²⁾	600	383	240	180	120	N/S	480	150	120	960	480	240

N/S = Not Specified, N/A = Not Applicable

Page 148 912-2000-015

⁽¹⁾ The actual timing (in PCICLKs) that will be generated by the IDE controller if the recommended bit values in hex are programmed.

⁽²⁾ The timing (in ns) as specified in the Enhanced IDE Specification.

⁽³⁾ PCIIDE 43h can be programmed only after the R/W command pulse, and R/W recovery times are programmed.

Table 4-83 16-Bit Timing Parameters with 25MHz PCI Bus

		IDE Transfer Modes											
Parameter:				PIO N	lodes			Mult	i-Word Modes		Single-Word DMA Modes		
Register Bits	Dimension	0	1	2	3	4	5	0	1	2	0	1	2
R/W Command Pulse:	Bit values in hex	4	3	2	2	1	1	5	2	1	D	6	3
1F0h/170h/1F1h/ 171h[7:4], Index-0/1	Timing in PCICLKs ⁽¹⁾	5	4	3	3	2	2	6	3	2	13	7	4
17 m[7.4], mdex-0/1	Enhanced IDE Spec in ns ⁽²⁾	165	125	100	80	70	N/S	215	80	70	480	240	120
R/W Recovery Time:	Bit values in hex	6	2	0	0	0	0	4	0	0	8	2	0
1F0h/170h/1F1h/ 171h[3:0], Index-0/1	Timing in PCICLKs ⁽¹⁾	8	4	2	1	0	0	6	1	0	10	4	1
17 mg.oj, maex-o/1	Enhanced IDE Spec in ns ⁽²⁾	N/S	N/S	N/S	70	25	N/S	215	50	25	N/S	N/S	N/S
Address Setup:	Bit values in hex	1	1	0	0	0	0	0	0	0	0	0	0
1F6h/176h[5:4]	Timing in PCICLKs ⁽¹⁾	2	2	1	1	1	1	1	1	1	1	1	1
	Enhanced IDE Spec in ns ⁽²⁾	70	50	30	30	25	N/S	N/A	N/A	N/A	N/A	N/A	N/A
DRDY:	Bit values in hex	0	0	0	0	0	0	0	0	0	0	0	0
1F6h/176h[3:1]	Timing in PCICLKs ⁽¹⁾	2	2	2	2	2	2	2	2	2	2	2	2
Enhanced Mode: ⁽³⁾ PCIIDE 43h bits [7:6], [5:4], [3:2], or [1:0]	Bit values in hex	0	0	0	1	2	2	0	1	2	0	0	1
Cycle Time	Timing in PCICLKs	15	10	6	5	4	3	13	4	3	24	12	6
	Enhanced IDE Spec in ns ⁽²⁾	600	383	240	180	120	N/S	480	150	120	960	480	240

N/S = Not Specified, N/A = Not Applicable

⁽¹⁾ Actual timing (in PCICLKs) that will be generated by the MIDE Module if the recommended bit values in hex are programmed.

⁽²⁾ Timing (in ns) as specified in the Enhanced IDE Specification.

⁽³⁾ PCIIDE 43h can be programmed only after the R/W command pulse, and R/W recovery times are programmed.

Preliminary **82C700**

4.11.4.3 Programming and Drive Placement Tips:

- Ensure that IDE I/O Register 1F6[0] (176h[0] in the secondary channel) is set to 0 whenever accessing Timing Set 0. It is a common mistake that after accessing Timing Set 0, this bit is not reset to 0 by the BIOS. These bits will not be reset during a soft reset. After a soft reset, if the BIOS reloads Timing 0 and Timing 1 Sets, it would actually load the Timing 1 Set twice.
- 2. The address setup and recovery time are shared by the two IDE devices on the same channel at 1F6h[5:1]. If these two devices are not in the same mode, slower address setup and recovery time should be programmed to ensure proper timings on the slower drive. Under this assumption, two drives should be placed on the separate channels in a two-drive system. In a multiple-drive system, place slower drives on one channel and faster drives on the other channel.
- 3. If no IDE hard drives are in the primary slave, secondary master location or slave location, set only the command pulse and recovery time (1F0h/1F1h, Index-1, 170h/171h, Index-0 and 170h/171h, Index-1) to correspond to PIO Mode 0. This is to ensure proper timing for an ATAPI CD-ROM that may be in any of these locations.
- 4. If no device is present in the primary slave (Drive 1) location, set the command pulse and recovery time (1F0h and 1F1h, Timing 0 to correspond to PIO Mode 0. Also, if no drive is present in the secondary master (Drive 0), or secondary slave (Drive 1) location, set the command pulse and recovery time (170h-171h for Timing 0), and (170h-171h for Timing 1) to correspond to Mode 0. These registers do not default to a fixed value.

Page 150 912-2000-015

4.11.5 Bus Mastering Support Overview

FireStar provides a full function PCI local bus IDE controller capable of programmed I/O (PIO) mode or master mode operation. The chipset is capable of arbitrating for the ownership of the PCI local bus and transfers data between the IDE device and local memory. The IDE controller in FireStar conforms to the ATA Standard for IDE disk controllers.

By performing the IDE data transfers as a bus master instead of a slave, the chipset off-loads the CPU from having to perform the transfers. This benefit is realized in the form of the CPU not having to perform programmed I/O transfers to effect the data transfer between the disk and the memory.

Figure 4-32 shows the configuration for a bus mastering IDE controller. Figures 4-33 and 4-34 depict the timing parameters associated with Multi-Word and Single-Word DMA transfers

The master mode of operation is an extension to the standard IDE controller model. Thus, systems can still revert back to slave mode IDE if they so desire. The master mode of operation is designed to work with any IDE device that supports DMA transfers on the IDE bus. Devices that do not support DMA on the IDE bus can transfer IDE data using programmed I/O.

Figure 4-32 Master IDE Configuration

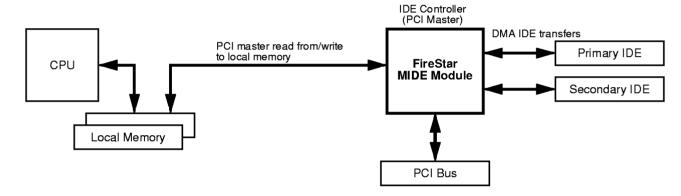


Figure 4-33 Multi-Word DMA Transfer Mode

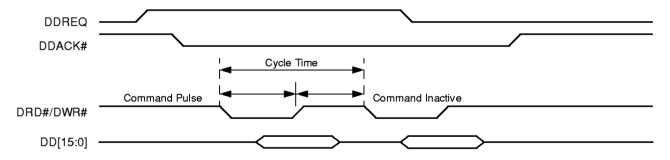
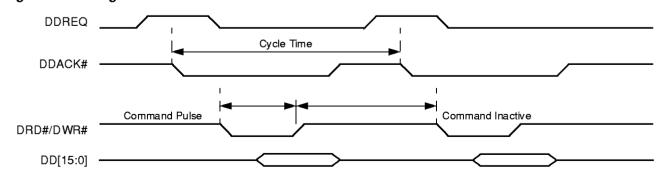



Figure 4-34 Single-Word DMA Transfer Mode

4.11.6 Physical Region Descriptor Table

Before the IDE controller starts a master transfer it is given a pointer to a Physical Region Descriptor Table. This table contains some number of Physical Region Descriptors (PRDs) which describe areas of memory that are involved in the data transfer. The descriptor table must be aligned on a 4-byte boundary and the table cannot cross a 64K boundary in memory.

4.11.6.1 Physical Region Descriptor

The physical memory region to be transferred is described by a Physical Region Descriptor (PRD). The data transfer will proceed until all the regions described by the PRDs in the table have been transferred. The format of a PRD table is shown in Table 4-84.

Each Physical Region Descriptor entry is eight bytes in length:

- The first four bytes specify the start address of a physical memory region.
- The next two bytes specify the size of the region in bytes (64K byte limit per region). A value of zero in these two bytes indicates 64K.
- Bit 7 of the last byte indicates the end of the table; bus master operation terminates when the end of the table has been reached.

Refer to Figure 4-35 for the correlation between PRD table entries and memory regions that are involved in DMA data transfers.

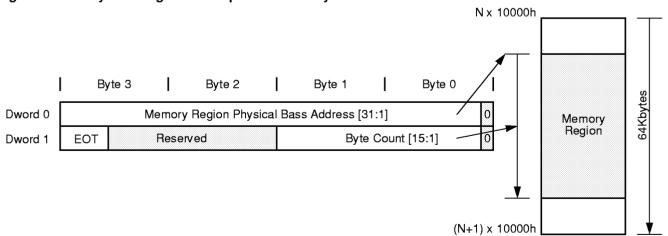

The memory region specified by the PRD cannot straddle a 64Kbyte boundary. Also, the total sum of the PRD byte counts must be equal to or greater than the size of the disk transfer request.

Table 4-84 Physical Region Descriptor Table Entry

Bit(s)	Name	Default	Function
Byte-0, bit 0		0	0 (RO)
Byte-[3:1] Byte-0, bits [7:1]	BASE	xxxx xxxx	Memory Region Physical Base Address [31:1]
Byte-4, bit 0		0	0 (RO)
Byte-5 Byte-4, bits [7:1]	COUNT	xxxx	Byte Count [15:1]
Byte-6		xx	Reserved
Byte-7, bits [6:0]		xx	Reserved
Byte-7, bit 7	EOT	х	End of Table

Note: The memory region specified by the descriptor is further restricted such that the region cannot straddle a 64K boundary. This means the byte count is limited to 64K and the incrementer for the current address register only extends from bit 1 to bit 15.

Figure 4-35 Physical Region Descriptor Table Entry

Page 152 912-2000-015 Revision: 1.0

4.11.6.2 Bus Master IDE Registers

The bus master IDE function uses 16 bytes of I/O space. The base address of this block of I/O space is pointed to by the Bus Master IDE Base Address Register and PCIIDE 20h-23h. All bus master IDE I/O space registers can be accessed

as byte, word, or dword quantities. The description of the 16 bytes of I/O registers is shown in Table 4-85 (refer to Section 5.4.3, "Bus Master IDE Registers" for individual bit formats in each register).

Table 4-85 Bus Master IDE Registers

Offset from Base Address	Register Access	Register Name/Function
00h	R/W	Bus Master IDE Command Register for Primary IDE
01h		Device-specific
02h	RWC	Bus Master IDE Status Register for Primary IDE
03h		Device-specific
04h-07h	R/W	Bus Master IDE PRD Table Address for Primary IDE
08h	R/W	Bus Master IDE Command Register for Secondary IDE
09h		Device-specific
0Ah	RWC	Bus Master IDE status Register for Secondary IDE
0Bh		Device-specific
0Ch-0Fh	R/W	Bus Master IDE PRD Table Address for Secondary IDE

4.11.6.3 Standard Programming Sequence for Bus Mastering Operations

DMA Mode capability can be programmed independently for primary and secondary channels by setting the bus mastering registers 02h and 0Ah. Ensure that PIO Mode 3 is set up in PCIIDE 40h[1:0], as described in Section 4.11.4.1, "Enabling

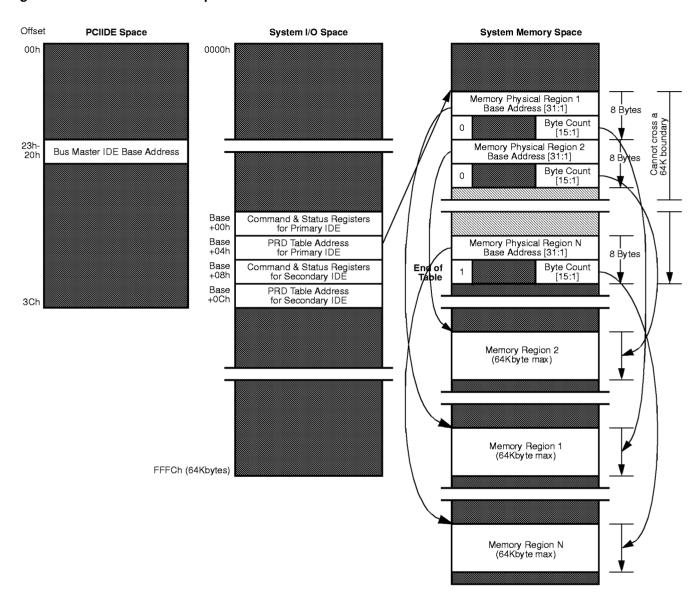
Common Timing for All Drives". Subsequently, the appropriate bits in PCIIDE 43h[7:0] can be set to enable DMA Mode 1 or DMA Mode 2.

Table 4-86 DMA Mode Programming Bits

14016 4-00		rogramming L					
7	6	5	4	3	2	1	0
Base Address -	+ 02h	Bus M	aster IDE Status	Register for Prin	nary IDE		Default = 00h
	Drive 1 DMA	Drive 0 DMA					
	capable:	capable:					
	This bit is set by	This bit is set by					
	device-depen-	device-depen-					
	dent code	dent code					
	(BIOS or	(BIOS or					
	device driver)	device driver)					
	to indicate that	to indicate that					
	Drive 1 for this	Drive 0 for this					
	channel is	channel is					
	capable of	capable of					
	DMA transfers,	DMA transfers,					
	and that the	and that the					
	controller has	controller has					
	been initialized	been initialized					
	for optimum	for optimum					
	performance.	performance.					
Base Address -	<u> </u>		ster IDE Status R	legister for Seco	ndary IDE		Default = 00h
	Drive 1 DMA	Drive 0 DMA					
	Capable:	Capable:					
	This bit is set by	This bit is set by					
	device depen-	device depen-					
	dent code	dent code					
	(BIOS or	(BIOS or					
	device driver)	device driver)					
	to indicate that	to indicate that					
	Drive 1 for this	Drive 0 for this					
	channel is	channel is					
	capable of	capable of					
	DMA transfers,	DMA transfers					
	and that the	and that the					
	controller has	controller has					
	been initialized	been initialized					
	for optimum	for optimum					
	performance.	performance.					

Page 154 912-2000-015

To initiate a bus master transfer between memory and an IDE DMA slave device, the following steps are required (Figure 4-36 shows the bus master operations described below):


- DOS calls BIOS (INT13H) to start a disk transfer. For OS that is not using BIOS services, a device driver should be in place to intercept the disk access request.
- 2. BIOS (or device driver) prepares a PRD Table in the system memory. Each PRD is 8 bytes long. It consists of an address pointer (the location specifies in the ES:BXh) to the starting address and the transfer count (the sector count specifies in the AL) of the memory buffer to be transferred. If the data area (as pointed by ES:BXh and AL) crosses a 64K boundary, the BIOS (or device driver) would have to break it into multiple transfers (PRDs) so that each of them lies within the boundary.
- BIOS (or device driver) provides the starting address of the PRD Table by loading the PRD Table Pointer Register (Bus Master IDE Base Address + 04h or + 0Ch).
- 4. The direction of the data transfer is specified by setting the Read/write Control bit in the Command Register (Bus Master IDE Base Address + 00h or + 08h). Clear the Interrupt bit and Error bit in the Status Register (Bus Master IDE Base Address + 02h or + 0Ah).
- 5. BIOS (device driver) resets the Hard Disk Task Complete Flag (a memory byte location at 40:E8h) to 00h. It will be in a tight loop checking whether this Complete Flag is set to FFh. Other OS may have a different mechanism to detect disk activity.
- BIOS (or device driver) specifies address and size of the data request by programming the Command Block Registers of the IDE device and issues the appropriate DMA transfer command to it.
- BIOS (device driver) engages the bus master function by writing '1' to the Start bit in the Command Register (Bus Master IDE Base Address + 00h and + 08h) for the appropriate channel.

- 8. The 82C700 starts reading the first PRD and transfers data to/from its 32-byte FIFO in response to DMA requests (IDEREQx) from the IDE devices. The 82C700 then starts transfer to local memory (an internal master request will be generated) for read if the FIFO is empty, for write if the FIFO is full, or when the byte count expires and no more entries in the PRD.
- After the last data transfer within a PRD, the 82C700 checks the End of Table (EOT) bit to decide whether to read another PRD or move forward.
- At the end of transfer, the IDE device signals an interrupt.
- 11. After 82C700 has flushed all the data from its FIFO to system memory, it resets the Bus Master IDE Active bit and sets the Interrupt bit in the Status Register.
- 12. The disk interrupt (DINTx) will be passed to the internal INTC ('8259). DINTx will not be blocked to the INTC in a disk write operation. This DINTx triggers IRQ14 or IRQ15 and eventually goes to interrupt the CPU.
- 13. CPU generates an INTA# cycle in responds to the IRQ14 (INT76H) or IRQ15 (INT77H). The INT76H handler sets 40:E8h to FFh to signal completion of the disk access.
- 14. BIOS (device driver) resets the Start/Stop bit in the Command Register. It then reads the Status and Interrupt bits in the Status Register and then the IDE device's status to determine if the transfer completed successfully.
- 15. Status will be passed back to INT13H to finish the operation.

912-2000-015 Revision: 1.0

Figure 4-36 Bus Master IDE Operation

4.11.6.4 Programming the IDE Interrupt Routing

Table 4-87 details the interrupt routing mechanism for the

MIDE Module while in the Legacy and Native Modes. The system BIOS needs to program them accordingly.

Table 4-87 IDE Interrupt Routing Chart

		PCI	IDE Configurat	ion Register Se	etting			
Func	tions					IDE Drive Intern	rupts routed to:	
IDE Modes		04h[0]	04h[0] 40h[3]		09h[3:0]	Primary	Secondary	
Primary	Secondary	IDE I/O Enable	2nd IDE Disable	Native Mode Enable	Native/ Legacy Mode	8259 Interrupt or PCI Interrupt	8259 Interrupt or PCI Interrupt	
Disa	ıbled	0	Х	х	xxxx	N/A	N/A	
1 (1)	Disabled	1	1	0	xxxx	8259 IRQ14 input	N/A	
Legacy ⁽¹⁾	Disabled	1	1	1	xx10	6259 INQ14 IIIput	IV/A	
Native	Disabled	1	1	1	xx11	PCIRQ3# ⁽²⁾	N/A	
Legacy ⁽¹⁾	Native	1	0	1	1110	8259 IRQ14 input	PCIRQ3# ⁽²⁾	
Native	Legacy ⁽¹⁾	1	0	1	1011	PCIRQ3# ⁽²⁾	8259 IRQ15 input	
1 (1)	1 (1)	1	0	0	xxxx	8259 IRQ14 input	8259 IRQ15 input	
Legacy ⁽¹⁾	Legacy ⁽¹⁾	1	0	1	1010	6209 InQ14 Input	6259 InQ15 Input	
Native	Native	1	0	1	1111	PCIRQ3# ⁽²⁾	PCIRQ3# ⁽²⁾	

⁽¹⁾ The 8259 interrupt input IRQ14 (IRQ15) will not be available for mapping from PCIIRQ0#-3# if the primary (secondary) channel is enabled in legacy mode.

Table 4-88 IDE Interrupt Selection Registers

7	6	5	4	3	2	1	0	
PCIIDE 45h IDE Interrupt Selection Register Default = 0								
Secondary Drive	e 1 interrupt pin:	Secondary Drive	e 0 interrupt pin:	Primary Drive	1 interrupt pin:	Primary Drive	0 interrupt pin:	
00 = IRQ10+PCIRQ0# 00 = IRQ1 01 = IRQ11+PCIRQ1# 01 = IRQ1 10 = IRQ14+PCIRQ2# 10 = IRQ1			0+PCIRQ0# I+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	01 = IRQ1 10 = IRQ1 11 = IRQ1	0+PCIRQ0# 1+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	01 = IRQ1 10 = IRQ1	0+PCIRQ0# 1+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	
	<u>-</u>	icy wode and FCI		•				
PCIIDE 47h - FS	ACPI Version		IDE Interrupt S	election Register		Default = FAh		
Secondary Drive	e 1 interrupt pin:	Secondary Drive	e 0 interrupt pin:	Primary Drive	1 interrupt pin:	Primary Drive	0 interrupt pin:	
01 = IRQ11 10 = IRQ14	0+PCIRQ0# +PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	01 = IRQ1 10 = IRQ1	D+PCIRQ0# I+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	01 = IRQ1 10 = IRQ1	0+PCIRQ0# I+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	01 = IRQ1 10 = IRQ1	D+PCIRQ0# 1+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	
Note: ISA IRQ is	selected for Lega	cy Mode and PCI	IRQ is selected for	or Native Mode (se	e PCIIDE 09h).			

⁽²⁾ See Table 4-88 for selection possibilities.

4.11.7 Emulated Bus Mastering Mode

FireStar provides a means to have DMA-type operation on a PIO mode drive. Any IDE device can use this feature. The feature works by acting as a bus master, in much the same way as the DMA controller would.

Emulated bus mastering allows devices such as IDE CD-ROM drives to access data and store it in a memory buffer with no CPU intervention. The interrupt from the IDE drive is handled by a hardware sequencer; the CPU is interrupted only after the transfer is complete. The attached IDE drive can deassert IOCHRDY as needed if data is not ready.

Since the purpose of the Emulated Bus Master IDE mode is primarily to increase system performance during the disk read from CD-ROM transfer, this mode is implemented for the read-from-disk direction only.

The differences between PIO mode and DMA mode transfer are not only the control signal behavior, but also the programming methods to the drive and IDE controller. These are described below. It is important to note that no DMA instructions are allowed to be sent to the drive in this mode, since the drive itself is a PIO-mode-only device. No interception of drive-related commands takes place, so DMA-related commands would only confuse the IDE drive logic.

4.11.7.1 Setup

The IDE controller channel must be programmed to support a bus master IDE drive. In addition, the bit corresponding to the channel must be set in PCIIDE 44h[3:0] for FireStar and PCI-IDE 46h[3:0] for FireStar ACPI to select Emulated Bus Mastering (refer to Table 4-89).

4.11.7.2 **Operation**

As stated earlier, only PIO-mode commands are allowed to the drive. The emulated bus mastering function automates only reads from the drive, so writes must still be carried out through normal I/O write cycles from the CPU.

Emulated bus mastering depends on the IRQ line to determine transfer completion. For CD-ROM data read, IRQ is asserted for two reasons:

- When data is ready to be read by host ("data ready IRQ")
- At the end of the transfer ("transfer complete IRQ").

This behavior is important to understand for the emulation implementation.

Data Ready IRQ: When IRQ assertion signals "data ready", software must act as if it is programming a DMA mode IDE controller by doing the following:

- Prepare the required PRD table and word count in memory
- Generate required control commands to the IDE controller. Since the drive used is not DMA-capable, software must not send any DMA commands to the disk drive. Only normal PIO commands can be used.
- · Set the Start bit in the IDE controller register.

At this point the hardware takes over and generates the programmed number of I/O read cycles to the CD-ROM drive. During the transfer, the IDE controller uses the existing bus master IDE control state machine and logic to perform the operation. The signal DCS1# is forced active, DCS3# is forced inactive, and DDACK# is masked, before being sent to the disk drive interface. Therefore, the CD-ROM is seeing PIO mode data read transfer control.

Transfer Complete IRQ: When the word count expires in the IDE controller and CD-ROM drive, IRQ is asserted to signal "transfer completed". Software must:

- · Reset the Start bit in the IDE controller register
- Read the controller status and then the drive status to determine whether the transfer completed successfully.

Table 4-89 En	nulated Bu	s Master (Control R	legisters
---------------	------------	------------	-----------	-----------

7	6	5	4	3	2	1	0
PCIIDE 44h			Emulated Bus	Master Register			Default = 00h
	Rese	erved		Emulated bus mastering for Cable 1, Drive 1: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 1, Drive 0: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 0, Drive 1: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 0, Drive 0: 0 = Disable 1 = Enable
PCIIDE 46h - FS	ACPI Version	E	mulated IDE Cor	nfiguration Regis	Default = 00h		
Fix for I/O 32-bit Mode 4 and Mode 5 timing: 0 = Disable 1 = Enable		Reserved		Emulated bus mastering for Cable 1, Drive 1: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 1, Drive 0: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 0, Drive 1: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 0, Drive 0: 0 = Disable 1 = Enable

912-2000-015 Page 158

4.12 Type F DMA Support

Improved DMA transfer performance is available on a channel-by-channel basis for those devices capable of shorter ISA command pulses. Normally, the FireStar DMA cycle width is six ISA clocks for the read command and four ISA clocks for the write command. Enabling Type F DMA for a channel changes this timing.

- · For ISA DMA devices:
 - Read command (IOR# or MRD#) is two ISA clocks
 - Write command (IOW# or MWR#) is one ISA clock

- · For CISA DMA devices:
 - CMD# is three ISA clocks
 - MRD# or MWR# is also three ISA clocks

Type F DMA is controlled through the EISA register scheme. Only the bits shown in Table 4-90 are supported.

Table 4-90 Type DMA Control Register Bits

7	6	5	4	3	2	1	0			
Port 40Bh	EISA DMA Extended Mode Register, Channels 0 through 3 Default =									
Not implemented	Not implemented	00 = ISA 01 = ISA	timing: -compatible -compatible -compatible e F	Not implemented	Not implemented	DMA Channel: 00 = Channel 0 01 = Channel 1 10 = Channel 2 11 = Channel 3				
Port 4D6h		EISA DMA I	Extended Mode F	Register, Channel	s 4 through 7		Default = xxh			
Not implemented	Not implemented	00 = ISA 01 = ISA	timing: -compatible -compatible -compatible e F	Not implemented	Not implemented	DMA C 00 = Res 01 = Cha 10 = Cha 11 = Cha	annel 5 annel 6			

4.13 **Distributed DMA Overview**

FireStar incorporates features to support Distributed DMA. The following subsections describe the Distributed DMA protocol and how FireStar supports it.

4.13.1 Distributed DMA Protocol

DMA on a PCI bus or across a PCI bridge is not currently handled by either the PCI or CardBus specifications. To fill this need, a DMA protocol has been developed. The protocol provides a solid framework for compatible operation, but does not specify the exact method of implementation. Therefore, this document describes the generally agreed-to protocol and highlights its implementation in OPTi designs.

Introduction 4.13.1.1

The distributed DMA protocol allows PCI-based designs to incorporate multiple DMA controller (DMAC) channels distributed throughout the system, each of which is local to the device it will service. The PCI specification itself is not modified for DMA since only standard I/O and memory cycles are used in this scheme.

A specific protocol is needed for multiple DMA controllers on PCI. If each DMA channel had its own unique set of registers, there would be no problem; the device responsible for each channel would claim only its own accesses. Unfortunately, in the PC architecture some DMA registers are shared by groups of four channels; up to four separate devices would have to claim a single I/O read access, with disastrous results.

Therefore, the DMAC protocol specifies the means of:

- · Claiming and routing I/O accesses to the correct owner of each channel
- Dividing up accesses that could be claimed by multiple devices
- Returning combined status information from multiple sources.

The means by which the distributed DMA protocol defines these responsibilities is described next.

4.13.1.2 Protocol Overview

The basic protocol simply defines new and unique I/O addresses for each register on every DMAC channel. The remapping puts all registers associated with a specific DMAC channel into a 10h byte area to make windowing requirements easier on PCI-to-PCI bridges.

When DMAC channels are present on a remote bus, the PCI controller sends DMA register I/O read and write cycles to the local PCI bus PCI-to-PCI bridges that connect the remote DMAC channels. PCI-to-PCI bridges need not be DMAaware to pass these cycles, as long as they have an I/O mapping window programmed to claim the remapped accesses.

4.13.1.3 Distributed DMA Protocol Terminology

Devices on PCI that adhere to the distributed DMA protocol are referred to in this document using the phrases "master DMAC", "DMA Channel Selector Register", "remote DMAC channels", and "DMA remapper". These terms are described below.

Master DMAC

There must be one master DMAC in the system. It is an OPTi standard 82C206-type DMAC subsystem with shadow register provisions. The master DMAC:

- Becomes the claimer of cycles to DMAC channels that are not used by PCI peripheral devices or devices on the secondary side of PCI-to-PCI or PCI-to-ISA bridges.
- Provide all seven DMA channels: in the event that no other devices in the system support DMA, the master DMAC must claim all cycles.
- · Claims all accesses for DMA Channel 4.

Remote DMAC Channels

Remote DMAC channels can be anywhere in the system, even on the same PCI bus as the Master DMAC. Each remote DMAC channel must claim only the remapped cycles for which it is responsible. The only other difference between a remote DMAC channel and a channel on the master DMAC is that the master DMAC shadows writes to be able to respond to reads of shadowed information. Remote DMAC channels never respond to reads for write-only registers in the 8237 design.

DMA Channel Selector Register

Within the PCI Configuration Registers of PCI-based DMACs and DMA-aware PCI-to-PCI bridges are seven configuration bits to select whether each DMA channel is local or remote. For each device, the bits are programmed to select whether the DMAC claims that DMA channel or not. "Claimed" means that the channel is claimed by the device or that the device is claiming the cycle on behalf of another device downstream. For the scheme to work properly, each channel can be assigned "claimed" status in only one DMA Channel Selector Register; any channels that are unclaimed should be assigned to the master DMAC.

DMAC Responsibility - This bit determines whether the concerned DMAC will be the system master. Only one master is possible in the system.

The DMA Channel Selector Register layout is illustrated in Table 4-91.

After master and remote status has been properly assigned, the responsibility for claiming cycles can be defined as discussed next.

912-2000-015 Page 160

DMA Remapper

The address of each DMA controller port for each channel is normally listed as an absolute value in the ISA-compatible I/O address space. The DMA remapper remaps these ports through a lookup table scheme. For the most part, the assignments are regular enough that a formula could be applied. Unfortunately, certain ISA-compatible register locations (the Page Register in particular) introduce an irregularity in the remapping and require an inconsistent approach. The mapping is illustrated in Table 4-92 using DMA Channel 0 as an example.

From the CPU instruction set point of view, no change in addressing is required. All code can continue to issue the original ISA-compatible port addresses. However, DMA programming code that is PCI-aware can directly address these ports if desired.

Note that only the EISA extensions to the Page Register and the Count Register are implemented. The remaining EISA extensions are not currently handled by this protocol.

Table 4-91 DMA Channel Selector Register

7	6	5	4	3	2	1	0		
PCIDV1 5Ch DMA Channel Selector Register									
Ch 7	Ch 6	Ch 5	Hardware Dis-	Ch 3	Ch 2	Ch 1	Ch 0		
(DMAC2):	(DMAC2):	(DMAC2):	tributed DMA:	(DMAC1):	(DMAC1):	(DMAC1):	(DMAC1):		
0 = Local	0 = Local	0 = Local	0 = Disable	0 = Local	0 = Local	0 = Local	0 = Local		
1 = On PCI	1 = On PCI	1 = On PCI	1 = Enable	1 = On PCI					

Table 4-92 DMA Remap Scheme - Generic for all DMA Channels

Register	Bits	Туре	ISA I/O Address Example: Channel 0	Remapped Offset for PCI
Memory Address w/byte ptr low	A[7:0]	Read/Write	000h	b+(ch*10)+000h
Memory Address w/byte ptr high	A[15:8]	Read/Write	000h	b+(ch*10)+001h
Page Address	A[23:16]	Read/Write	087h	b+(ch*10)+002h
EISA High Byte Page Address	A[31:24]	Read/Write	487h	b+(ch*10)+003h
Count w/byte ptr low	C[7:0]	Read/Write	001h	b+(ch*10)+004h
Count w/byte ptr high	C[15:8]	Read/Write	001h	b+(ch*10)+005h
EISA High Byte Count	C[23:16]	Read/Write	401h	b+(ch*10)+006h
Reserved			007h	
Status		Read-Only	008h	b+(ch*10)+008h
Command		Write-Only	008h	b+(ch*10)+008h
DMA Request		Write-Only	009h	b+(ch*10)+009h
Set Single Mask Bit		Write-Only	00Ah	b+(ch*10)+00Fh[0]
Mode		Write-Only	00Bh	b+(ch*10)+00Bh
Byte Pointer Flip-Flop Clear		Write-Only	00 Ch	handled by DMA remapper
Master Clear		Write-Only	00Dh	b+(ch*10)+00Dh
Mask Clear		Write-Only	00Eh	b+(ch*10)+00Fh[0]
Mask		Read/Write	00Fh	b+(ch*10)+00Fh[0]

Notes:

'b' indicates base address

'ch' indicates channel number: ch=0 for channel 0, ch=1 for channel 1, ch=2 for channel 2, ..., ch=7 for channel 7

Preliminary **82C700**

Complete Remap Scheme, Channels 0-3 Table 4-93

		ISA I/O Port Address / PCI Remapped Address					
Register	Туре	DMA Ch 0	DMA Ch 1	DMA Ch 2	DMA Ch 3		
Memory Address w/byte ptr low	Read/Write	000h→b+000h	002h→b+010h	004h→b+020h	006h→b+030h		
Memory Address w/byte ptr high	Read/Write	000h→b+001h	002h→b+011h	004h→b+021h	006h→b+031h		
Page Address	Read/Write	087h→b+002h	083h→b+012h	081h→b+022h	082h→b+032h		
EISA High Byte Page Address	Read/Write	487h→b+003h	483h→b+013h	481h→b+023h	482h→b+033h		
Count w/byte ptr low	Read/Write	001h→b+004h	003h→b+014h	005h→b+024h	007h→b+034h		
Count w/byte ptr high	Read/Write	001h→b+005h	003h→b+015h	005h→b+025h	007h→b+035h		
EISA High Byte Count	Read/Write	401h→b+006h	403h→b+016h	405h→b+026h	407h→b+036h		
Status	Read-Only	008h-		+028hb+038h (four i	reads)		
Command	Write-Only	008h-		+028hb+038h (four v	writes)		
DMA Request	Write-Only	009h→b+009h	009h→b+019h	009h→b+029h	009h→b+039h		
Set Single Mask Bit	Write-Only	00Ah→b+00Fh[0]	00Ah→b+01Fh[0]	00Ah→b+02Fh[0]	00Ah→b+03Fh[0]		
Mode	Write-Only	00Bh→b+00Bh	00Bh→b+01Bh	00Bh→b+02Bh	00Bh→b+03Bh		
Byte Pointer Flip-Flop Clear	Write-Only	00Ch→use	ed by remapper, but n	o remapped I/O cycle	generated		
Master Clear	Write-Only	00Dh/b+00Dhb+01Dhb+02Dhb+03Dh (four writes)					
Mask Clear	Write-Only	00Eh→b+00Fh[0]b+01Fh[0]b+02Fh[0]b+03Fh[0] (four writes)					
Mask	Read/Write	00Fh→b+0	0Fh[0]b+01Fh[0]b-	+02Fh[0]b+03Fh[0] ((four writes)		

Complete Remap Scheme, Channels 4-7 Table 4-94

		IS.	PCI Remapped Addr	ess				
Register	Туре	DMA Ch 4	DMA Ch 5	DMA Ch 6	DMA Ch 7			
Memory Address w/byte ptr low	Read/Write	0C0h→none	0C4h→b+050h	0C8h→b+060h	0CCh→b+070h			
Memory Address w/byte ptr high	Read/Write	0C0h→none	0C4h→b+051h	0C8h→b+061h	0CCh→b+071h			
Page Address	Read/Write	08Fh→none	08Bh→b+052h	089h→b+062h	08Ah→b+072h			
EISA High Byte Page Address	Read/Write	none→none	48Bh→b+053h	489h→b+063h	48Ah→b+073h			
Count w/byte ptr low	Read/Write	0C2h→none	0C6h→b+054h	0CAh→b+064h	0CEh→b+074h			
Count w/byte ptr high	Read/Write	0C2h→none	0C6h→b+055h	0CAh→b+065h	0CEh→b+075h			
EISA High Byte Count	Read/Write	none→none	4C6h→b+056h	4CAh→b+066h	4CEh→b+076h			
Status	Read-Only	0D0h→none	0D0h→b+05	8hb+068hb+078h	(three reads)			
Command	Write-Only	0D0h→none	0D0h→b+05	8hb+068hb+078h	(three writes)			
DMA Request	Write-Only	0D2h→none	0D2h→b+059h	0D2h→b+069h	0D2h→b+079h			
Set Single Mask Bit	Write-Only	0D4h→none	0D4h→b+05Fh[0]	0D4h→b+06Fh[0]	0D4h→b+07Fh[0]			
Mode	Write-Only	0D6h→none	0D6h→b+05Bh	0D6h→b+06Bh	0D6h→b+07Bh			
Byte Pointer Flip-Flop Clear	Write-Only	0D8h→us	ed by remapper, but n	o remapped I/O cycle	generated			
Master Clear	Write-Only	00	0DAh→b+05Dhb+06Dhb+07Dh (three writes)					
Mask Clear	Write-Only	0DCh→none	0DCh→b+05Fh[()]b+06Fh[0]b+07F	h[0] (three writes)			
Mask	Read/Write	0DEh		[0]b+07Fh[0] (three	writes)			

Page 162 912-2000-015

Register Writes

Most, but not all, DMA I/O register writes are remapped by the DMA remapper. For all cases, the DMA remapper must generate STOP# in response to the original cycle until these remapped cycles are complete.

- · Mode and Request
 - For these write-only DMA registers, bits [1:0] indicate the channel number. Therefore, the DMA remapper need only generate a single I/O access, to the channel specified.
- · Command, Mask, and Master Clear
 - The DMA remapper remaps the access to four unique I/O locations (only three for DMAC2 accesses since DMA Channel 4 is not important). Each device claims only its own access.
- · Single-Channel Mask and Mask Clear
 - These accesses simply update the Mask Register.
 Therefore, the DMA remapper must maintain a copy of the Mask Register internally so that it can update the mask. It then generates remapped writes to all Mask Registers.
- Byte Pointer Flip-Flop Clear
 - The DMA remapper uses this value internally to determine the remapping for address and count accesses.
 However, it does not generate any external I/O cycles for this write.
- All Other Registers
 - The DMA remapper remaps the I/O write according to the tables.

Register Reads

Only certain reads are remapped by the DMA remapper. Reads to other registers are reads of DMA shadow registers, which are not at industry-standard addresses and therefore are not covered by the distributed DMA protocol. Claiming DMAC register reads is straightforward. For all cases, the DMA remapper must generate STOP# in response to the original cycle until these remapped cycles are complete.

- · Address, Count, and Page Address Registers
 - All reads are remapped. The channel owner claims the remapped cycle and returns the data. PCI bridges must claim this cycle and pass it on to the secondary bus to return the data.
- · Mask Register
 - Reads are not remapped. The DMA remapper claims the cycle and returns shadowed information.
- · Status Register
 - Reads are remapped to four unique I/O locations. The DMA remapper combines the returned status information for each channel and provides it to the requester.
- · Write-only Registers
 - Reads are not remapped. The 82C206 core provides read-back capability of these registers as shadowed information.

Note that there is no provision for conflicting claims by more than one device. As long as exactly one "claimed" assignment is made for each channel, there will never be a conflict.

4.13.1.4 DMA Channel Selection

FireStar provides the feature of selectable DMA channels. The registers listed in Table 4-95 provide the selection bits.

4.13.2 Hardware Distributed DMA Support

FireStar implements a hardware DMA remapper when through PCIDV1 5Ch[4], DMA controller I/O accesses are automatically remapped to distributed DMA addresses. (Refer to Table 4-96.)

Table 4-95 Selectable DMA Channel Support

1able 4-95	Selectable Div	ia Channel S	support					
7	6	5	4	3	2	1	0	
PCIDV1 C0h		DM	A Channels A an	d B Selection Re	gister		Default = 10h	
	DMA	channel selection	on on		DM.	A channel selection	non	
	DRQB/D	ACKB# pins (Cha	annel 1):		DRQA/DACI	= Channel 0):		
	000 = Channel	10 100 = F	PPWR5		000 = Channe	el 0 100 =	= PPWR4	
	001 = Channel		Channel 5		001 = Channe		Channel 5	
	010 = Channel		Channel 6		010 = Channe		Channel 6	
	011 = Channel	3 111 = 0	Channel 7		011 = Channe	el 3 111 = 0	Channel 7	
PCIDV1 C1h		DM	A Channels C an	d D Selection Re	gister		Default = 32h	
	DMA	channel selection	n on		DM.	A channel selection	on on	
	DRQD/D	ACKD# pins (Ch	annel 3):		DRQC/I	DACKC# pins (Ch	annel 2):	
	000 = Channel	10 100 = F	PPWR7		000 = Channe	el 0 100 =	PP W R6	
	001 = Channel	11 101 = 0	Channel 5		001 = Channe	el 1 101 =	Channel 5	
	010 = Channel		Channel 6		010 = Channe		Channel 6	
	011 = Channel	3 111 = 0	Channel 7		011 = Channe	el 3 111 = 0	Channel 7	
PCIDV1 C2h			DMA Channel E	Selection Regist	er		Default = 50h	
	T DMA	channel selection		T	1	ī	T	
		E# pins (Default						
	000 = Channel		= Channer 5). PPWR13					
	000 = Channel		Channel 5					
	010 = Channel		Channel 6					
	010 = Channel		Channel 7					
	OTT = OTIGITITE	111 = 0	orial interv					
PCIDV1 C3h		DM	A Channels F an	d G Selection Re	gister		Default = 76h	
	DMA channel selection on DMA channel selection						on on	
	DRQG/DACK	G# pins (Default	= Channel 7):		DRQF/DACI	KF# pins (Default	= Channel 6):	
	000 = Channel	10 100 = F	PPWR15		000 = Channe	el 0 100 =	PPWR14	
	001 = Channel	11 101 = 0	Channel 5		001 = Channe	el 1 101 =	Channel 5	
	010 = Channel	12 110 = 0	Channel 6		010 = Channe	el 2 110 = 1	Channel 6	
	011 = Channel	3 111 = 0	Channel 7		011 = Channe	el 3 111 = 0	Channel 7	

Table 4-96 Hardware DMA Remapper

7	6	5	4	3	2	1	0
PCIDV1 5Ch			DMA Channel S	Selector Register			Default = 00h
			Hardware Distributed DMA: 0 = Disable 1 = Enable				

Page 164 912-2000-015

4.13.3 Software Distributed DMA Support

The support implemented is simply the addition of I/O port monitoring. The read or write access of any of the following I/O ranges will cause a DMA ACCESS PMI.

- · 000-00Fh, 400-40Fh
- 0C0-0DFh, 4C0-4DFh
- 4E0-4FFh (EISA Stop Registers)
- · 080-08Fh, 480-48Fh

Once the SMM code takes over, it can read the I/O write data from the SMM register save area of system management memory. SMM code can determine the DMA controller I/O register address that the application attempted to write by reading SYSCFG D6h, D7h, and EBh (as shown in Table 4-97).

4.13.3.1 PCI Configuration Registers

FireStar offers the PCI configuration registers shown in Table 4-98 for system event handlers to control and monitor Distributed DMA.

Table 4-97 Access Trap Address Register Bits

7	6	5	4	3	2	1	0				
SYSCFG D6h		PMU Control Register 10									
						Access trap bit A9 (RO)	Access trap bit A8 (RO)				

SYSCFG D7h Access Port Address Register 1 Default = 00h

Access trap address bits A[7:0]:

- These bits, along with SYSCFG D6h[1:0] and SYSCFG EBh[7:0] provide the 16-bit address of the port access that caused the SMI trap.
- SYSCFG D6h[2] indicates whether an I/O read or an I/O write access was trapped.
- SYSCFG D6h[3] gives the status of the SBHE# signal for the I/O instruction that was trapped.

SYSCFG EBh	Access Port Address Register 2	Default = 00h
Reserved	Access trap address bits A[15:10]:	
	These bits along with SYSCFG D6h[1:0] and D7h[7:0] provide the 16-bit at that caused the SMI trap. D6h[2] indicates whether an I/O read or an I/O w D6h[3] gives the status of the SBHE# signal for the I/O instruction that was	rite access was trapped.

Table 4-98 PMU Registers Associated with DMA Trap

	7	6	5	4	3	2	1	0
PC	IDV1 58h		DRQ Remap B	ase Address Red	gister - Byte 0: Ac	dress Bits [7:0]		Default = 00h

DRQ remap base address bits [7:0]:

- The distributed DMA protocol requires DMA controller registers for each DMA channel to be individually mapped into I/O space outside the range claimed by ISA devices. Bits A[31:0] of this register specify that base; bits 6:0 are reserved (write 0) because the base address can fall only on 128 byte boundaries. The 82C700 logic uses this base address two ways:
 - 1) to claim accesses to a PCMCIA DMA controller channel;
 - 2) to forward accesses across the bridge to remote devices specified in the DMA Channel Selector Register.

PCIDV1 59h	DRQ Remap Base Address Register - Byte 1: Address Bits [15:8]	Default = 00h
PCIDV1 5Ah	DRQ Remap Base Address Register - Byte 2: Address Bits [23:16]	Default = 00h
PCIDV1 5Bh	DRQ Remap Base Address Register - Byte 3: Address Bits [31:24]	Default = 00h

4.13.3.2 DMA Channel Selector Register

The register shown in Table 4-99 (PCIDV1 5Ch) is readable and writable, but performs no other function in the present silicon. PCI enumerator software selects "local" and "remote" ("on PCI") locations for each DMA channel through this register; a similar register exists on the 82C824. SMM code can then read this value to determine whether each channel is

local or remote and can remap the access, or restart the cycle, accordingly.

4.13.3.3 System Configuration Registers

The PMU registers in Table 4-100 allow SMM code to initially enable the trap, and to later identify the source of the SMI.

Table 4-99 DMA Channel Selector Register

7	6	5	4	3	2	1	0
PCIDV1 5Ch			DMA Channel S	Selector Register			Default = 00h
Ch 7	Ch 6	Ch 5	Hardware Dis-	Ch 3	Ch 2	Ch 1	Ch 0
(DMAC2):	(DMAC2):	(DMAC2):	tributed DMA:	(DMAC1):	(DMAC1):	(DMAC1):	(DMAC1):
0 = Local	0 = Local	0 = Local	0 = Disable	0 = Local	0 = Local	0 = Local	0 = Local
1 = On PCI	1 = On PCI	1 = On PCI	1 = Enable	1 = On PCI	1 = On PCI	1 = On PCI	1 = On PCI

Table 4-100 PMU Register Bits Associated with DMA Trap

6	5	4	3	2	1	0
	PMU	SMI Source Regi	ister 4 (Write 1 to	Clear)		Default = 00h
	PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active					
		PMU Even	nt Register 8			Default = 00h
					PMI#3 00 = Dis	
	6	PMU PMI#37, DMA_ ACCESS: 0 = Inactive	PMU SMI Source Reg PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMU SMI Source Register 4 (Write 1 to PMI#37, DMA_ ACCESS: 0 = Inactive	PMU SMI Source Register 4 (Write 1 to Clear) PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMU SMI Source Register 4 (Write 1 to Clear) PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active PMU Event Register 8

4.14 IRQ Driveback Overview

The OPTi PCI IRQ Driveback cycle provides a clean and simple way to convey interrupt and DMA status information to the host. The protocol is reliable and does not in any way compromise PCI compatibility.

- Whenever a PCI peripheral device must signal an IRQ or SMI# to the system, it asserts its REQ# line to the host for one PCI clock, deasserts it for one PCI clock, then asserts it again and keeps it low until acknowledged.
- The host recognizes this sequence as a high-priority request and immediately removes all other bus grants (GNT# lines). Once the previous bus owner is off the bus, the host acknowledges the high-priority request with GNT# as usual.
- The peripheral device logic runs an I/O write cycle to the IRQ Driveback address specified in the PCI configuration registers, and releases REQ#.
- 4. The host latches the information on AD[31:0] and sets the IRQ lines appropriately.
- 5. An optional second burst data cycle can take place to convey additional interrupt information.

PCI-type devices on the secondary side of bridge chips can use this same protocol to convey their interrupt requests through the bridge to the host. The format of the driveback

cycle request is illustrated in the Figure 4-37. A second data phase is also possible.

4.14.1 Driveback Cycle Format

Table 4-101 and Table 4-102 illustrate the interrupt information indicated IRQ bits indicate whether that IRQ line is being driven high or low. The EN# bits indicate whether that IRQ is enabled to be changed or not. When the EN# bit is low, the value on the IRQ bit is valid. The device containing the central interrupt controller claims this I/O write cycle, and can then change its internal IRQ line state to match the value sent

When a PCI device needs to generate an interrupt to the system, it runs a driveback cycle with the Enable bit low for each IRQ line under its control. For example, a device on PCI could run a driveback cycle with IRQ3 high and EN3# low to generate IRQ3 to the system. When the interrupt has been serviced and the device deasserts its interrupt, it starts another driveback cycle with IRQ3 low and EN3# low.

During both of these instances, if the device controls interrupts other than IRQ3, it must set its EN# bits low for all channels it controls, not just for the interrupt whose state has changed. The other IRQs must be driven with their previously used values.

Figure 4-37 IRQ Driveback Cycle High Priority Request

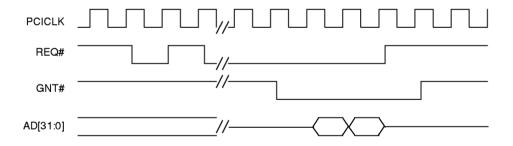


Table 4-101 Information Provided on a Driveback Cycle

Low	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
Word	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
High	AD31	AD30	AD29	AD28	AD27	AD26	AD25	AD24	AD23	AD22	AD21	AD20	AD19	AD18	AD17	AD16
Word	EN15#	EN14#	EN13#	EN12#	EN11#	EN10#	EN9#	EN8#	EN7#	EN6#	EN5#	EN4#	EN3#	EN2#	EN1#	EN0#

OPTi.

Preliminary 82C700

There is a convention for assignment of otherwise unusable IRQs:

- IRQ2 generates an SMI#. Note that the sense of IRQ2 is still active high. In this way, devices that use IRQ driveback can generate SMI# simply by routing their normal interrupt to IRQ2 without needing to change the polarity of the interrupt generation logic.
- IRQ13 generates an NMI. This feature allows PCI-to-ISA bridges such as the 82C825 chip to return the CHCK# signal from the ISA bus across the PCI bus. The sense of IRQ13 is active high.

Table 4-102 illustrates the format of the optional second data phase of the IRQ driveback cycle. This phase is presently reserved for returning the PCI interrupts and ACPI events. If the device needs to send back level-model interrupts, it bursts the information on the PCI clock following data phase one. The IRQ driveback address automatically increments to (base +4) per PCI requirements. It is also allowable for devices to drive back only phase 2, by directly accessing the (base +4) address.

Table 4-102 Information Provided on a Optional Data Phase 2 of IRQ Driveback Cycle

Low Word	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
	Rsvd	ACPI3	ACPI2	ACPI1	ACPI0	PCIRQ 3	PCIRQ 2	PCIRQ 1	PCIRQ 0							
High W ord	AD31	AD30	AD29	AD28	AD27	AD26	AD25	AD24	AD23	AD22	AD21	AD20	AD19	AD18	AD17	AD16
	Rsvd	EN ACPI3#	EN ACPI2#	EN ACPI1#	EN ACPI0#	ENP3#	ENP2#	ENP1#	ENP0#							

4.14.2 Edge vs Level Mode, IRQ Polarity

The IRQs driven back in data phase 1 are interpreted as edge-mode interrupts, as expected for AT compatibility. The AD[15:0] signals are interpreted as active when high (1); the Enable (EN#) signals AD[31:16] are active when low (0).

In optional data phase 2, the PCIRQ[3:0]# bits are interpreted as level-mode interrupts by the host hardware. As with data phase 1, the controls indicated by AD[15:0] are interpreted as active when **high**; the Enable (EN#) controls on AD[31:16] are active when **low**. Note that PCI signals INTA-D# are active low by definition.

4.14.3 Host Handling of IRQ Driveback Information

The host chipset must handle the IRQ driveback information differently depending on whether the selected interrupt is sharable or not. Generally the ISA IRQ lines need no special consideration.

However, the INTA-D# lines can be shared by multiple devices on the PCI bus. Thus, one device could perform an IRQ driveback to set the INTx# line active for its purposes, while another device could follow immediately by setting the same INTx# line inactive. Therefore, the host is required to implement a counter in this case, so that it considers the line inactive only after it has received the same number of active-going drivebacks as it has inactive-going drivebacks.

A three-bit counter can be considered sufficient to handle the situation, since this would allow up to seven devices to chain to the same interrupt. It is unlikely that system requirements would exceed this number given the latency penalty incurred.

4.14.4 IRQ Driveback Support

FireStar uses the registers shown in Table 4-103 to control and monitor IBO driveback.

Page 168 912-2000-015

Table 4-103 IRQ Driveback Control and Monitor Registers

7	6	5	4	3	2	1	0
PCIDV1 5Eh			IRQ Scheme Mar	Default = 00h			
End-of-Interrupt The value of thes number of retries forced on the PC an attempt is ma Port 020h or 0A0 of the interrupt of Multiple retries el device trying to g driveback will sue EOI command ta feature eliminate that an EOI could before a change gets back to the controller.	that will be If bus every time de to write I/O th, where OCW2 controller is set. Insure that a generate an IRQ coeed before an ikes effect. This is the possibility d be registered in IRQ status	IRQ driveback data readback selection at PCIDV1 60h-63h: 0 = 1st data phase 1 = 2nd data phase			Reserved		

PCIDV1 54h

IRQ Driveback Address Register - Byte 0: Address Bits [7:0]

Default = 00h

Default = 00h

IRQ driveback protocol address bits [7:0]:

- When an external device logic, such as the 82C824 PC Card Controller or the 82C814 Docking Controller, must generate an interrupt from any source, it follows the IRQ Driveback Protocol and toggles the REQ# line to the 82C700. Once it has the bus, it writes the changed IRQ information to the 32-bit I/O address specified in this register. The 82C700 interrupt controller claims this cycle and latches the new IRQ values.
- This register defaults to a value of 00h, which disables the IRQ driveback scheme.

PCIDV1 55h	IRQ Driveback Address Register - Byte 1: Address Bits [15:8]	Default = 00h
PCIDV1 56h	IRQ Driveback Address Register - Byte 2: Address Bits [23:16]	Default = 00h
PCIDV1 57h	IRQ Driveback Address Register - Byte 3: Address Bits [31:24]	Default = 00h

PCIDV1 60h IRQ Driveback Data Bits [7:0]:

IRQ Driveback Data Register - Byte 0: Data Bits [7:0]

- Whenever the 82C700 receives an IRQ driveback cycle, it latches the entire 32-bit data value in this register. If any of the IRQs set active in this driveback are also programmed to generate an SMI (through the standard PMU register settings), SMM code can read this register to determine the exact driveback value written.

PCIDV1 61h	IRQ Driveback Data Register - Byte 1: Data Bits [15:8]	Default = 00h
PCIDV1 62h	IRQ Driveback Data Register - Byte 2: Data Bits [23:16]	Default = 00h
PCIDV1 63h	IRQ Driveback Data Register - Byte 3: Data Bits [31:24]	Default = 00h

Preliminary 82C700

4.14.4.1 IRQ Scheme Management Register

SYSCFG F5h[3:2] allow the IRQs generated by the IRQ driveback scheme to either pass through unaffected or to be latched in PCIDV1 60h (IRQ Driveback Data Register) and an SMI generated. This feature provides a useful diagnostic tool but is not intended for general power management. The individual IRQ SMI enable bits provided in the PMU should be used for this function. Other bits associated with IRQ driveback are shown in Table 4-104.

Table 4-104 PCI IRQ Driveback Trap Bits

7	6	5	4	3	2	1	0	
SYSCFG DDh	SYSCFG DDh PMU SMI Source Register 4 (Write 1 to Clear) De							
	PMI#38, CISA/PCI IRQ driveback trap: 0 = Inactive 1 = Active							
SYSCFG F5h			PMU Ever	nt Register 8			Default = 00h	

912-2000-015 Page 170

4.15 Power Management

The synergistic incorporation of power management and system control features with the standard AT-subsystem controller of FireStar results in a compact design that handles multiple tasks with a simple, common interface. The power management unit (PMU) of FireStar is based on the implementation in the Viper-N+ Chipset and is designed to be register compatible for easy upgrading. The following subsections detail the operation of the PMU.

- The power management interrupt (PMI) scheme provides system management code with a quick means of identifying and handling events that affect power control and consumption.
- The PMU recognizes 33 separate PMI events. Within these events, many sub-events are also identifiable for a high degree of power management monitoring intelligence.
- Thirteen of the PMI events have individual timers to indicate inactivity time-out situations.
- Eight external inputs are available for monitoring asynchronous system events. These are in addition to the ISA IRQ lines that can also be monitored as power management events.
- PMI generation on access allows SMI code to intercept status queries to powered down devices that do not actually need to be restarted simply to return an "idle" status.
- An activity tracking register of ten events allows SMI or non-SMI applications a means of determining whether

- activity has occurred since the last time the register was checked. Polling of I/O activity can then be used instead of multiple SMIs for less significant events.
- Memory watchdog monitoring allows accesses to memory ranges (specified as programmed) to cause an SMI. ISA bus memory devices that are not being accessed can be programmed to cause a time-out SMI so that unused peripherals can be powered down.
- The PMU supports system-level low power Suspend, low power Suspend with zero volt CPU Suspend, or total system zero volt Suspend.
- Sixteen peripheral power control pins provide exceptional flexibility in peripheral device control.
- Real-time clock (RTC) alarm or modem ring can wake-up the system from the low power Suspend mode.
- Suspend current leakage control ensures that negligible power will be consumed in Suspend mode without additional external buffering.

4.15.1 Power Management Unit (PMU)

FireStar provides a large amount of programmable logic for managing system power control on the most precise of levels. The basic concepts of the FireStar power management scheme involve activity monitoring through time-outs and events. These concepts are illustrated in Figure 4-38 and described in detail in the following sections.

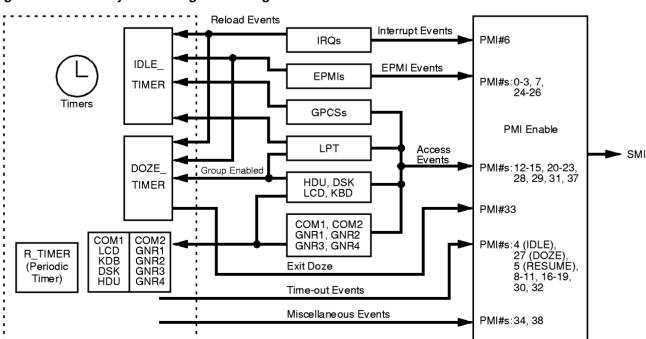


Figure 4-38 Activity Monitoring Block Diagram

OPTi

4.15.1.1 Activity Monitoring

Activity monitoring is based on time-outs of countdown timers, the events that can be enabled to reload the timers and forestall a time-out, and the system management interrupts that can be generated in either case.

Timers

The thirteen FireStar timer registers all have _TIMER appended to their name.

The IDLE_TIMER times long periods of inactivity across all selected system peripherals to determine when a full power-down, called "Suspend" mode, is appropriate.

The DOZE_TIMER times short inactivity intervals (between keystrokes, for example) to put the system in an intermediate power-saving state called "Doze" mode.

The R_TIMER generates a periodic interrupt to allow system management code to poll for activity.

Ten other timers are available to monitor activity on specific peripheral devices so that system management software can shut each one down individually when possible while the rest of the system continues to operate.

Simply loading the timer with a countdown value presets the timers. Then the next access or interrupt event starts them counting down. A "dummy" access is needed in most cases to start the timer counting.

As each timer is clocked by its programmed source, it counts down to a time-out (zero) which generates a power management interrupt (PMI). The time-out PMI can, in turn, be enabled to generate an SMI (system management interrupt) on the SMI line that goes from FireStar to the CPU to trigger it into System Management Mode (SMM).

Events

Each timer has one or more events that can reload it with its original value, holding off the time-out. The events can be:

- Access Events
 - Those that are caused by CPU access to a certain I/O and or memory range associated with that timer.

- Internal Events
 - Triggered by ISA bus IRQ events or special external power management inputs (EPMIs).

All events can be enabled individually to generate a PMI; access events generate separately numbered PMIs, while interrupt events are combined into a single PMI (PMI#6).

As opposed to time-out caused PMIs, event PMIs can be enabled to:

- Reload the timer(s) and, if needed, restore the system clocks speed
- · Generate an SMI
- Do both

Because of the flexibility of FireStar's power management logic, the interaction among these mechanisms can become complex. It is important to bear in mind the basic goal of the logic in order to deal with it effectively.

Timer Clock Sources

FireStar's logic implements thirteen distinct timer circuits. Each timer has a clock source associated with it. For all but the DOZE_TIMER, these are named SQW0, SQW1, SQW2, or SQW3; the DOZE_TIMER circuit works differently than the rest and is described separately in the Section 4.15.3, "Doze Mode". Table 4-106 shows the frequencies that can be applied to the rest of the _TIMER counters.

The SQW3 through SQW0 timings are based on the SQWIN input to FireStar's logic, which is a 32KHz clock input to FireStar. SYSCFG 40h[6] (as shown in Table 4-105) provides a secondary range of time intervals and applies globally to all SQW3 through SQW0 selections.

Table 4-106 lists the range of time-out delays that can be achieved by selecting each SQWx + SYSCFG 40h[6] combination. The register bit locations for each timer are shown in Table 4-107. The timer source is selected by bit combinations:

- 00 = SQW0, 01 = SQW1, 10 = SQW2, 11 = SQW3

Table 4-105 Timer Control Bits

7	6	5	4	3	2	1	0
SYSCFG 40h			PMU Contr	ol Register 1			Default = 00h
	Global timer divide:						
	0 = ÷1 1 = ÷4						

Page 172 912-2000-015 Revision: 1.0

Table 4-106 Time Interval Choices Applicable to _TIMER Settings

		SYSCFG 40	h[6] = 0: No Base	Clock Divisor	SYSCFG 40h[6] = 1: Divide Base Clock by 4			
Choice	Bits	Frequency	Decrement Timer Every:	Maximum Delay	Frequency	Decrement Timer Every:	Maximum Delay	
SQW0	00	32768Hz	30.5µs	7.81ms	8.192KHz	0.122ms	31.25ms	
SQW1	01	512Hz	1.95ms	0.5s	128Hz	7.8ms	2s	
SQW2	10	16Hz	62.5ms	16s	4Hz	0.25s	64s	
SQW3	11	0.5Hz	2s	8.5 min.	0.125Hz	8s	34 min.	

Table 4-107 Timer Clock Source Selection Registers

7	6	5	4	3	2	1	0
SYSCFG 42h if	AEh[7] = 0		Clock Sour	ce Register 1			Default = 00h
	ource for _TIMER		ource for TIMER		ource for TIMER	Clock source for LCD_TIMER	
SYSCFG 42h if	AEh[7] = 1		Clock Sour	ce Register 1			Default = 00h
	ource for _TIMER	Reserved					
SYSCFG B2h if	AEh[7] = 0		Clock Sour	ce Register 2			Default = 00h
	ource for TIMER		ource for _TIMER		ource for _TIMER		ource for TIMER
SYSCFG B2h if	AEh[7] = 1		Clock Sour	ce Register 2			Default = 00h
Reserved							ource for TIMER
SYSCFG 68h			Clock Sour	ce Register 3			Default = 00h
Clock se	ource for	Clock se	ource for				
R_T	IMER		TIMER				
_	IMER		-	ce Pegister 4			Default = 70h
SYSCFG E6h if	IMER		-		ource for _TIMER		Default = 70h ource for TIMER
_	MER AEh[7] = 0		Clock Sour	Clock s			ource for
SYSCFG E6h if	MER AEh[7] = 0		Clock Sour	Clock s GNR4 ce Register 4		GNR3_ Clock so	ource for TIMER
SYSCFG E6h if	MER AEh[7] = 0		Clock Source Clock Source	Clock s GNR4 ce Register 4	_TIMER ource for _TIMER	GNR3_ Clock so	Durce for TIMER Default = 70h Durce for

Time-Out Count and Time-Out SMI

The timer source registers listed in are used to load the initial time-out count. The following rules apply.

- A time-out count of five or greater indicates the countdown value. Time-out count values 1-4 should not be used (since the logic can take up to four clocks to reload a timeout count value, an invalid time-out could occur in the meantime).
- Writing a time-out count of 0 disables the timer.
- A dummy access in the appropriate address range for that timer triggers counting. From then on, additional accesses will reload the timer with its initial value and forestall a time-out.

 Reading the timer value will return only the value initially written, not the current count (except for R_TIMER, which does return the current count).

When a time-out occurs, it can do only one thing: trigger an SMI. Registers listed in Section 4.17.3, "Enabling of Events to Generate SMI", enable each time-out event individually to cause an SMI.

Note that the DOZE_TIMER Registers SYSCFG 41h and 79h contain the time count bits for the DOZE_TIMER and monitor selected IRQs and EPMIs. Unlike the other timer registers, the DOZE_TIMER uses its own time base selected through SYSCFG 41h[7:5]. A time-out generates PMI#27.

Table 4-108 Timer Registers

Time count byte for LCD_TIMER: Monitors LCD_ACCESS. Time-out generates PMI#8. SYSCFG 45h DSK_TIMER Register Time count byte for DSK_TIMER: Monitors DSK_ACCESS. Time-out generates PMI#9. SYSCFG 46h KBD_TIMER Register Time count byte for KBD_TIMER: Monitors KBD_ACCESS. Time-out generates PMI#10. SYSCFG 4Fh IDLE_TIMER Register De Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4.	Default = 00h Default = 00h Default = 00h Default = 00h
SYSCFG 45h Time count byte for DSK_TIMER: Monitors DSK_ACCESS. Time-out generates PMI#9. SYSCFG 46h KBD_TIMER Register Time count byte for KBD_TIMER: Monitors KBD_ACCESS. Time-out generates PMI#10. SYSCFG 4Fh IDLE_TIMER Register Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	Default = 00h
Time count byte for DSK_TIMER: Monitors DSK_ACCESS. Time-out generates PMI#9. SYSCFG 46h KBD_TIMER Register Time count byte for KBD_TIMER: Monitors KBD_ACCESS. Time-out generates PMI#10. SYSCFG 4Fh IDLE_TIMER Register Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	Default = 00h
Time count byte for DSK_TIMER: Monitors DSK_ACCESS. Time-out generates PMI#9. SYSCFG 46h KBD_TIMER Register Time count byte for KBD_TIMER: Monitors KBD_ACCESS. Time-out generates PMI#10. SYSCFG 4Fh IDLE_TIMER Register Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	Default = 00h
SYSCFG 46h KBD_TIMER Register Time count byte for KBD_TIMER: Monitors KBD_ACCESS. Time-out generates PMI#10. SYSCFG 4Fh IDLE_TIMER Register Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register - Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	
Time count byte for KBD_TIMER: Monitors KBD_ACCESS. Time-out generates PMI#10. SYSCFG 4Fh Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register - Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	
SYSCFG 4Fh Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register - Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	efault = 00h
Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register - Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	efault = 00h
Time count byte for IDLE_TIMER: Monitors selected IRQs and EPMIs. Time-out generates PMI#4. SYSCFG 69h R_TIMER Register - Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	etault = 00h
SYSCFG 69h R_TIMER Register - Time count byte for R_TIMER - starts to count after a non-zero write to this register. - Unlike the other timer registers, a read from this register returns the current count.	
- Time count byte for R_TIMER - starts to count after a non-zero write to this register Unlike the other timer registers, a read from this register returns the current count.	
- Unlike the other timer registers, a read from this register returns the current count.	efault = 00h
- Time-out generates PMI#5.	
SYSCFG B4h HDU_TIMER Register De	efault = 00h
Time count byte for HDU_TIMER: Monitors HDU_ACCESS. Time-out generates PMI#19.	
	efault = 00h
Time count byte for COM1_TIMER: Monitors COM1_ACCESS. Time-out generates PMI#17.	
SYSCFG B6h COM2_TIMER Register De	efault = 00h
Time count byte for COM2_TIMER: Monitors COM2_ACCESS. Time-out generates PMI#18.	
	efault = 00h
Time count byte for GNR1_TIMER: Monitors GNR1_ACCESS. Time-out generates PMI#11.	
	efault = 00h
Time count byte for GNR5_TIMER: Monitors GNR5_ACCESS. Time-out generates PMI#11.	

Page 174 912-2000-015

Table 4-108 Timer Registers (cont.)

7	6	5	4	3	2	1	0		
SYSCFG B7h if	AEh[7] = 0		GNR2_TIM	IER Register			Default = 00h		
Time count byte for GNR2_TIMER: Monitors GNR2_ACCESS. Time-out generates PMI#16.									
SYSCFG B7h if AEh[7] = 1 GNR6_TIMER Register Default = 00h									
Time count byte for GNR6_TIMER: Monitors GNR6_ACCESS. Time-out generates PMI#16.									
SYSCFG E7h if AEh[7] = 0 GNR3_TIMER Register Default = 00h									
Time count byte for GNR3_TIMER: Monitors GNR3_ACCESS. Time-out generates PMI#29.									
SYSCFG E7h if AEh[7] = 1 GNR7_TIMER Register Default = 00h									
Time count by	te for GNR7_TIM	ER: Monitors GNF	R7_ACCESS. Time	e-out generates Pl	MI#29.				
SYSCFG E8h if	AEh[7] = 0		GNR4_TIM	IER Register			Default = 00h		
Time count by	te for GNR4_TIM	ER: Monitors GNF	R4_ACCESS. Time	e-out generates Pl	MI#30.				
SYSCFG E8h if	AEh[7] = 1		GNR8 TIM	IER Register			Default = 00h		
	rte for GNR8_TIMI	FR: Monitors GNF	_	•	VI#30				
				o de goneración i	,				
SYSCFG 41h			DOZE_TIMI	ER Register 2			Default = 00h		
DO	ZE_0 time-out sel	ect:	Doze m	ode STPCLK# mc	dulation	ACCESS	Doze control		
	000 = 2ms		,	modulated by BC	events reset	select:			
	001 = 4ms		in	SYSCFG E6h[7:6	Doze mode:	0 = Hardware			
	010 = 8ms		000 = No Mod	lulation (STPCLK	0 = Disable	1 = Software			
	011 = 32ms		001 = STPCL	K# t _{hi} = 0.75 * 16	1 = Enable				
	100 = 128 ms		010 = STPCL	$K# t_{hi} = 0.5 * 16 B$					
	101 = 512ms		011 = STPCL	K# t _{hi} = 0.25 * 16 l					
	110 = 2s		100 = STPCL	K# t _{hi} = 0.125 * 16	BCLKs				
	111 = 8s			K# t _{hi} = 0.0625 * 1					
Time-out general	tes PMI#27.			K# t _{hi} = 0.03125 *					
				<# t _{hi} = 0.015625					
						l			
SYSCFG 79h			PMU Contro	ol Register 11			Default = 00h		
DO	ZE_1 time-out sel	ect:	PMI# event trig-	Reserved	PREQ# wake	CLKRUN#	ATCLK during		
000 = No dela	y (Default) 1	00 = 64 ms	gers exit from		up Suspend:	wake up	Suspend:		
001 = 1 ms	• ,	01 = 256ms	Doze mode if		0 = Disable	Suspend:	0 = Run		
010 = 4ms	1	10 = 1s	the PMI event is		1 = Enable	0 = Disable	1 = Stopped		
011 = 16ms	1	11 = 4s	enabled to gen-			1 = Enable	(overrides		
			erate SMI: ⁽¹⁾				SYSCFG		
			0 = No				66h[6])		
			1 = Yes						
(1) For example,	, to let PMI#11 res	et the Doze mode	without generatin	g SMI to the CPU	SYSCFG 5Ah[7:6	6] must = 11 and	SYSCFG 5Bh[6]		

must = 1.

Preliminary 82C700

ACCESS Events

CPU memory and I/O instructions to peripheral devices cause power management events known as ACCESS events.

- · Most ACCESS events generate an access PMI directly, which in turn can be enabled to activate the SMI input to the CPU so that the event can be serviced.
- · These same events can be programmed to reload an associated countdown timer, thus preventing a time-out PMI from occurring.
- · Still other ACCESS events can only cause a timer reload, and cannot directly generate an SMI.

Table 4-109 lists all of the ACCESS events, how the ACCESS can reload its associated timer and reload the IDLE_TIMER.

Note that enabled ACCESS events, except for the GNR and GPCS events, can be globally enabled to reload the DOZE TIMER by setting SYSCFG 41h[1] = 1. Refer to Section 4.15.3, "Doze Mode", for details.

Serial (COMx) and Parallel Port (LPT) Access

Accesses to the LPT1, LPT2, and LPT3 I/O range group can be programmed to reload the IDLE TIMER. For a greater degree of control, COM1 and COM2 can individually be enabled to cause COM1 ACCESS or COM2 ACCESS, reload the COM1 TIMER or COM2 TIMER, and reload the IDLE TIMER.

Table 4-109 ACCESS Events and their Enabling Bit Locations

ACCESS Mnemonic	Monitored Range	ACCESS PMI#	Enable SMI on Current Access	Enable SMI on Next Access	Enable Reload of IDLE_ TIMER
LPT	Reads/writes in I/O address ranges 378-Fh, 278-Fh, and 3B8-Fh (LPT1, 2, and 3)		1		4Eh[5]
COM1	Reads/writes in I/O address range 3F8-Fh.	21	DEh[5]	DBh[1]	BEh[4]
COM2	Reads/writes in I/O address range 2F8-Fh.	22	DEh[6]	DBh[2]	BEh[5]
DSK	FDD accesses to I/O Port 3F5h and/or HDD accesses to 1F0-1F7h+3F6h. Bits 57h[5:4] determine which ranges apply.	13	DEh[1]	5Bh[1]	4Eh[1]
KBD	Reads/writes to I/O Ports 060h and 064h.	14	DEh[2]	5Bh[2]	4Eh[2]
LCD	Reads/writes in memory address range A0000-BFFFFh and/or I/O address range 3B0-3DFh. Bits 43h[7:6] and 5Fh[7:6]. determine which ranges apply.	12	DEh[0]	5Bh[0]	4Eh[0]
HDU	HDU accesses in the integrated IDE controller range: 1F0-7h + 3F6h (primary) or 170-7h + 376h (secondary). Bit ACh[2] determines which addresses apply.	23	DEh[7]	DBh[3]	BEh[2]
GPCS0	Defined in 4Ah[7:0], 4Bh[7:0], BFh[4,0]				4Eh[6]
GPCS1	Defined in 4Ch[7:0], 4Dh[7:0], BFh[5,1]				4Eh[7]
GPCS2	Defined in BCh[7:0], BDh[7:0], BFh[6,2]				BEh[6]
GPCS3	Defined in BAh[7:0], BBh[7:0], BFh[7,3]				BEh[7]
GNR1	Defined in bits 70h[7:0], 71h[7:0], 72h[7:0], 48h[7:0], 49h[7:0], and AEh[4,2,0]	15	DEh[3]	5Bh[3]	4Eh[3]
GNR2	Defined in bits 73h[7:0], 74h[7:0], 75h[7:0], B8h[7:0], B9h[7:0], and AEh[5,3,1]	20	DEh[4]	DBh[0]	BEh[3]
GNR3	Defined in bits E1h[7:0], E2h[7:0], and E5h[4,2,0]	31	E9h[1]	E9h[0]	4Eh[4]
GNR4	Defined in bits E3h[7:0], E4h[7:0], and E5h[5,3,1]	32	E9h[3]	E9h[2]	BEh[1]
DMA	Read/writes to I/O ports 000-00Fh, 400-40Fh, 0C0- 0DFh, 4C0-4DFh, 4E0-4FFh, 080-08Fh, 480-48Fh.	37	F5h[1:0]		

912-2000-015 Page 176

ISA Bus Floppy and Hard Drive Access

DSK_ACCESS can come from either or both of two separate access types. If enabled, the DSK_ACCESS reloads the DSK TIMER and the IDLE TIMER as well, if desired.

- Floppy accesses to generate DSK_ACCESS if SYSCFG 57h[5] = 0. The range of addresses that are to be monitored are determined by SYSCFG D6h[7].
- Hard disk accesses to 1F0-1F7h and 3F6h generate DSK_ACCESS if SYSCFG 57h[4] = 0. Both ISA bus IDE accesses and PCI bus IDE accesses will generate the access event.

Two separate and independent hard disk drives can be managed if the primary drive is on the ISA bus or PCI bus and the secondary drive is managed by the integrated IDE controller. Refer to the HDU_ACCESS event regarding access events from the integrated local bus IDE controller.

Integrated Controller Hard Drive Access

Accesses to the integrated hard disk controller, in the primary range 1F0-1F7h and 3F6-3F7h or the secondary range 170-177h and 376-377h can cause HDU_ACCESS, reload the HDU_TIMER, and reload the IDLE_TIMER. SYSCFG FCh and FDh determine which addresses apply.

HDU_ACCESS is based solely on the decoding for the internal IDE controller. It is independent of the DSK_ACCESS decoding. Therefore, SYSCFG 57h[4] does not affect HDU_ACCESS. DSK_ACCESS can continue to monitor both floppy disk and primary external hard disk accesses if desired.

Selectable DSK ACCESS Address Range

FireStar can power manage four IDE drives handled by the local bus IDE controller. Four independent timers are available, DSK_TIMER, HDU_TIMER, GNR2_TIMER, and GNR3_TIMER. Since IDE drives are accessed two per cable at the same I/O address range, the PMU logic uses the IDE drive's register bit 1F6h[4] to distinguish between drives 0 and 1, and 176h[4] to distinguish between drives 2 and 3. The last value written to this bit determines whether all other accesses in that range reload the first or second drive timer for that cable.

Note that the PMI events themselves must be enabled, as before, through the appropriate bits SYSCFG 5Ah[3:2] for DSK_ACCESS, and SYSCFG D8h[7:6] for HDU_ACCESS. Also, SYSCFG 57h[4] is independent of these new bits, and still monitors only ISA bus devices at the primary I/O range.

Keyboard Access

Keyboard accesses to I/O Ports 060h and 064h can cause KBD_ACCESS, reload the KBD_TIMER, and reload the IDLE TIMER.

LCD Controller Access

Video controller accesses are to I/O Ports 3B0-3DFh and to memory locations A0000-BFFFFh if not masked by SYSCFG 43h[7:6].

The enabled accesses cause LCD_ACCESS, reload the LCD_TIMER, and reload the IDLE_TIMER if not masked in SYSCFG 5Fh[7:6].

Table 4-110 shows the PMU control registers discussed above.

Table 4-110 PMU Control Registers

7	6	5	4	3	2	1	0		
SYSCFG 57h		PMU Control Register 5 Default = 0							
		DSK_ACCESS includes FDD: 0 = Yes 1 = No	DSK_ACCESS includes HDD: 0 = Yes 1 = No						
SYSCFG D6h			PMU Contro	ol Register 10			Default = 00h		
DSK_ACCESS: 0 = 3F5h only 1 = All FDC Ports (3F2,4,5,7& 372,4,5,7h)									

Table 4-110 PMU Control Registers (cont.)

						I	
7	6	5	4	3	2	1	0
SYSCFG FCh		IDE Po	wer Managemen	t Assignment Re	gister 1		Default = 33h
IDE Drive 1 I/O access reloads GNR4_TIMER: 0 = No	IDE Drive 1 I/O access reloads GNR3_TIMER: 0 = No	IDE Drive 1 I/O			IDE Drive 0 I/O access reloads GNR3_TIMER: 0 = No	IDE Drive 0 I/O access reloads HDU_TIMER: 0 = No	IDE Drive 0 I/O access reloads DSK_TIMER: 0 = No
1 = Yes	1 = Yes	1 = Yes	1 = Yes	1 = Yes			
Note: If a bus m	astering drive is u	sed, DDRQ will al	so reload the enal	oled timer(s).			
SYSCFG FDh		IDE Po	wer Managemen	ıt Assignment Re	gister 2		Default = 33h
IDE Drive 3 I/O access reloads GNR4_TIMER: 0 = No 1 = Yes	IDE Drive 3 I/O access reloads GNR3_TIMER: 0 = No 1 = Yes	IDE Drive 3 I/O access reloads HDU_TIMER: 0 = No 1 = Yes	IDE Drive 3 I/O access reloads DSK_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads GNR4_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads GNR3_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads HDU_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads DSK_TIMER: 0 = No 1 = Yes
Note: If a bus m	astering drive is u	sed, DDRQ will al	so reload the enal	oled timer(s).			
SYSCFG 5Ah if	AEh[7] = 0		PMU Even	t Register 3			Default = 00h
_	ER PMI#19 (SS PMI#23: sable served served		PMU Even	DSK_TIM DSK_ACCE 00 = Disable 01 = Positive of 10 = Positive of 11 = SMI	SS PMI#13:		Default = 00h
SYSCFG 43h			PMU Contr	ol Register 3			Default = 00h
LCD_ACCESS includes I/O range 3B0h- 3DFh: 0 = Yes 1 = No	LCD_ACCESS includes mem- ory A0000- BFFFFh: 0 = Yes 1 = No			3			
SYSCFG 5Fh				ol Register 6			Default = 00h
LCD_ACCESS includes ISA bus video access: 0 = Yes 1 = No	LCD_ACCESS includes local (PCI) bus video access: 0 = No 1 = Yes						

Page 178 912-2000-015

Revision: 1.0

Chip Select Generation (GPCS) Access

The GPCS[3:0]# lines can be programmed to generate a chip select based on either memory or I/O decoding of reads and/ or writes. Even if the external logic necessary to implement

the chip select lines is not in place, the chip select events themselves can be individually enabled to reload the IDLE_TIMER through SYSCFG 4Eh[7:6] and BEh[7:6] (shown in Table 4-111).

Table 4-111 GPCS Access Register Bits

7	6	5	4	3	2	1	0
SYSCFG 4Eh if	AEh[7] = 0	I	dle Reload Even	t Enable Register	r1		Default = 00h
GPCS1#_ ACCESS:	GPCS0#_ ACCESS:						
0 = Disable 1 = Enable	0 = Disable 1 = Enable						
SYSCFG BEh if	AEh[7] = 0	ı	dle Reload Even	t Enable Registe	r 2		Default = 00h
GPCS3#_ ACCESS:	GPCS2#_ ACCESS:						
0 = Disable 1 = Enable	0 = Disable 1 = Enable						

General Purpose (GNR) Access

Four programmable ranges, GNR1, GNR2, GNR3, and GNR4, are provided, each with its own separate timer, to allow any four I/O or memory ranges to be monitored (refer to Table 4-112). As an example, the COM3 I/O range 3E8-3EFh could be monitored for reads and writes in order to determine whether the connected UART was in active use. As another example, a network card that uses memory in the D800-DFFFh half-segment could be monitored to determine whether the memory is being accessed regularly and, if not, a query could be sent through the network to ensure that the connection was still valid.

Memory Watchdog Feature

FireStar's general purpose access register sets, GNR1, GNR2, GNR3, and GNR4, can be monitored for activity and can generate an SMI when no activity has occurred in a given amount of time. As an option, either or both of these register sets can be assigned to monitor memory space instead. In this case, instead of the bit values corresponding to I/O address bits A[9:0], the values correspond to memory address bits A[23:14]. The bits that select I/O read or I/O write cycles instead indicate memory read or memory write cycles.

Example:

To monitor memory write activity in the 16KB block from CC00:0 to CC00:3FFF requires first viewing the CC00 segment value as:

• 0000 1100 1100 0000 0000 0000

to determine the value of the upper ten bits, CA[23:14], which is:

• 0000110011

to write into the A[9:0] GNR address decode bits. The bits are set by writing:

- SYSCFG E1h (A[8:1]) = 00011001b, or 19h
- SYSCFG E2h (A9 + write decode + read decode + A[5:1] mask bits) = 01000000b, or 40h
- SYSCFG E5h (GNR4 cycle + GNR3 cycle + GNR4 A0 + GNR3 A0 + GNR4 A0 mask + GNR3 A0 mask) = 011000b, or 18h (GNR4 values must also be considered).

The timer values must then be entered, the PMI enabled, and then a dummy write access must be made to the CC000-CFFFFh range to start GNR3_TIMER. If no accesses are occurring, the timer will eventually expire and generate an SMI. If enabled, the next write access to this range will also cause an SMI and will reload the timer.

Of the four general purpose access register sets, two sets, GNR1 and GNR2, provide granularity for the memory watch-dog function to monitor a minimum range of four bytes, while GNR3 and GNR4 provide granularity to monitor accesses in a 64KB range. If SYSCFG A0h[7] = 1 such that upper address bits must be zero, the GNR1 and GNR2 registers still decode the full 16 bits of the address as long as those upper bits are not masked off (default).

Extra General Purpose Decode Ranges

FireStar provides four additional general purpose ranges, GNR5-8, for monitoring of system peripheral devices. These ranges are accessible through the existing register set in place of GNR1-4, but internally they are distinct and separate from GNR1-4. Both sets of ranges can be used simultaneously for a total of eight programmable ranges.

Preliminary 82C700

To initially program the registers, software sets SYSCFG AEh[7] = 1. From this point on, all GNR1 register bits access GNR5 bits instead; all GNR2 register bits access GNR6 instead; and so on. Once programming is complete, software should clear SYSCFG AEh[7].

When access in a GNR5-8 range is decoded, the chipset will generate an SMI. Software proceeds as usual to read SYSCFG 5Ch, 5Dh, DCh, DDh, and EAh to determine the source of the SMI. Since SYSCFG AEh[7] = 0 at this point,

SMI status for GNR1-4 will be returned in the appropriate bits of SYSCFG 5Dh, DCh, and EAh.

Software then sets SYSCFG AEh[7] =1, and reads SYSCFG 5Dh, DCh, and EAh again. This time, the bits will indicate SMI activity in GNR5-8 instead of GNR1-4. Writing '1' back to the SMI source will clear only GNR5-8 as long as SYSCFG AEh[7] = 1.

DMA Controller Access

Access trapping of the DMA controller registers is described in Section 4.13.3, "Software Distributed DMA Support".

Table 4-112 General Purpose Access Registers 3 2 1 O SYSCFG 70h **GNR1 Base Address Register 1** Default = 00h GNR1_ACCESS base address: A[13:6] for memory watchdog or A[15:10] for I/O (right-aligned). SYSCFG 71h **GNR1 Control Register 1** Default = FFh GNR1 ACCESS mask bits: Mask for A[13:6] for memory watchdog or mask for A[15:10] for I/O (right-aligned). SYSCFG 72h **GNR1 Control Register 2** Default = 00h GNR1 ACCESS mask bits: GNR1 ACCESS base address: Mask for A[5:2] for memory watchdog or mask for A[9:6] for I/O. A[5:2] for memory watchdog or ignored for I/O. SYSCFG 48h if AEh[7] = 0**GNR1 Base Address Register** Default = 00h GNR1 ACCESS base address: A[8:1] (I/O) or A[22:15] (Memory) **GNR5_Timer Base Address Register** Default = 00h SYSCFG 48h if AEh[7] = 1 GNR5_TIMER base address: A[8:1] (I/O) SYSCFG 49h if AEh[7] = 0**GNR1 Control Register** Default = 00h GNR1 mask bits for address A[5:1] (I/O) or A[19:15] memory: GNR1 base Read Write address: decode: decode: A 1 in a particular bit means that the corresponding bit at SYSCFG 48h[4:0] A9 (I/O) 0 = Disable 0 = Disable is not compared. This is used to determine address block size. A23 (Memory) 1 = Enable 1 = Enable SYSCFG 49h if AEh[7] = 1**GNR5 Timer Control Register** Default = 00h Base address: Write Read GNR5 base address A[5:1] (I/O) decode: decode: A9 (I/O) 0 = Disable 0 = Disable1 = Enable 1 = Enable Default = 00h SYSCFG 73h **GNR2 Base Address Register 1** GNR2_ACCESS base address: A[13:6] for memory watchdog or A[15:10] for I/O (right-aligned). SYSCFG 74h **GNR2 Control Register 1** Default = FFh GNR2_ACCESS mask bits: Mask for A[13:6] for memory watchdog or mask for A[15:10] for I/O (right-aligned). SYSCFG 75h **GNR2 Control Register 2** Default = 00h GNR2_ACCESS base address: GNR2_ACCESS mask bits: A[5:2] for memory watchdog or ignored for I/O Mask for A[5:2] for memory watchdog or mask for A[9:6] for I/O.

Page 180 912-2000-015

Table 4-112	General	Purpose A	Access F	Registers⊫	(cont.)

7	6	5	4	3	2	1	0			
SYSCFG B8h if	AEh[7] = 0		GNR2 Base A	ddress Register	•	•	Default = 00h			
GNR2_ACCESS base address: A[8:1] (I/O) or A[22:15] (Memory)										
SYSCFG B8h if	SYSCFG B8h if AEh[7] = 1 GNR6 Base Address Register Default = 00h									
GNR6_Timer base address: A[8:1] (I/O)										
SYSCFG B9h if	SYSCFG B9h if AEh[7] = 0 GNR2 Control Register Default = 0									
GNR2 base	Write	Read		R2 mask bits for a			-			
address:	decode:	decode:		ular bit means tha			s not			
A9 (I/O) A23 (Memory)	0 = Disable 1 = Enable	0 = Disable 1 = Enable	compared. In	is is used to deter	mine address blo	CK SIZE.				
SYSCFG B9h if			GNR6 Con	trol Register			Default = 00h			
GNR6 base	Write	Read			k bits for address	A[5:11 (I/O)				
address:	decode:	decode:		arrio mae	on bite ioi quaices	/ (U.)				
A9 (I/O)	0 = Disable	0 = Disable								
	1 = Enable	1 = Enable								
SYSCFG AEh			GNR_ACCESS	Feature Register	,		Default = 03h			
GNR set select:	Reserved	GNR2 cycle	GNR1 cycle	GNR2 base	GNR1 base	GNR2 mask	GNR1 mask			
0 = GNR1-4		decode type:	decode type:	address:	address:	bit:	bit:			
1 = GNR5-8		0 = I/O	0 = I/O	A0 (I/O)	A0 (I/O)	A0 (I/O)	A0 (I/O)			
		1 = Memory	1 = Memory	A14 (Memory)	A14 (Memory)	A14 (Memory)	A14 (Memory)			
SYSCFG 7Ah			GNR3 Base Ad	dress Register 1			Default = 00h			
GNR3_ACCE	SS base address:	A[13:6] for memo	ory watchdog or A[15:10] for I/O (righ	nt-aligned).					
SYSCFG 7Bh	SYSCFG 7Bh GNR3 Control Register 1 Default = FF									
			nemory watchdog							
SYSCFG 7Ch	SYSCFG 7Ch GNR3 Control Register 2 Default = 00h									
GNR3_ACCESS base address: GNR3_ACCESS mask bits: A[5:2] for memory watchdog or ignored for I/O. Mask for A[5:2] for memory watchdog or mask for A[9:6] for I/O.										
SYSCFG E1h if				ddress Register			Default = 00h			
GNR3_ACCESS base address: A[8:1] (I/O) or A[22:15] (Memory)										
SYSCFG E1h if AEh[7] = 1 GNR7 Base Address Register Default = 00h										
GNR7_ACCESS base address: A[8:1] (I/O)										
SYSCFG E2h if AEh[7] = 0 GNR3 Control Register Default =										
GNR3 base address:	Write decode:	Read decode:		R3 mask bits for a			-			
A9 (I/O)	0 = Disable	0 = Disable		ular bit means tha is is used to deter	•	•	E1n[4:0] is not			
A23 (Memory)	1 = Enable	1 = Enable								
SYSCFG E2h if AEh[7] = 1 GNR7 Control Register Default :							Default = 00h			
	14/	Read		GNR7 mas	k bits for address	A[5:1] (I/O)				
GNR7	Write									
base address:	decode:	de code :								
		decode: 0 = Disable 1 = Enable								

912-2000-015 Revision: 1.0

Table 4-112 General Purpose Access Registers (cont.)

7	6	5	4	3	2	1	0		
SYSCFG 7Dh	GNR4 Base Address Register 1								
GNR4_ACCESS base address: A[13:6] for memory watchdog or A[15:10] for I/O (right-aligned).									
SYSCFG 7Eh GNR4 Control Register 1									
GNR4_ACCESS mask bits: Mask for A[13:6] for memory watchdog or mask for A[15:10] for I/O (right-aligned).									
SYSCFG 7Fh			GNR4 Cont	rol Register 2			Default = 00h		
A(E.O	GNR4_ACCES		- · · · / O	Monk for AIE	_	SS mask bits:	• A[0:6] f= = L/O		
A[5.2] for memory watc	naog or ignorea ic	or I/O.	Mask for A[5	2] for memory wat	chaog of mask loi	A[9.6] IOT I/O.		
SYSCFG E3h if	AEh[7] = 0		GNR4 Base A	ddress Register			Default = 00h		
GNR4_ACCE	GNR4_ACCESS base address: A[8:1] (I/O) or A[22:15] (Memory)								
SYSCFG E3h if AEh[7] = 1 GNR8 Base Address Register Default = 0									
	SS base address:	A[8:1] (I/O)		3					
SYSCFG E4h if	SYSCFG E4h if AEh[7] = 0 GNR4 Control Register Default = 00h								
GNR4	Write	Read	GN	nory:					
base address:	decode:	de code:	A 1 in a particular bit means that the corresponding bit at SYSCFG E3h[4:0] is not						
A9 (I/O)	0 = Disable	0 = Disable	compared. This is used to determine address block size.						
A23 (Memory) 1 = Enable 1 = Enable									
SYSCFG E4h if AEh[7] = 1 GNR8 Control Register Default = 00h									
GNR8 base address:	Write decode:	Read decode:	GNR8 mask bits for address A[5:1] (I/O)						
A9 (I/O)	0 = Disable	0 = Disable							
	1 = Enable	1 = Enable							
SYSCFG E5h GNR ACCESS Feature Register 2 Default = 03h									
			_						
Reserved	Reserved	GNR4 cycle decode type:	GNR3 cycle decode Type:	GNR4 base address:	GNR3 base address:	GNR4 mask bit:	GNR3 mask bit:		
		0 = I/O	0 = I/O	A0 (I/O)	A0 (I/O)	A0 (I/O)	A0 (I/O)		
		1 = Memory	1 = Memory	A14 (Memory)	A14 (Memory)	A14 (Memory)	A14 (Memory)		

Page 182 912-2000-015

Revision: 1.0

4.15.1.2 Activity Tracking Registers

The activity tracking registers at SYSCFG DFh and E0h allow events to be flagged even if they are not programmed to generate an SMI. In this way, code can check whether a keystroke occurred since the last time the register was checked, for example, without actually generating an SMI for every keystroke.

The activity tracking registers record activity on all ten ACCESS events. No type of enabling is needed for any of these events to be registered. Reading this register returns flags indicating whether any of the events have taken place and automatically resets the entire register. The register can be written if desired to set the selected bits. In this way, a read-modify-write code sequence can be used to clear selected bits only.

Table 4-113 Activity Tracking Registers

7	6	5	4	3	2	1	0
, , , , , , , , , , , , , , , , , , ,	0	5	4	3	Z		U
SYSCFG DFh if AEh[7] = 0 Activity Tracking Register						Default = 00h	
HDU_ ACCESS activity: 0 = No 1 = Yes	COM2_ ACCESS activity: 0 = No 1 = Yes	COM1_ ACCESS activity: 0 = No 1 = Yes	GNR2_ ACCESS activity: 0 = No 1 = Yes	GNR1_ ACCESS activity: 0 = No 1 = Yes	KBD_ ACCESS activity: 0 = No 1 = Yes	DSK_ ACCESS activity: 0 = No 1 = Yes	LCD_ ACCESS activity: 0 = No 1 = Yes
SYSCFG DFh if	AEh[7] = 1		Activity Trac	king Register			Default = 00h
	Reserved		GNR6_ ACCESS activity: 0 = No 1 = Yes	GNR5_ ACCESS activity: 0 = No 1 = Yes		Reserved	
SYSCFG E0h if	AEh[7] = 0		Activity Trac	king Register 1			Default = 00h
Reserved						GNR4_ ACCESS activity: 0 = No 1 = Yes	GNR3_ ACCESS activity: 0 = No 1 = Yes
SYSCFG E0h if AEh[7] = 1 Activity Tracking Register 1							Default = 00h
		Rese	erved			GNR8_ ACCESS activity: 0 = No 1 = Yes	GNR7_ ACCESS activity: 0 = No 1 = Yes

4.15.1.3 Reloading IDLE TIMER

FireStar provides the IDLE_TIMER to monitor system-wide activity: I/O and memory accesses by the CPU, IRQs from ISA bus peripherals, and EPMIs from power control and management subsystems. The occurrence of an enabled event in any one of these areas will reload the IDLE_TIMER. Once there is inactivity for a sufficiently long time, the IDLE_TIMER will expire.

Expiration of the IDLE_TIMER generates PMI#4, which can be enabled to generate an SMI to inform system management code that the system is idle and that entry into the Suspend mode is appropriate. Refer to the Section 4.15.5.1,

"Suspend Mode" for complete information. Expiration of the IDLE_TIMER cannot cause automatic (hardware-controlled) entry into the Suspend mode, since important CPU processing could be interrupted.

The register bits that enable each event individually to reload the IDLE_TIMER and forestall entry into the Suspend mode are shown in Table 4-114. SYSCFG 63h and A3h are writeonly; reads return no useful information.

Table 4-114 Idle Reload Source Registers

7	6	5	4	3	2	1	0	
SYSCFG 4Eh if AEh[7] = 0 Idle Reload Event Enable Register 1							Default = 00h	
GPCS1#_ ACCESS:	GPCS0#_ ACCESS:	LPT_ ACCESS:	GNR3_ ACCESS:	GNR1_ ACCESS:	KBD_ ACCESS:	DSK_ ACCESS:	LCD_ ACCESS:	
0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	
SYSCFG 4Eh if	AEh[7] = 1	ı	dle Reload Event	Enable Register	· 1		Default = 00h	
	Reserved		GNR7: 0 = Disable 1 = Enable	GNR5: 0 = Disable 1 = Enable	Reserved	Any PCI requests: 0 = Disable 1 = Enable	Reserved	
SYSCFG BEh if	AEh[7] = 0	I	dle Reload Event	Enable Register	r 2		Default = 00h	
GPCS3#_ ACCESS: 0 = Disable 1 = Enable	GPCS2#_ ACCESS: 0 = Disable 1 = Enable	COM2_ ACCESS: 0 = Disable 1 = Enable	COM1_ ACCESS: 0 = Disable 1 = Enable	GNR2_ ACCESS: 0 = Disable 1 = Enable	HDU_ ACCESS: 0 = Disable 1 = Enable	GNR4_ ACCESS: 0 = Disable 1 = Enable	Override SYSCFG 68h[3:2]: 0 = No 1 = Recover time 1s	
SYSCFG BEh if	AEh[7] = 1	1	dle Reload Event	Enable Register	r 2		Default = 00h	
Reserved				GNR6_ ACCESS: 0 = Disable 1 = Enable	Reserved	GNR8_ ACCESS: 0 = Disable 1 = Enable	Reserved	
0,0000 001							D (11 001	
SYSCFG 63h	IRQ13:	IRQ8:		Select Register 1	IRQ4:	IRQ3:	Default = 00h	
EPMI0# Level-trig'd: 0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	IRQ7: 0 = Disable 1 = Enable	IRQ5: 0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	IRQ0: 0 = Disable 1 = Enable	
SYSCFG A3h	Idle Time-Out Select Register 2 Default =						Default = 00h	
IRQ15: 0 = Disable 1 = Enable	IRQ14: 0 = Disable 1 = Enable	IRQ12: 0 = Disable 1 = Enable	IRQ11: 0 = Disable 1 = Enable	IRQ10: 0 = Disable 1 = Enable	IRQ9: 0 = Disable 1 = Enable	IRQ6: 0 = Disable 1 = Enable	IRQ1: 0 = Disable 1 = Enable	
SYSCFG FBh DMA Idle Reload Register Default = 00h								
' '			IDE DDRQ reloads IDLE_TIMER: ⁽¹⁾ 0 = No 1 = Yes astering IDE drive ering drive enable			DRQ1 reloads IDLE_TIMER: 0 = No 1 = Yes trols DDRQ from	DRQ0 reloads IDLE_TIMER: 0 = No 1 = Yes both cables, so	

Page 184 912-2000-015

4.15.1.4 External PMI Events

FireStar's logic can monitor a variety of inputs that are directly related to low-power, battery-operated system designs. Table 4-115 lists the external power management input (EPMI) pins provided. Note that all pins included here are considered external PMI pins, not just pins EPMI[3:0]#.

EPMI Programming

The registers listed in Table 4-116 are used to initialize the EPMI pins and enable them to cause PMI events. The table also lists related EPMI programming registers.

Emergency Overtemp Sense Enable - Setting SYSCFG A1h[2] = 1 allows a level on the EPMI1# pin to force the chip into cool-down clocking mode as set by the thermal management registers. The thermal management feature itself does not need to be enabled to use this sense function. The polarity of the input is determined by SYSCFG 40h[2]. Once written to 1, this bit cannot be cleared without a hardware reset.

EPMI[1:0]# Status Latch - Setting SYSCFG A1h[0] = 1 allows the EPMI[1:0]# PMI events to be latched. The status returned by SYSCFG 5Ch[2:1] are **not** latched. Writing these same bits to 1 clears the status bits.

Table 4-115 External PMI Source Summary

Name	Description
LOWBAT	Activity on Low Battery pin
LLOWBAT	Activity on Very Low Battery pin
EPMI0#	Activity on External Power Management Input 0
EPMI1#	Activity on External Power Management Input 1
EPMI2#	Activity on External Power Management Input 2
EPMI3#	Activity on External Power Management Input 3
RESUME	SUS/RES input has been toggled while in Suspend
SUSPEND	SUS/RES input has been toggled while system is active
RINGI	Activity detected on RINGI

Table 4-116 EPMI Programming Registers

7	6	5	4	3	2	1	0	
SYSCFG 40h			PMU Contr	ol Register 1			Default = 00h	
		LLOWBAT polarity: 0 = Active high 1 = Active low	LOWBAT polarity: 0 = Active high 1 = Active low		EPMI1# polarity: 0 = Active high 1 = Active low	EPMI0# polarity: 0 = Active high 1 = Active low		
SYSCFG DBh if	AEh[7] = 0	= 0 Next Access Event Generation Register 2						
		External EPMI3# pin polarity: 0 = Active high 1 = Active low	External EPMI2# pin polarity: 0 = Active high 1 = Active low					
SYSCFG 43h			PMU Contr	ol Register 3			Default = 00h	
		_	ed each time					

Table 4-116 EPMI Programming Registers (cont.)

7	6	5	4	3	2	1	0		
SYSCFG 50h			PMU Contr	ol Register 4			Default = 00h		
							Start Suspend (WO): 1 = Enter Suspend mode		
SYSCFG 5Ch	SYSCFG 5Ch PMI SMI Source Register 1 (Write 1 to Clear) Default = 001								
				PMI#3, LOWBAT: 0 = Not Active 1 = Active	PMI#2, EPMI1#: 0 = Not Active 1 = Active	PMI#1, EPMI0#: 0 = Not Active 1 = Active	PMI#0, LLOWBAT: 0 = Not Active 1 = Active		
SYSCFG 61h	SYSCFG 61h Debounce Register D								
	3		evel-controlled level-sampled s level-sampled s 5.8.2, "SUS/						
SYSCFG A1h			Feature Con	trol Register 2			Default = 00h		
					Emerg. over- temp sense: 0 = Disable 1 = Enable		EPMI[1:0]# status latch: 0 = Dynamic 1 = Latched		

Notes: 1) EPMI0# and EPMI1# need to be asserted until recognized by its SMI service routine, since these PMIs are not latched unless SYSCFG A1h[0] = 1.

2) If EPMI0# and EPMI1# are used to place the system into Suspend, the EPMIx signal must be negated before the Suspend command (setting bit SYSCFG 50h[0] = 1) is written.

4.15.1.5 Power Management Event Status

The power management input pins can be monitored for their instantaneous state in FireStar. This feature can be used to poll for power management status without generating an SMI.

The bits of the Power Management Event Status Register return instantaneous pin status; the state is not latched. Table 4-117 gives the bit definitions for SYSCFG DAh.

Table 4-117 Power Management Event Status

7	6	5	4	3	2	1	0	
SYSCFG DAh Power Management Event Status Register (RO) Default = 00h								
Res	erved	LOWBAT state:	LLOWBAT state:	EPMI3# state:	EPMI2# state:	EPMI1# state:	EPMI0# state:	
		0 = Low 1 = High						

Page 186 912-2000-015

4.15.2 System Power Control

The power management unit logic provides two hardware means of controlling the CPU clock speed.

- Doze mode hardware causes the clock to the CPU core to be stopped and started in a periodic manner, resulting in power savings when there is no significant activity.
- Thermal management hardware forces the action to avoid overheating the CPU when the system is running at full speed for too long.

Both of these mechanisms engage the *stop clock* mechanism to slow down the CPU.

4.15.2.1 STPCLK# Mechanism to Control CPU Power Dissipation

The 3.3V Pentium processor contains a phase-locked loop (PLL) frequency generator that takes the external clock frequency input and multiplies it before applying it to the CPU core. The CPU core may be cut off from the PLL output by asserting the STPCLK# signal, without any loss of information. The CPU then enters the Stop Grant state in which the power consumption is approximately 20% of the normal consumption. It may be restarted almost immediately by negating the STPCLK# signal. Since a significant amount of power savings may be achieved when the CPU is in the Stop Grant state, it is forced into this state by FireStar when there is no significant activity.

On receiving an active STPCLK#, the CPU will generate a special bus cycle, and when it receives BRDY# from FireStar, it will enter the Stop Grant state. FireStar may be programmed so that a system interrupt, such as initiated by a keystroke or a timer interrupt, can restart the CPU almost immediately. Stopping the CPU clock is usually initiated by software, but could also be initiated by the hardware Doze mechanism.

The power consumed by the CPU can be controlled in two ways. The first method is to keep the STPCLK# signal asserted until a pre-programmed event causes FireStar to negate it. This could be used for maximum power saving modes invoked by software for prolonged periods of CPU inactivity.

The other method could be used for applications that do not require the CPU to operate at full speed all the time; the STP-CLK# signal may be periodically asserted and negated. Since the Pentium processor does not provide much control for changing the frequency of the input clock, STPCLK# modulation is a viable alternative for saving power. This mode could

be invoked by either software or hardware. On FireStar, the STPCLK# signal can be modulated by a base frequency of 32KHz, with a wide range of duty cycles. The cycle that is used to modulate the STPCLK# signal lasts 31.25 μ s. The time for which STPCLK# is asserted (low) is defined as t_{low} , and the time for which it is not asserted is defined as t_{hi} . The sum of t_{hi} and t_{low} equals 31.25 μ s. In every 32KHz cycle the STPCLK# signal is asserted for 31.25 μ s- t_{hi} . Different levels of power savings are obtained by programming the duration of t_{hi} through SYSCFG 41h[4:2].

Programming

To enable STPCLK# operation, the registers shown below must be programmed as follows.

- For maximum power savings set SYSCFG 66h[5] = 1 or for slow operation set SYSCFG 66h[5] = 0.
- Enable the STPCLK# logic mechanism by setting SYSCFG 61h[2] = 1.
- Enable the Stop Grant protocol by setting SYSCFG 66h[0]
 1 to recognize the Stop Grant cycle.

The STPCLK# sequence will now be observed any time the hardware Doze feature modulates the STPCLK# signal, or when APM commands the clock to stop. For example, during an APM operation for maximum power savings, FireStar:

- 1. Asserts its STPCLK# output
- 2. Waits for a Stop Grant cycle
- 3. Returns BRDY# to the CPU
- 4. Awaits a restart event (such as an interrupt)
- 5. Negates the STPCLK# signal, and continues operation.

For reduced power consumption, FireStar:

- 1. Asserts its STPCLK# output
- 2. Waits for a Stop Grant cycle
- 3. Returns BRDY# to the CPU
- Waits for (31.25µs t_{hi})
- 5. Negates the STPCLK# signal
- 6. Waits for t_{hi} (as programmed in SYSCFG 41h[4:2])
- 7. Goes back to Step 1.

While in Step 6, the CPU continues to execute instructions.

The registers associated with the STPCLK# feature are shown in Table 4-118.

Table 4-118 Register Bits Associated with STPCLK# Feature

7	6	5	4	3	2	1	0
SYSCFG 41h			DOZE_TIME	ER Register 2			Default = 00h
			(STPCLK# in 000 = No Mod 001 = STPCL 010 = STPCL 100 = STPCL 101 = STPCL 110 = STPCL 110 = STPCL 110 = STPCL	ode STPCLK# modulated by BC SYSCFG E6h[7:6] lulation (STPCLK# $t_{hi} = 0.75 * 16$ K# $t_{hi} = 0.5 * 16$ BK# $t_{hi} = 0.25 * 16$ K# $t_{hi} = 0.125 * 16$ K# $t_{hi} = 0.0625 * 16$ K# $t_{hi} = 0.0625 * 16$ K# $t_{hi} = 0.003125 * 16$			
SYSCFG E6h if	AEh[7] = 0		Clock Sour	ce Register 4			Default = 70h
modulation (Fo Doze mode, 1 00 = 4KHz	łz (Default) (Hz						
SYSCFG 61h			Debound	e Register			Default = 00h
					STPCLK# signal 0 = Disable 1 = Enable		
SYSCFG 65h			Doze I	Register			Default = 00h
			Recognize SMI during STPCLK#: 0 = No 1 = Yes				
SYSCFG 66h			PMU Contr	ol Register 7			Default = 00h
		Doze type: 0 = Modulate STPCLK# 1 = Keep STPCLK# asserted					STPGNT cycle wait option: 0 = Do not wait 1 = Wait for STPGNT cycle before negating STPCLK#

Table 4-118 Register Bits Associated with STPCLK# Feature (cont.)

7	6	5	4	3	2	1	0	
SYSCFG 67h			PMU Contr	ol Register 8			Default = 00h	
				Prevent STPCLK# generation by SYSCFG50h[3] when INTR is active: 0 = Disable 1 = Enable	$\begin{array}{c} \text{33} \\ \text{5} \\ \text{6} \\ \text{100} = \text{No Modulation (STPCLK# = 1)} \\ \text{001} = \text{STPCLK# } t_{\text{hi}} = 0.75 * 16 \text{ BCLKs} \\ \text{010} = \text{STPCLK# } t_{\text{hi}} = 0.5 * 16 \text{ BCLKs} \\ \end{array}$			
SYSCFG 50h			PMU Contr	ol Register 4			Default = 00h	
				Write = 1 to start Doze Read = Doze status: 0 = Counting 1 = Timed out				

4.15.3 Doze Mode

FireStar's power management unit includes Doze mode control logic. Doze is the state in which the CPU is fully alive and operational, yet running at a speed that is greatly reduced in order to save power. FireStar engages the Doze mode when it sees no activity in certain pre-definable areas for a certain time period. FireStar provides a choice of two time-out timers for each device. When an interrupt for the device or access in the range associated with that device occurs, the event triggers a Doze reset that reloads the selected timer for that device with the time-out value associated with that timer. Only when both time-outs have expired will the system return to Doze mode operation. Once initialized by software, the process is completely controlled by hardware. No further software intervention is needed, but an SMI can be generated if desired.

Even though the Doze mode is intended to operate autonomously without application or BIOS intervention, FireStar provides logic hooks to software for software-based power control. The most common type of software-based power control follows the Microsoft Advanced Power Management (APM) specification, which allows applications to inform the operating system when they are idle or do not require full processing power. The operating system, in turn, makes BIOS calls that can do any of the following:

- Turn off or put into a standby mode any unneeded peripherals
- Slow system clock speeds
- · Turn off clocks to the CPU

Therefore, FireStar's power Doze mode logic provides for three Doze mode operations:

- 1) hardware-controlled slowdown,
- 2) software-controlled slowdown, and
- software-controlled Doze with a stopped CPU clock (the clock to the CPU core is cut off).

The three modes are very similar and are outlined next, followed by register descriptions that the three modes have in common. FireStar provides the stop clock logic described next.

4.15.3.1 Dual Doze Timer Reload Selections

The standard DOZE_0 reload value can generate a Doze Timer time-out in as little as 2ms. However, this selection is not compatible with all applications. For example, stable operating speed might be desirable for at least 2sec after a keyboard interrupt in order to completely service the event ad prevent delays on subsequent keystrokes. Another operation, such as video access, might allow a return to Doze mode almost immediately.

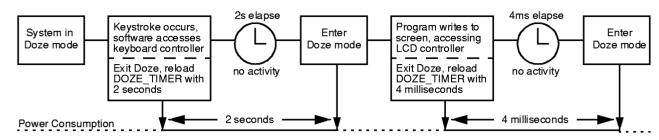
Therefore, FireStar provides a choice of two time-out timers for each device. When an interrupt for the device or access in the range associated with that device occurs, the event triggers a Doze reset that reloads the selected timer for that device with the time-out value associated with that timer. Only when both timers have expired will the system return to Doze mode operation.

On earlier OPTi chipsets, COM port, LPT port, and GNR accesses could not cause a Doze reset. On FireStar these accesses can be programmed to enable a Doze reset. However, to maintain backward compatibility, the COM1, COM2, LPT, and GNR accesses point to the secondary doze timer at reset; this timer in turn is programmed for "no delay" at reset. The Doze logic interprets the "no delay" setting as inhibiting Doze reset for that source.

The SMI, EMPI1#, and INTR signals are also potential sources of Doze reset. However, these signals always use Doze Time-out 0 and cannot select Doze Time-out 1.

Doze reset events are all individually programmable to generate SMIs. In addition to the ability to reset the Doze mode when an SMI is encountered, FireStar has the ability to generate PMI#27 when the DOZE_TIMER times out. Doze timeout events on DOZE_0 and DOZE_1 can be individually programmed to generate an SMI through SYSCFG D9h[7:6] (shown in Table 4-119), which select the time-out(s) that will cause an SMI. Setting SYSCFG D9h[7:6] = 11 enables the PMI to generate an SMI.

Figure 4-39 shows an example of Dual Doze mode operation and Table 4-120 shows the setup and link registers associated with the example.


Table 4-119 SMI Generation on DOZE Time-Out

7	6	5	4	3	2	1	0
SYSCFG D9h			PMU Even	it Register 6			Default = 00h
-	_TIMER 27 SMI:						
	le DOZE_0 le DOZE_1						

Page 190 912-2000-015

Figure 4-39 Dual Doze Mode Operation Example

Setup: DOZE_0 = 2 seconds, SYSCFG 41h[7:5] = 110

DOZE_1 = 4 milliseconds, SYSCFG 79h[7:5] = 010

Link KBD_ACCESS to DOZE_0, SYSCFG 76h[6] = 0 Link LCD_ACCESS to DOZE_1, SYSCFG 76h[7] = 1

Table 4-120 Dual Doze Mode Operation Example Setup/Link Registers

7	6	5	4	3	2	1	0
SYSCFG 41h			DOZE_TIMI	ER Register 2			Default = 00h
DO	ZE_0 time-out sel	ect:					
000 = 2ms		00 = 128ms					
001 = 4ms		01 = 512ms					
010 = 8ms		10 = 2s					
011 = 32ms		11 = 8s					
Time-out generat	tes PMI#27.						
SYSCFG 79h			PMII Contre	ol Register 11			Default = 00h
			1 1110 0011(1	Tricgister 11	T		Delault = 0011
DO	ZE_1 time-out sel						
000 = No dela	• , ,	00 = 64 ms					
001 = 1ms		01 = 256ms					
010 = 4ms		10 = 1s					
011 = 16ms	1	11 = 4s					
SYSCFG 76h if AEh = 0			Doze Reload S	Select Register 1			Default = 0Fh
LCD_	KBD_						
ACCESS:	ACCESS:						
0 = DOZE_0	0 = DOZE_0						
1 = DOZE_1	1 = DOZE_1						

4.15.3.2 Presetting Events to Reset Doze Mode

Before enabling Doze mode operation, whether hardware or software Doze mode, some preparation must be made for the event or events that will reset Doze mode and bring the system back to full operation. Otherwise, especially in the case of APM stop clock mode, there would be no way to execute CPU instructions to restart the CPU clock.

Therefore, it is first necessary to choose the source or sources that will perform a Doze reset. Doze reset will, if the system is currently in Doze mode, restore the system clocks to full operating speed. Doze reset also reloads the Doze timer with its originally programmed value.

- Setting SYSCFG 41h[1] = 1 enables LCD_ACCESS, KBD_ACCESS, DSK_ACCESS, HDU_ACCESS, GNR accesses, COM port accesses, and LPT accesses to reset Doze mode and reload the DOZE_TIMER. If the associated DOZE_TIMER has timed out and switched operation to Doze speed, this reload will change the system clocks back to their normal speed.
- SYSCFG 65h[5] selects the EPMI0# pin as a Doze reset trigger while bits [2:0] select EPMI[3:1]#, respectively.

- SYSCFG 62h[7:0], A2h[5:0], and 65h[3] define individual IRQs that can trigger a Doze reset.
- SYSCFG 65h[7] allows all enabled interrupts (i.e., any event that toggles the INTR signal to the CPU, to reset Doze mode).
- SYSCFG F6h[7:0] and F7h[7:0] are the DMA Doze Reload Registers. As stated previously Doze reset also reloads the Doze timer with its originally programmed value.

Once the Doze mode reset events have been programmed, either hardware or software Doze mode can be enabled.

Doze Reset Inside SMM

FireStar allows an SMI to reset Doze mode if STPCLK# is active from within System Management Mode. SYSCFG 65h[4] enables Doze mode reset when the SMI signal goes active, but since SMI is masked on entry to SMM, an SMI triggered while the system is in SMM is not seen until some other trigger resets Doze mode.

Setting SYSCFG 79h[4] = 1 handles Doze reset only from within SMM. Set SYSCFG 65h[4] = 1 to handle SMI Doze mode exit from outside of SMM.

Table 4-121 Register Bits that Select Doze Mode Reset Events

7	6	5	4	3	2	1	0
SYSCFG 41h			DOZE_TIME	ER Register 2			Default = 00h
						ACCESS events reset Doze mode:	
						0 = Disable 1 = Enable	
SYSCFG 62h				Default = 00h			
IRQ13 Doze reset: 0 = Disable 1 = Enable	IRQ8 Doze reset: 0 = Disable 1 = Enable	IRQ7 Doze reset: 0 = Disable 1 = Enable	IRQ12 Doze reset: 0 = Disable 1 = Enable	IRQ5 Doze reset: 0 = Disable 1 = Enable	IRQ4 Doze reset: 0 = Disable 1 = Enable	IRQ3 Doze reset: 0 = Disable 1 = Enable	IRQ0 Doze reset: 0 = Disable 1 = Enable
SYSCFG 65h			Doze I	Register			Default = 00h
All interrupts to CPU reset Doze mode: 0 = Disable 1 = Enable	Reserved	EPMI0# Doze reset: 0 = Disable 1 = Enable	Recognize SMI during STPCLK#: 0 = No 1 = Yes	IRQ1 Doze reset: 0 = Disable 1 = Enable	EPMI3# Doze reset: 0 = Disable 1 = Enable	EPMI2# Doze reset: 0 = Disable 1 = Enable	EPMI1# Doze reset: 0 = Disable 1 = Enable

Page 192 912-2000-015

Table 4-121 Register Bits that Select Doze Mode Reset Events (cont.)

7	6	5	4	3	2	1	0					
SYSCFG 79h		PMU Control Register 11 Default = 00h										
			PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes									

(1) For example, to let PMI#11 reset the Doze mode without generating SMI to the CPU, SYSCFG 5Ah[7:6] must = 11 and SYSCFG 5Bh[6] must = 1.

SYSCFG A2h if AEh[7] = 0 IRQ Doze Register 2						
	IRQ15 Doze reset:	IRQ14 Doze reset:	IRQ11 Doze reset:	IRQ10 Doze reset:	IRQ9 Doze reset:	IRQ6 Doze reset:
	0 = Disable 1 = Enable					
	•					

SYSCFG F6h	DMA Doze Reload Register 1						
DRQ7 reloads DOZE_0:	DRQ6 reloads DOZE_0:	DRQ5 reloads DOZE_0:	IDE DDRQ reloads	DRQ3 reloads DOZE_0:	DRQ2 reloads DOZE_0:	DRQ1 reloads DOZE_0:	DRQ0 reloads DOZE_0:
0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	DOZE_0: ⁽¹⁾ 0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes

(1) Bit 4 controls whether the DDRQ line from bus mastering IDE drives can reload the timers. The bit controls DDRQ from both cables, so enabling the reload feature on any one bus mastering drive enables it for all present.

SYSCFG F7h	DMA Doze Reload Register 2						Default = 00h
DRQ7 reloads DOZE_1: 0 = No 1 = Yes	DRQ6 reloads DOZE_1: 0 = No 1 = Yes	DRQ5 reloads DOZE_1: 0 = No 1 = Yes	IDE DDRQ reloads DOZE_1: ⁽¹⁾ 0 = No 1 = Yes	DRQ3 reloads DOZE_1: 0 = No 1 = Yes	DRQ2 reloads DOZE_1: 0 = No 1 = Yes	DRQ1 reloads DOZE_1: 0 = No 1 = Yes	DRQ0 reloads DOZE_1: 0 = No 1 = Yes

(1) Bit 4 controls whether the DDRQ line from bus mastering IDE drives can reload the timers. The bit controls DDRQ from both cables, so enabling the reload feature on any one bus mastering drive enables it for all present.

Preliminary **82C700**

DEVSEL# Doze Reset

Activity on the PCI bus can reset the Doze mode and cause a return to full operating speed. FireStar's logic provides two

bits to enable Doze reset separately for PCI I/O accesses and memory accesses. The Doze reset is triggered by DEVSEL# going active and is qualified by the M/IO# signal.

Table 4-122 PCI Bus Doze Reset Registers

7	6	5	4	3	2	1	0
SYSCFG A2h if	AEh[7] = 0		IRQ Doze		Default = 00h		
PCI bus I/O access Doze reset:	PCI memory access Doze reset:						
0 = Disable 1 = Enable	0 = Disable 1 = Enable						
SYSCFG A2h if	AEh[7] = 1		IRQ Doze	Register 2			Default = 00h
PREQ# Doze reset:	CLKRUN# Doze reset:			Rese	erved		
0 = Disable 1 = Enable	0 = Disable 1 = Enable						
0.0000 201			D D 1 16				D (001
SYSCFG 78h			Doze Reload S	Select Register 3			Default = 00h
PCI:							
0 = DOZE_0 1 = DOZE_1							

Page 194

4.15.3.3 Automatic (Hardware) Doze Mode

The chipset can be set up for hardware-controlled slowdown Doze mode by programming the following information.

- Set up the hardware and programming to consider the stop clock mechanism as described in Section 4.15.2.1, "STPCLK# Mechanism to Control CPU Power Dissipation" on page 187.
- Program the events that will reset Doze mode as described in "Presetting Events to Reset Doze Mode" on page 192.
- Associate the access event with their time-out counters (DOZE_0 or DOZE_1), by appropriately programming SYSCFG 76h through 78h.
- 4. Select the desired time-outs, that is, the time required after the last event before the system can be considered "inactive," in SYSCFG 41h[7:5] and in 79h[7:5]. A two second (2s) time-out is typical.
- Select the STPCLK# duty cycle from SYSCFG 41h[4:2].
 Time t_{hi} is defined as that time for which STPCLK# is not asserted in one 32KHz period.
- 6. Set SYSCFG 66h[5] = 0 for slowdown.
- Set SYSCFG 65h[4] = 1 if the chipset should exit Doze mode for SMIs, or = 0 if the SMIs can run adequately at the Doze speed.
- Finally, enable the hardware DOZE_TIMER by setting SYSCFG 41h[0] = 0.

After the selected period of inactivity, the hardware Doze mode is entered and the STPCLK# signal is modulated. In the event of any of the enabled accesses, SMIs, or IRQs, the CPU is switched back to full speed operation, and the Doze timer associated with the access event is reloaded.

4.15.3.4 APM (Software) Doze Mode

FireStar can be set up for software-initiated, reduced CPU power consumption or maximum power saving mode in a very straightforward manner.

 Set up the hardware and programming to consider the stop clock mechanism as described in the Section 4.15.2.1, "STPCLK# Mechanism to Control CPU Power Dissipation" on page 187.

- Program the events that will reset the Doze mode as described in the "Presetting Events to Reset Doze Mode" on page 192.
- Set SYSCFG 65h[4] = 1 if FireStar should exit Doze mode for SMIs, or = 0 if the SMIs can run adequately at the Doze speed. Obviously, SYSCFG 65h[4] must be set to 1 if maximum power savings is desired, or else the SMI will be missed altogether.
- Select the duty cycle for STPCLK# from SYSCFG 41h[4:2].
- Disable the hardware DOZE_TIMER by setting SYSCFG 41h[0] = 1.

At this point the system is ready for APM control. When APM makes a call for low or very low power operation, the BIOS or power management code simply:

- Sets SYSCFG 66h[5] = 0 for reduced CPU power consumption or sets SYSCFG 66h[5] = 1 for maximum power savings mode
- Sets SYSCFG 50h[3] = 1 to initiate the Doze mode

On the event of any of the enabled ACCESSes, SMIs, or IRQs, the clock to the CPU core will be enabled all the time, until the above two steps are repeated again.

Start Doze Bit

SYSCFG 50h[3] serves two purposes: to start the Doze mode and to read the DOZE_TIMER status.

- Write: Start APM Doze mode
 - 1 = Start Doze mode (if SYSCFG 40h[0] = 1)
 - 0 = No effect
- Read: Hardware DOZE_TIMER time-out status bit
 - 1 = Hardware DOZE_TIMER has timed out
 - 0 = Hardware DOZE TIMER still counting

Table 4-123 shows the hardware and software related Doze mode registers.

Table 4-123 Hardware and Software Doze Mode Registers

7	6	5	4	3	2	1	0
SYSCFG 76h if	AEh = 0		Doze Reload S	elect Register 1			Default = 0Fh
LCD_ ACCESS: 0 = DOZE_0 1 = DOZE_1	KBD_ ACCESS: 0 = DOZE_0 1 = DOZE_1	DSK_ ACCESS: 0 = DOZE_0 1 = DOZE_1	HDU_ ACCESS: 0 = DOZE_0 1 = DOZE_1	COM1&2_ ACCESS: 0 = DOZE_0 1 = DOZE_1	LPT_ ACCESS: 0 = DOZE_0 1 = DOZE_1	GNR1_ ACCESS: 0 = DOZE_0 1 = DOZE_1	GNR2_ ACCESS: 0 = DOZE_0 1 = DOZE_1
	SYSCFG 76h if AEh = 1			select Register 1	T = DOZE_T	= DOZE_	Default = 03h
	erved	PREQ#: 0 = DOZE_0 1 = DOZE_1	CLKRUN#: 0 = DOZE_0 1 = DOZE_1	<u>-</u>	erved	GNR5: 0 = DOZE_0 1 = DOZE_1	GNR6: 0 = DOZE_0 1 = DOZE_1
SYSCFG 77h			Doze Reload S	elect Register 2			Default = 00h
IRQ8: 0 = DOZE_0 1 = DOZE_1	IRQ7: 0 = DOZE_0 1 = DOZE_1	IRQ6: 0 = DOZE_0 1 = DOZE_1	IRQ5: 0 = DOZE_0 1 = DOZE_1	IRQ4: 0 = DOZE_0 1 = DOZE_1	IRQ3: 0 = DOZE_0 1 = DOZE_1	IRQ1: 0 = DOZE_0 1 = DOZE_1	IRQ0: 0 = DOZE_0 1 = DOZE_1
SYSCFG 78h	·			select Register 3			Default = 00h
PCI: 0 = DOZE_0 1 = DOZE_1	IRQ15: 0 = DOZE_0 1 = DOZE_1	IRQ14: 0 = DOZE_0 1 = DOZE_1	IRQ13: 0 = DOZE_0 1 = DOZE_1	IRQ12: 0 = DOZE_0 1 = DOZE_1	IRQ11: 0 = DOZE_0 1 = DOZE_1	IRQ10: 0 = DOZE_0 1 = DOZE_1	IRQ9: 0 = DOZE_0 1 = DOZE_1
SYSCFG 41h			DOZE_TIME	ER Register 2			Default = 00h
000 : 001 : 010 : 011 : 100 :	= 8s	ect:	(STPCLK# in 000 = No Mod 001 = STPCL 010 = STPCL 100 = STPCL 101 = STPCL 110 = STPCL 110 = STPCL 110 = STPCL	ode STPCLK# mo modulated by BC SYSCFG E6h[7:6] Iulation (STPCLK# K# t_{hi} = 0.75 * 16 B K# t_{hi} = 0.5 * 16 B K# t_{hi} = 0.25 * 16 B K# t_{hi} = 0.125 * 16 K K# t_{hi} = 0.0625 * 1 K# t_{hi} = 0.03125 * K# t_{hi} = 0.015625	LK defined i]): # = 1) BCLKs CLKs BCLKs BCLKs BCLKs BCLKs BCLKs BCLKs		Doze control select: 0 = Hardware 1 = Software
SYSCFG 79h			PMU Contro	ol Register 11			Default = 00h
DOZE_1 time-out select: 000 = No delay (Default)							
SYSCFG 66h			PMU Contr	ol Register 7			Default = 00h
		Doze type: 0 = Modulate STPCLK# 1 = Keep STPCLK# asserted					

Page 196 912-2000-015

Table 4-123 Hardware and Software Doze Mode Registers (cont.)

7	6	5	4	3	2	1	0			
SYSCFG 65h		Doze Register								
			Recognize SMI during STPCLK#: 0 = No							
			1 = Yes							
SYSCFG 50h			PMU Contr	ol Register 4			Default = 00h			
				Write = 1 to start Doze Read = Doze status: 0 = Counting 1 = Timed out						

4.15.4 CPU Thermal Management Unit

Thermal management hardware is implemented in FireStar for monitoring the level of CPU activity and the operating temperature of the device. A flexible hardware scheme monitors CPU temperature to determine when it is necessary to enter cool-down clocking mode. In this way, a serious over-temperature condition cannot get out of control.

Operating Temperature Ranges

The FireStar thermal management algorithm identifies the temperature limits of the CPU through activity level values that correspond with idle, equilibrium, and thermal runaway conditions.

Idle Condition

The CPU is cool to the touch. FireStar is using APM stop clock or hardware Doze mode to save power, and no real activity is taking place. This operational level constitutes the base level of activity, so it does not require a register to hold the value. It is associated in the FireStar thermal management scheme with "zero".

Equilibrium Condition

The CPU is warm to the touch. It is operating at full capacity for short bursts but frequently is in low power modes. The heat generated by the CPU is dissipated at the same rate that it is produced. Most active computer usage falls into this category, where APM or hardware Doze mode operates frequently enough to allow safe operation. The FireStar thermal management scheme associates this temperature with LOF-REQ[15:0]. The value of these bits is referred to as LOFREQ throughout this section.

Thermal Runaway Condition

The CPU is hot to the touch. It is running at its full rated speed and generating heat faster than it can be dissipated, so its temperature increases. The program being used is active enough that APM or hardware Doze mode cannot operate often enough to hold the temperature down. Operating in this mode for an extended period may cause the CPU to fail. The FireStar thermal management scheme associates this temperature with HIFREQ[15:0]. The value of these bits is referred to as HIFREQ throughout this section.

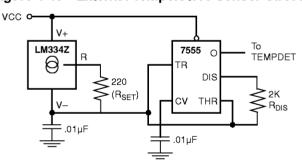
Cool-down Clocking

Cool-down clocking takes place according to the reduced clock rate programmed into the Cool-down Clock Rate bits SYSCFG A5h[5:3] and A5h[2:0]. FireStar keeps the CPU running at the cool-down clocking rate speed for the Cool-down Holdoff period.

4.15.4.2 Fail-Safe Thermal Management

The thermal management unit accepts a periodic waveform that varies with temperature as input from an inexpensive external sensor circuit. The goal is to provide actual temperature sensing and monitoring without resorting to expensive sensor devices or on-chip analog circuitry.

On-board logic monitors the waveform, a low-frequency (100Hz-10kHz) square or sine wave, and can determine actual CPU temperature by the frequency of the waveform. The hardware reacts to changes in this frequency according to programmable parameters. Should the external circuit fail to generate the expected waveform, the fail-safe logic automatically maintains cool-down clocking mode to the CPU for an indefinite period.


In addition, the hardware keeps track of the frequency and allows software to read the value at any time. In this way, SMM code will be able to return an actual calibrated CPU temperature to system management programs.

Suggested Circuit

A relatively simple and inexpensive circuit can be used to measure CPU temperature. The suggested circuit is based on the LM334Z three-terminal adjustable current source. available from National Semiconductor. The sense voltage of this device is directly proportional to absolute temperature. The circuit also uses a 7555 timer to convert the voltage to a proportional frequency.

Figure 4-40 illustrates the circuit recommended to generate a frequency that is directly proportional to temperature. Only the LM334Z part is sensitive to temperature, and must be mounted under or on the CPU (or in an appropriate heat sink location).

Figure 4-40 External Temperature Sensor Circuit

The following equation describes the output frequency of this

$$f = \frac{3}{C} \times \left\{ \frac{227uV \times (273 + T_C)}{(V_{CC} \times R_{SET}) + [2.085) \times R_{DIS} \times 227uV \times (273 + T_C)]} \right\}$$

If C is chosen as 0.01uF, R_{SET} as 220 ohms, R_{DIS} as 2K ohms, and VCC = 5.0V, then the equation is simply:

$$f = \frac{300 \times [61971 + (227 \times T_C)]}{1358.4 + (0.95 \times T_C)}$$

912-2000-015 Page 198

Registers

All registers must be programmed before the thermal management THKEN enable bit (SYSCFG A5h[7]) is set. Refer to Table 4-124 for information regarding the thermal management registers.

Operation

The fail-safe thermal management unit will compare the THK-FREQ value with the low frequency limit (LOFREQ) and high frequency limit (HIFREQ) values every second to determine when to engage thermal management. When thermal management is engaged, STPCLK modulation duty cycle will be based on L1THK or L2THK values. SMI may be generated as well.

There are three frequency ranges that THKFREQ falls into:

- 1) 0 = < THKFREQ < LOFREQ
- 2) LOFREQ = < THKFREQ < HIFREQ
- 3 HIFREQ = < THKFREQ < 64 KHz

Case A: L2_HIFREQ = 0, THKFREQ decreases as temp increases.

IF (THKFREQ = range #3)

THEN temp is not high enough -- STPCLK modulation = none;

ELSE IF (THKFREQ = range #2)

THEN temp is high -- STPCLK modulation = L1THK duty cycle;

ELSE

temp is very high -- STPCLK modulation = L2THK duty cycle;

END IF:

Case B: L2_HIFREQ = 1, THKFREQ increases as temp increases.

IF (THKFREQ = range #1)

THEN temp is not high enough -- STPCLK modulation = none:

ELSE IF (THKFREQ = range #2)

THEN temp is high -- STPCLK modulation = L1THK duty cycle;

ELSE temp is very high -- STPCLK modulation = L2THK duty cycle;

END IF;

In both cases, when L1THK or L2THK STPCLK modulation is engaged, a register bit will be set to indicate thermal management is engaged. SMI may also be generated as an option.

The emergency overtemp sense pin will still override all the Doze mode and fail-safe stop clock modulation.

Programming

Before programming thermal management, the STPCLK# mechanism must be set up for the CPU being used as described in Section 4.15.2.1, "STPCLK# Mechanism to Control CPU Power Dissipation". Enabling thermal management locks the STPCLK# bits and prevents them from being altered until the next hardware reset.

The thermal management option must be configured by setting the bits in SYSCFG A5h-AAh (refer to Table 4-124), and then setting SYSCFG A5h[7] = 1. The register setting order is not important, but bit 7 of SYSCFG A5h must be set to 1 only after all other settings have been made. Once bit 7 is set, none of the thermal management registers can be written again without resetting FireStar.

If the Doze mode is in progress when the thermal management unit engages (or vice-versa), the lower value of $t_{\rm hi}$ as set by the two schemes for STPCLK# modulation will be used.

Table 4-124 Thermal Management Registers

7	6	5	4	3	2	1	0	
SYSCFG A5h			ement Register 1	1 Default = 00h				
Thermal Mgmt.: 0 = Disable 1 = Enable	TEMPDET Variation - As temperature increases, frequency: 0 = Decreases 1 = Increases	clock throttling sea 000 = No mod 001 = STPCL 010 = STPCL 011 = STPCL 100 = STPCL 101 = STPCL 110 = STPCL	K# modulation rate grate when temporal (overtemp) rate lulation (STPCLK; K# t_{hi} = 0.75 * 16 K# t_{hi} = 0.25 * 16 K# t_{hi} = 0.125 * 16 K# t_{hi} = 0.0625 * 1 K# t_{hi} = 0.03125 * t_{hi} = 0.03125 * t_{hi} = 0.015625	erature enters nge: # = 1) BCLKs CLKs BCLKs BCLKs BCLKs BCLKs BCLKs BCLKs	clock throttlin firs 000 = No mod 001 = STPCL 010 = STPCL 110 = STPCL 101 = STPCL 110 = STPCL 110 = STPCL	K# modulation rate grate when temps the thing temp and the thing temp and the thing temp and the thing temp are the thing temps and the thing temps are the thing temps are the thing and the thing are the thing and the thing are the thing a	erature enters ge: # = 1) BCLKs ICLKs BCLKs BCLKs 3 BCLKs 32 BCLKs	

Table 4-124 Thermal Management Registers

7	6	5	4	3	2	1	0
SYSCFG A6h			Thermal Manag	ement Register 2	!		Default = 00h
LOFREQ[7:0]	: Low frequency lir	mit low byte					
SYSCFG A7h			Thermal Manag	ement Register 3	I		Default = 00h
LOFREQ[15:8	B]: Low frequency	limit high byte					
0.0000000000000000000000000000000000000							- 4
SYSCFG A8h			Thermal Manag	ement Register 4			Default = 00h
HIFREQ[7:0]:	High frequency lin	nit low byte					
SYSCFG A9h			Thermal Manag	ement Register 5	;		Default = 00h
HIFREQ[15:8]]: High frequency I	imit high byte					
SYSCFG AAh			Thermal Manag	ement Register 6	i		Default = 00h
Emergency Overtemp Sensor STPCLK# Modulation Rate: 000 = No modulation (STPCLK# = 1) 001 = STPCLK# thi = 0.75 * 16 BCLKs 010 = STPCLK# thi = 0.5 * 16 BCLKs 011 = STPCLK# thi = 0.25 * 16 BCLKs 100 = STPCLK# thi = 0.125 * 16 BCLKs 101 = STPCLK# thi = 0.125 * 16 BCLKs 101 = STPCLK# thi = 0.0625 * 16 BCLKs 110 = STPCLK# thi = 0.03125 * 32 BCLKs 111 = STPCLK# thi = 0.015625 * 64 BCLKs			THMIN pin polarity: 0 = High 1 = Low	EPMI trigger for 00 = EP 01 = EP 10 = EP 11 = EP Also see bit 1.	MI0# MI1# MI2#	THMIN input: 0 = THMIN 1 = EPMI indicated in bits [3:2]	HDI input: 0 = HDI 1 = EPMI indi- cated by SYSCFG F0h[1:0]
- THFREQ[15	Thermal Management Register 7 THFREQ[7:0] - Current frequency low byte: THFREQ[15:0] return a value from 0 to 65535. This value is updated once per second so that software can read the input pin frequency in kHz and correlate the value to the actual CPU temperature at that moment.						
SYSCFG F4h			Thermal Manag	ement Register 8	1		Default = 00h
THFREQ[15:8	3] - Current freque	ncy high byte					

OPTi

Page 200 912-2000-015

4.15.4.3 SMI Generation

When the thermal management unit engages or disengages cool-down clocking, an SMI on PMI#25 can be generated. This feature is controlled through SYSCFG DBh[6]. When this SMI is being serviced, power management code can read SYSCFG A5h[7] to determine whether it was an entry into or an exit from cool-down clocking mode that caused the SMI

PMI#25 is also shared with the EPMI3# event. If the SMI from EPMI3# is also enabled, on entry to the SMI software must check the state of the EPMI3# signal to determine whether the reason for the SMI is the external EPMI3# event or cooldown clocking entry/exit.

Emergency Overtemp Sense

It is possible for an external sensor to force FireStar permanently into cool-down clocking mode according to the parameters programmed for thermal management. When low, the EPMIx# input (any EPMI can be assigned at SYSCFG AAh[3:2]) can cause FireStar to enter cool-down clocking mode. The existing SMI enable bits for EPMIx# are still operational regardless of the setting of the emergency overtemp enable bit (SYSCFG A1h[2]). Therefore, an overtemp condition can also be programmed to cause an SMI so that the power management firmware will be made aware of the situation and instruct the user to shut down the system. In this way, a serious over-temperature condition cannot get out of control.

The chip will remain in cool-down clocking mode, using the rate specified in Thermal Management Register 3 (defaults to a 50% duty cycle for STPCLK#), as long as the EPMIx# input remains triggered. The trigger specifications are the same as

those for triggering the SMI: SYSCFG 40h[2:1] for EPMI[1:0]# and SYSCFG DBh[5:4] for EPMI[3:2]# select whether a high- or a low-level is active, and this same bit selects whether a high- or a low-level will engage cool-down clocking. The thermal management unit does **not** need to be enabled to use this feature.

Programming

This option is enabled by writing SYSCFG A1h[2]. Once written, this bit **cannot** be changed without a hard reset of the chip.

When SYSCFG DBh[6] = 1, entry into or exit from cool-down clocking mode causes PMI#25 and an SMI. If the EPMIx# event is also programmed to cause an SMI, the following situation can occur.

- The thermal sensor input changes state, causing PMI#2 and an SMI.
- Power management code services the SMI.
- The thermal management unit enters cool-down clocking mode.
- At this point, PMI#25 is generated along with another SMI.

Therefore, two SMIs will have been generated. On exit from cool-down clocking mode, only one SMI will be generated, since the active-to-inactive transition on EPMIx# does not cause another SMI. Power management software must be able to anticipate this situation and deal with it appropriately.

Table 4-125 shows the above discussed register bits.

Table 4-125 SMI Generation on Cool-down Clocking Entry/Exit Registers 7 2 1 n SYSCFG 40h **PMU Control Register 1** Default = 00h EPMI1# EPMI0# polarity: polarity: 0 = Active high 0 = Active high 1 = Active low 1 = Active low SYSCFG A1h Feature Control Register 2 Default = 00h Emerg. overtemp sense: 0 = Disable1 = Enable SYSCFG A5h Thermal Management Register 1 Default = 00h Thermal Mgmt.: 0 = Disable 1 = Enable Note: Once thermal management has been enabled (bit 7 = 1), none of the thermal management registers can be overwritten.

OPTi

912-2000-015 Revision: 1.0

Table 4-125 SMI Generation on Cool-down Clocking Entry/Exit Registers (cont.)

7	6	5	4	3	2	1	0
SYSCFG AAh			Thermal Manag	jement Register 6	5		Default = 00h
			THMIN pin polarity: 0 = High 1 = Low	EPMI trigger for 00 = EP 01 = EP 10 = EP 11 = EP Also see bit 1.	MI1# MI2#	THMIN input: 0 = THMIN 1 = EPMI indicated in bits [3:2]	HDI input: 0 = HDI 1 = EPMI indicated by SYSCFG F0h[1:0]
SYSCFG DBh if	AEh[7] = 0	Ne	xt Access Event	Generation Regis	ster 1		Default = 00h
	SMI on cool- down clocking entry/exit: 0 = Disable 1 = Enable	EPMI3# pin polarity: 0 = Active high 1 = Active low	EPMI2# pin polarity: 0 = Active high 1 = Active low				
SYSCFG F0h			Hot Dooking C	ontrol Register 2			Default = 00h
31301 011			not bocking C	ondoi negistei 2		EPMI trigg 00 = EF 01 = EF 10 = EF 11 = EF Also see SYSCF	er for HDI: PMI0# PMI1# PMI2# MI3#

Page 202 912-2000-015

4.15.5 Suspend and Resume

FireStar offers the ability to halt operations at extremely low power yet retain all its programming, called Suspend. FireStar will respond to interrupts to determine that a return to normal operation, called Resume, is necessary.

4.15.5.1 Suspend Mode

Suspend mode provides a significant level of power conservation. The Suspend initiation event, either a key or button depression or a time-out SMI, calls a software routine in SMM code to save the current state of the system for complete restoration at some later time. In this mode, most system power can be shut down while still retaining restorability. The lowest power consumption mode is that in which the DRAM is kept powered up (the system state is stored in the DRAM), the CPU is powered off, and the cache is also powered off.

FireStar enters the Suspend mode when SYSCFG 50h[0] is set to 1. Software must control this event, even though a timer time-out may have initiated the process, because CPU processing must be completed in an orderly manner. Upon resuming from the Suspend mode, the controlling code **must** clear the Suspend PMI Event, PMI#7, by writing SYSCFG 5Ch[7] = 1. Otherwise, FireStar will never exit the Suspend mode the next time SYSCFG 50h[0] is set to 1.

The registers shown in Table 4-126 select the state of various signals during the Suspend mode. SYSCFG 59h[6] is used so that the system timers can be restarted to prevent false time-outs upon resuming from the Suspend mode. Refer to the Section 4.15.8, "Resume Event", to determine how to select the events that will cause FireStar to Resume operation after Suspend.

Table 4-126 Suspend Control Register Bits

7	6	5	4	3	2	1	0
SYSCFG 50h			PMU Contr	ol Register 4			Default = 00h
							Start Suspend (WO): 1 = Enter Suspend mode
SYSCFG 59h			PMU Even	ıt Register 2			Default = 00h
	Reload timers on Resume: 0 = No 1 = Yes						
	. – 100						
SYSCFG 5Ch		PMI	SMI Source Regi	ster 1 (Write 1 to	Clear)		Default = 00h
SYSCFG 5Ch PMI#7, Suspend: 0 = Not Active 1 = Active		PMI :	SMI Source Regi	ster 1 (Write 1 to	Clear)		Default = 00h
PMI#7, Suspend: 0 = Not Active		PMI		ster 1 (Write 1 to	Clear)		Default = 00h Default = 00h

Suspend Mode Power Savings

While in the Suspend mode, FireStar can be programmed to save power in two ways:

- 1) short-pulse refresh for normal DRAM or
- self-refresh for self-refresh DRAM, and slow interrupt scan

Table 4-127 shows the registers/bits associated with Suspend mode power savings.

Suspend Mode Refresh

The Suspend refresh rate is selected by programming the SYSCFG 12h[5:4] and/or 12h[3:2]. During the Suspend mode, refresh can be:

- slow refresh based on the REFRESH#/32KHZ input, with a wide RAS# pulse width,
- 2. self-refresh initiated by 32KHz, or
- 3. short pulse width refresh based on the 32KHz clock.

The first option generates refresh in the same manner that refresh is generated during normal mode, with the RAS pulse width determined by SYSCFG 01h[5:4].

The second option can be used for self-refresh DRAMs with the initial control required to put the DRAM in self-refresh mode based on the 32KHz clock. The short pulse refresh mechanism is engaged for lowest power consumption during Suspend for non self-refresh DRAM. In this mode, the refresh is based on the 32KHz clock, but the refresh pulse width is 100ns only. This pulse width is capable of retaining the DRAM data and results in lowest power consumption.

Multiplexed Inputs Scan Rate

The logic can scan for multiplexed inputs to FireStar interrupts at a slower rate during refresh. During normal mode, the sample rate is governed by the internally generated ATCLK. During Suspend mode, SYSCFG 66h[6] controls the frequency of ATCLK, and therefore, the sampling frequency. Note that a major reduction of power consumption can come from switching off all the clocks except the 32KHz clock during Suspend.

Table 4-127 Suspend Mode Power Saving Feature Related Bits

7	6	5	4	3	2	1	0		
SYSCFG 01h		DRAM Control Register 1							
		width used d 00 = 7 0 01 = 6 0 10 = 5 0	pulse uring refresh: CPUCLKs CPUCLKs CPUCLKs CPUCLKs						
SYSCFG 12h			Refresh Co	ntrol Register Default = 0					
		Suspend m 00 = From CPUC machine 01 = Self-refresh only 10 = Normal refre 32KHz only 11 = Reserved	based on 32KHz esh based on	Refresh on: 00 = Every REFI falling edge	EFRESH#/32KHz REFRESH#/ ng edge				

Page 204 912-2000-015

Table 4-127 Suspend Mode Power Saving Feature Related Bits

7	6	5	4	3	2	1	0
SYSCFG 66h			PMU Contr	ol Register 7			Default = 00h
Suspend-to- Normal refresh delay:	Suspend mode ATCLK frequency:						
0 = None 1 = Three 32KHz CLKs Write to 1 always.	0 = Derived from PCICLK 1 = 32KHz Setting can be overridden by SYSCFG 79h[0]						
SYSCFG 79h			PMU Contr	ol Register 8			Default = 00h
							ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6])

4.15.6 Chip-Level Power Conservation Features

A central design goal of FireStar was to incorporate powerreducing features wherever possible. To this end, several innovative methods of power conservation are implemented.

4.15.6.1 Leakage Control

FireStar offers leakage control features to reduce Suspend mode power consumption. Each pin (or pin group in the case of certain bus signals) can be set as follows during Suspend mode:

- · Tristated only
- · Tristated and pulled down
- · Tristated and pulled up
- Maintained (driven) at previous value
- · Driven low

These options allow pins to be properly managed in all designs. The register format is shown Table 4-128. Leakage control registers start at PCIDV1 70h.

Table 4-128 Leakage Control Registers

7	6	5	4	3	2	1	0	
PCIDV1 70h			Leakage Contro	ol Register - Byte 0 Default = 00h				
W/R#, HITM#, F Susper 00 = No pull-o 01 = Pull-dow 10 = Reserve 11 = Reserve	nd state: lowns n	T# BE[7:0]#, M/IO#, D/C#, CACHE#, LOCK# Suspend state: 00 = No pull-downs 01 = Pull-down during BOFF# 10 = Pull-down during Suspend 11 = Pull-down during BOFF# and Suspend 11 = Reserved 12 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 Reserved 17 Reserved 18 Reserved 19 Reserved 10 Reserved 10 Reserved 11 Reserved			nd state: pull-down d			
PCIDV1 71h			Leakage Contro	l Register - Byte	1		Default = 00h	
	<u>ctive</u> pull-down	NMI, ÎNTR	-	BRDY#, NA#, KEN#, EADS#, BOFF#, SMI# Suspend state: 0 = Drive 1 = Tristate	#, Suspend state: XX1 = Pull-down at Idle		"	
PCIDV1 72h			Leakage Contro	Register - Byte	2		Default = 00h	
		STOP#, AD[3 FRAME#, PAR, I DEVSEL#, GI GNT0#, REG	•	TAG[7:0] state: X1 = Tristate pull-down in STPCLK# 1X = Tristate pull-down in Suspend		BWE#, GWE# Suspend state: 0 = Drive 1 = Tristate	CACS# Suspend state: 0 = Drive 1 = Tristate, pull-down	

Page 206 912-2000-015

Table 4-128 Leakage Control Registers (cont.)

7	6	5	4	3	2	1	0
PCIDV1 73h			Leakage Contro	l Register - Byte	3		Default = 00h
CMD# Suspend state: 00 = Drive 01 = Tristate 10 = Tristate, pull-down 11 = Reserved		Susper 01 = No pull-up/o mode, tristat mode 01 = Pull-up in A tristate in S 10 = No pull-up/o mode, pull-o mode 11 = Pull-up in A	te in Suspend ctive mode, uspend mode down in Active down in Suspend	end 01 = Tristate 10 = Tristate, pull-down 11 = Reserved titive uspend p, pull-		IRQSER Suspend state: 00 = Drive 01 = Tristate 10 = Tristate, pull-down 11 = Reserved	
PCIDV1 74h		•	Leakage Contro	Register - Byte	4		Default = 00h
I -	•	SA[23:18] Suspend state: 00 = Drive 01 = Tristate 10 = Tristate, pull-down 11 = Reserved		XD[7:0] Suspend state: 01 = No pull-up/down in Active mode, tristate in Suspend mode 01 = Pull-up in Active mode, tristate in Suspend mode 10 = No pull-up/down in Active mode, pull-down in Suspend mode 11 = Pull-up in Active mode, pull-down in Suspend mode		1	IOWR# id state: pull-down
PCIDV1 75h			Leakage Contro	l Register - Byte	5		Default = 00h
Secondary IDE interface in ISA-less mode: 0 = Tristated 1 = Driven	XD bus (primary IDE interface) in no XD bus mode: 0 = Tristated 1 = Driven This bit must be set if the RTCAS:A20M# strap option = 10 to allow IDE control signals to be driven on the XD bus.	MD[63:0] engage pull-down: 0 = Controlled by PCIDV1 71[2:0]h 1 = Pull-down always (overrides PCIDV1 71h[2:0])	TAG[7:0] engage pull-down: 0 = Controlled by PCIDV1 72h[3:2] 1 = Pull-down always (overrides PCIDV1 72h[3:2])		([7:0]# d state: d	Suspen 00 = Drive 01 = Tristate 10 = RTCAS: Tris	nd RTCWR#:

4.15.6.2 Zero Volt CPU Suspend

The FireStar CPU interface provides a zero volt Suspend option. Setting ADh[5] = 1 enables zero volt CPU Suspend support. When set, FireStar will condition its outputs during Suspend assuming that the CPU has been powered down completely.

This feature is generally used in conjunction with a feature on the INIT pin which, in this case, is used as the general purpose CPU reset (not as a software reset). By setting SYSCFG ADh[3] = 1, the INIT signal will toggle on Resume from Suspend to reset a CPU that has been powered down.

4.15.6.3 Stopping IPC Clock When Not In Use

Setting SYSCFG 50h[4] = 0 stops the clock going to the internal integrated 82C206. Primarily this setting affects the 8254-type clock/timer/counter circuit. If the timer will not be used to maintain the system clock, substantial power savings can be achieved by disabling this clock, and turning off the OSC clock generator if possible.

4.15.7 Context Save Feature

FireStar is designed to support low-power Suspend and Zero-volt Suspend operations. Like most modern chipsets, the register set is complex enough that storing the system context before entering Zero-volt Suspend mode is a difficult procedure.

FireStar offers a context save mode feature. Context save mode changes all configuration registers so that they become shadow registers: the last value written to these registers by software becomes readable.

This feature is convenient because BIOS no longer needs to save a table of values in scarce SMM memory for registers defined as write-only or that read back a different value than the one written.

Context save mode is selected through PCIDV1 4Fh[3] as shown in Table 4-130.

Table 4-129 OV CPU Suspend and Stopping IPC Clock Register Bits

7	6	5	4	3	2	1	0				
SYSCFG 50h	PMU Control Register 4 Default = 00I										
			14.3MHz to 82C700:								
			0 = Enable 1 = Disable								
SYSCFG ADh			Feature Con	trol Register 3			Default = 00h				
		CPU power state in Suspend: 0 = Powered 1 = 0 Volt		INIT operation: 0 = Normal 1 = Toggle on Resume							

Table 4-130 Context Save Mode Programming Register Bit

7	6	5	4	3	2	1	0			
PCIDV1 4Fh	71 4Fh Miscellaneous Control Register C - Byte 1 Default = 2									
				Context Save mode:						
				0 = Disable 1 = Enable						

Page 208 912-2000-015

4.15.8 Resume Event

A certain set of interrupt events can be enabled to Resume the system from the Suspend mode. The desired interrupts are grouped into a single event, called RSMGRP. RSMGRP can be enabled to generate an SMI if desired. The RINGI input and the SUS/RES input can also trigger a Resume, and can also be enabled to generate an SMI if desired. Any one or more of the RSMGRP, RINGI, and SUS/RES events are called a Resume event.

4.15.8.1 EPMI/IRQ Events

SYSCFG 6Ah and B1h select the EPMI and IRQ source(s) that will be allowed to trigger the system out of the Suspend

mode. Once selected, setting SYSCFG 5Fh[5] = 1 enables the RSMGRP globally. On Resume, an SMI can be generated either from the EPMI events (through SYSCFG 58h and D9h) or PMI#6 event (through SYSCFG 59h). However, since the system usually is still in SMM when the Resume takes place, SMI generation is not normally necessary.

The default for all the IRQ and EPMI Resume enabling bits (refer to) is disabled. A rising edge on the enabled signal causes the Resume event for all selections except IRQ8; it is a falling edge on IRQ8 that Resumes operation.

Table 4-131 EPMI/IRQ Resume Event Related Register Bits

7	6	5	4	3	2	1	0
SYSCFG 58h			PMU Even	nt Register 1 Default = 00h			
LOWBAT	PMI#3 SMI:	EPMI1# PMI#2 SMI:		EPMI0# PMI#1 SMI:		LLOWBAT PMI#0 SMI:	
00 = Di	sable	00 = Dis	sable	00 = Dis	sable	00 = Dis	sable
11 = En		11 = En	able	11 = En	able	11 = En:	able
SYSCFG 59h				t Register 2			Default = 00h
			RGRP PMI#6,	R_TI		IDLE_	
		•	PMI#7 SMI:	PMI#5			1 SMI:
		00 = Dis 11 = En		00 = Dis 11 = En		00 = Dis 11 = En	
		11 = 511	able	11 = []	able	11 = 511	able
SYSCFG 5Fh			PMU Contr	ol Register 6			Default = 00h
		RSMGRP IRQs					
		can Resume					
		system:					
		0 = No					
		1 = Yes					
		RSMGRP IRQ Register 1					
SYSCFG 6Ah			RSMGRP IF	Q Register 1			Default = 00h
EPMI1#	EPMIO#	IRQ8	RSMGRP IF	IQ Register 1	IRQ4	IRQ3	Default = 00h IRQ1
EPMI1# Resume:	Resume:	Resume:	IRQ7 Resume:	IRQ5 Resume:	Resume:	Resume:	IRQ1 Resume:
EPMI1# Resume: 0 = Disable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable	IRQ5 Resume: 0 = Disable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ1 Resume: 0 = Disable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume:	Resume:	IRQ7 Resume:	IRQ5 Resume:	Resume:	Resume:	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ1 Resume: 0 = Disable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable 1 = Enable	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable 1 = Enable RSMGRP	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable 1 = Enable RSMGRP caused Resume (RO): 0 = No	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable 1 = Enable RSMGRP caused Resume (RO):	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable Resume So	IRQ5 Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable	Resume: 0 = Disable 1 = Enable RSMGRP caused Resume (RO): 0 = No	IRQ1 Resume: 0 = Disable 1 = Enable
EPMI1# Resume: 0 = Disable 1 = Enable SYSCFG 6Bh	Resume: 0 = Disable	Resume: 0 = Disable	IRQ7 Resume: 0 = Disable 1 = Enable Resume So	IRQ5 Resume: 0 = Disable 1 = Enable urce Register	Resume: 0 = Disable	Resume: 0 = Disable 1 = Enable RSMGRP caused Resume (RO): 0 = No	IRQ1 Resume: 0 = Disable 1 = Enable Default = 00h
EPMI1# Resume: 0 = Disable 1 = Enable SYSCFG 6Bh	Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable 1 = Enable	IRQ7 Resume: 0 = Disable 1 = Enable Resume So	IRQ5 Resume: 0 = Disable 1 = Enable urce Register	Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable 1 = Enable RSMGRP caused Resume (RO): 0 = No 1 = Yes	IRQ1 Resume: 0 = Disable 1 = Enable Default = 00h
EPMI1# Resume: 0 = Disable 1 = Enable SYSCFG 6Bh SYSCFG B1h EPMI3#	Resume: 0 = Disable 1 = Enable EPMI2#	Resume: 0 = Disable 1 = Enable	IRQ7 Resume: 0 = Disable 1 = Enable Resume So RSMGRP IF	IRQ5 Resume: 0 = Disable 1 = Enable urce Register	Resume: 0 = Disable 1 = Enable	Resume: 0 = Disable 1 = Enable RSMGRP caused Resume (RO): 0 = No 1 = Yes	IRQ1 Resume: 0 = Disable 1 = Enable Default = 00h IRQ9

912-2000-015 Revision: 1.0

Table 4-131	EPMI/IRQ	Resume	Event	Related	Register	Bits	(cont.)	
-------------	----------	--------	-------	---------	----------	------	---------	--

7	6	5	4	3	2	1	0	
SYSCFG D9h PMU Event Register 6							Default = 00h	
-	DOZE_TIMER RINGI PMI#27 SMI: PMI#26 SMI:				down clocking 5 SMI:	EPMI2# PMI#24 SMI:		
01 = Enab 10 = Enab	00 = Disable 00 = Disable 11 = Enable DOZE_0 11 = Enable both		-	00 = Dis 11 = En	-	00 = Di: 11 = En	•	

4.15.8.2 SUS/RES and RINGI Events

When the RINGI input pin changes state and back enough to exceed the count set in SYSCFG 5Fh[3:0], and SYSCFG 5Fh[4] = 1, PMI#6 is generated to exit the Suspend mode. RINGI should be high for a minimum of 240ms and low for a minimum of 60ms when changing states. The RINGI input is sampled with a 32KHz clock; therefore rapid or unstable transitions may lead to unreliable counting.

The SUS/RES input pin is always enabled to Resume the system, and should be pulled high to VCC if it will not be used in the system design. Resuming from SUS/RES generates PMI#7.

Once a Resume event has occurred, SYSCFG 6Bh[2:0] should be read to determine the source(s). If SYSCFG 6Bh[1] = 1, a read of SYSCFG 6Ah and B1h will return the latched state of the any of the EPMI or IRQ lines that were originally enabled for Resume triggering. The latched Resume IRQ and EPMI source information in SYSCFG 6Ah and B1h is available until the PMI#6 bit (SYSCFG 5Ch[6]) is eventually written to 1 to clear the PMI generated. SYSCFG 50h[1] = 1 as long as the Resume PMI#6 remains active.

SYSCFG 61h[5:4] controls the debounce rate and polarity of SUS/RES. These bits function as follows:

00 Active low, edge triggered PMI. PMI#7 is triggered on any high-to-low edge of SUS/RES. Once the PMI is triggered, software must write SYSCFG 5Ch[7] = 1 to clear PMI#7 and deassert SMI#.

To Resume: Once the system is in the Suspend mode, the next high-to-low edge on SUS/RES will Resume operation.

Active low, level-controlled PMI. Setting SUS/RES low causes PMI#7 to go active; setting SUS/RES high causes PMI#7 to go inactive. There is no latching associated with this function, so it is not necessary to write bit 5Ch[7] = 1 to deassert the SMI#.

To Resume: A low signal on SUS/RES generates a resume function. Therefore, hardware/software must ensure that SUS/RES is high before going into Suspend mode; otherwise, the system will Resume immediately.

10 Active high, level-sampled PMI in 16ms. SUS/RES must

be sampled high for at least three 4ms clock edges before being recognized as a PMI. Therefore, it takes a maximum of 16ms for the SUS/RES request to be recognized. Once the PMI is triggered, software must write bit 5Ch[7] = 1 to clear PMI#7 and deassert SMI#. Also, the SUS/RES pin must be sampled low for four clock edges (20ms maximum) before the circuit is re-armed to generate the next PMI#7.

To Resume: Once the system is in the Suspend mode, a high level sampled on SUS/RES for three 4ms clocks will resume operation.

Active high, level-sampled PMI in 32ms. Same as above, but the sampling clock is 8ms instead of 4ms. Therefore, SUS/RES must be sampled high for a maximum of 32ms before being recognized as a PMI, and must remain low for 40ms before the circuit is re-armed.

To Resume: Once the system is in Suspend mode, a high level sampled on SUS/RES for three 8ms clocks will resume operation.

These settings make the SUS/RES function much more practical in a design where the switch is set to one specific level to command Suspend mode, and to the other level to command Resume mode.

Example:

A notebook design incorporates a lid switch that normally leaves SUS/RES low during operation. SYSCFG 61h[5:4] are normally set to 11. When the lid is closed, SUS/RES goes high. FireStar asserts SMI# 32ms later. Software services the SMI and recognizes PMI#7 active.

The software then prepares the system for the Suspend mode and reprograms SYSCFG 61h[5:4] = 00 to prepare for Resuming. Finally, the software writes SYSCFG 50h[0] = 1 to engage the Suspend mode.

Later the lid is raised and SUS/RES goes low. Because SYSCFG 61h[5:4] = 00, the high-to-low edge on SUS/RES generates a resume and PMI#7. Software then writes SYSCFG 61h[5:4] back to 11, clears PMI#7 by writing bit 5Ch[7] = 1, and returns to normal operation.

912-2000-015 Page 210

Table 4-132 SUS/RES and RINGI Resume Event Related Register Bits

7	6	5	4	3	2	1	0
SYSCFG 50h			PMU Contr	ol Register 4			Default = 00h
					Ready to Resume (RO): 0 = Not in Resume 1 = Ready to Resume	PMU mode (RO): 0 = Nothing pending 1 = Suspend active (clear PMI#6)	
SYSCFG 5Ch		PMI	SMI Source Regi	ster 1 (Write 1 to	Clear)		Default = 00h
PMI#7, Suspend: 0 = Not Active 1 = Active	PMI#6, Resume or INTRGRP: 0 = Not Active 1 = Active						
SYSCFG 5Fh			PMU Contr	ol Register 6			Default = 00h
		RSMGRP IRQs can Resume system: 0 = No 1 = Yes	Transitions on RINGI can Resume system: 0 = No 1 = Yes	Numb	er of RINGI trans	itions to cause Re	sume
SYSCFG 61h			Debound	e Register			Default = 00h
		SUS/ debounce 00 = Active low, 6 01 = Active low, I PMI 10 = Active high, PMI in 16ms 11 = Active high, PMI in 32ms (See Section 4.15 RES and RING)	edge-trig'd PMI evel-controlled level-sampled s level-sampled s 5.8.2, "SUS/				
SYSCFG 6Bh			Resume So	urce Register			Default = 00h
	PREQ# caused Resume (RO): 0 = No 1 = Yes	CLKRUN# caused Resume (RO): 0 = No 1 = Yes		CISA SEL#/ATB# low caused Resume (RO): 0 = No 1 = Yes	SUSP/RSM caused Resume (RO): 0 = No 1 = Yes	RSMGRP caused Resume (RO): 0 = No 1 = Yes	RI caused Resume (RO): 0 = No 1 = Yes

4.15.9 Power Control Latch

There are 16 peripheral power pins (PPWR[15:0]) that are used to control power to individual peripherals through external 74373 latches. Each latch pin is controlled with its individual control bits in SYSCFG 54h, 55h, ABh, and EEh. (Refer to Table 4-133.)

The value latched by PPWRL from the SA bus extends from PPWR15 through PPWR0, providing useful power control signals for up to 16 devices if all 16 bits are latched. Power control pins can also be derived from unused DACK# and SA pins as described below.

4.15.9.1 Power Control Pins

Certain PPWR outputs can be generated directly on the DACK[7:0]# pins on an as-needed basis. This feature eliminates the need for external TTL for a power control latch if fewer than the full number of DMA channels are employed.

When a DACK# pin is reassigned as a PPWR pin, the corresponding DRQ pin for that channel becomes available for programming as a general purpose PIO pin. The programming is done through the DMA Channel Selection registers (PCIDV1 C0h-C3h).

Certain other PPWR pins can be generated directly on SA[23:18], TC, AEN, and RFSH#. PPWR0# is available if the PPWRL signal is not used. Refer to Section 3.4, "Strap Selected Options" for more information on PPWR pin selection.

4.15.9.2 Hardware Considerations

The power control scheme uses the ISA bus SA[15:0] signals to additionally provide the inputs to a 74373-type latch. If all 16 signals will be used, two '373 devices are needed. The PPWRL signal from FireStar is active high and latches the SA[15:0] signals on the latch output on their falling edges.

The pins PPWR1 and PPWR0 have a recovery delay time associated with them when doing the Suspend/Resume function. These two pins can be used as a delay control for some component that needs some time to become stable once power is restored. For example, after turning off the power to the clock oscillator during the Suspend mode, the Resume function will restore power to the clock oscillator and wait until the clock has had time to stabilize before continuing the Resume process.

During reset, the PPWRx latch signals (PPWRL1 and PPWRL0) are pulsed to set the PPWRx signals to a known state. After reset:

- PPWR[11:8] and PPWR[3:0] are set to 0 and
- PPWR[15:12] and PPWR[7:4] are set to 1.

The PPWRx signals will remain in this state until they are updated by writing to SYSCFG 54h, 55h, ABh, and EEh.

4.15.9.3 Programming

SYSCFG 54h, 55h, ABh, and EEh set the power control latch outputs. The upper bits [7:4] of each register select whether the corresponding bits [3:0] should be used to change the latch; if the enable bit is 0, the current latch setting will not be changed when the register is written.

Table 4-133 Power Control Register Bits

7	6	5	4	3	2	1	0
SYSCFG 54h			Power Control	Latch Register 1			Default = 00h
Ena	able [3:0] to write la	atch lines PPWR[3:0]:		Read/write data b	its for PPWR[3:0]	:
	0 = Dis 1 = Ena				0 = Latch 1 = Latch	output low output high	
SYSCFG 55h			Power Control	Latch Register 2			Default = 0Fh
Ena	able [3:0] to write la	atch lines PPWR[]	7:4]:	Read/wi	ite data bits for P	PWR[7:4] (Default	:= 1111):
	0 = Dis 1 = Ena				0 = Latch 1 = Latch	output low output high	
SYSCFG ABh			Power Control	Latch Register 3			Default = 00h
Ena	ble [3:0] to write la	tch lines PPWR[1	1:8]:	ı	Read/write data bi	ts for PPWR[11:8]	:
		Disable Enable			0 = Latch 1 = Latch	output low output high	
SYSCFG EEh			Power Control	Latch Register 4			Default = 0Fh
Enab	ole [3:0] to write la	tch lines PPWR[1	5:12]:	Read/writ	e data bits for PP	WR[15:12] (Defau	lt = 1111):
	0 = Dis 1 = Ena				0 = Latch		

Page 212 912-2000-015

Table 4-133 Power Control Register Bits (cont.)

7	6	5	4	3	2	1	0
PCIDV1 C0h		DM	A Channels A an	d B Selection Re	gister		Default = 10h
Reserved	DMA channel selection on DRQB/DACKB# pins (Channel 1): 000 = Channel 0			Reserved		n on = Channel 0): PPWR4 Channel 5 Channel 6 Channel 7	
PCIDV1 C1h		DM.	A Channels C an	d D Selection Re	gister		Default = 32h
Reserved	DMA channel selection on DRQD/DACKD# pins (Channel 3): 000 = Channel 0					$e \mid 1$ $101 = 0$ $e \mid 2$ $110 = 0$	
PCIDV1 C2h			DMA Channel E	Selection Registe	er		Default = 50h
Reserved		el 1 101 = 0 el 2 110 = 0	n on	Reserved	Function selection on TC pin: 0 = TC 1 = PPWR10	Function selection on AEN pin: 0 = AEN 1 = PPWR11	Function selection on RFSH# pin: 0 = RFSH# 1 = PPWR12
PCIDV1 C3h		DM	A Channels F and	d G Selection Re	gister		Default = 76h
Reserved	DMA channel selection on DRQG/DACKG# pins (Default = Channel 7): 000 = Channel 0		Reserved		el 1 101 = 0 el 2 110 = 0		

4.15.9.4 Resume Recovery Time

SYSCFG 68h[3:2] determine the recovery time from PPWR[1:0] active after a Resume until the end of reset. The clock is guaranteed to be active for at least the last one-eighth of the recovery time. These bits are not affected by SYSCFG 68h[1:0].

These bits can be overridden by setting SYSCFG BEh[0] = 1, in which case the Resume recovery time will always be one second.

4.15.9.5 PPWR[1:0] Suspend Auto Toggle Feature

SYSCFG 68h[1:0] enable PPWR1 and PPWR0, respectively, to automatically toggle when entering and exiting Suspend. Using PPWR0 as an example: When bit 0 = 1 and FireStar has gone into the Suspend mode, PPWR0 gets set to the inverse of SYSCFG 54h[0]; mask SYSCFG 54h[4] is ignored. When exiting Suspend, PPWR0 is set to SYSCFG 54h[0] setting, followed by the recovery time delay set in bits 68h[3:2] before continuing the Resume operation.

Table 4-134 Resume Recovery and Suspend Auto Toggle Register Bits

7	6	5	4	3	2	1	0	
SYSCFG 54h			Power Control	Latch Register 1			Default = 00h	
Ena	able [3:0] to write la	atch lines PPWR[3:0]:		Read/write data b	its for PPWR[3:0]		
	0 = Disable			0	= Latch output lov	v		
	1 = Enable			1	= Latch output hig	jh		
SYSCFG 68h			Clock Sour	ce Register 3			Default = 00h	
				Resume red	covery time:	PPWR[1:0] auto	toggle on entry	
				00 = 8ms 10	0 = 128ms	and exit fro	m Suspend:	
				01 = 32ms 1	1 = 30µs	0 = Disable		
				Note: Ignored	if BEh[0] = 1.	1 = Ena	ble	
					-			
SYSCFG BEh if	AEh[7] = 0		Idle Reload Even	t Enable Register	r 2		Default = 00h	
							Override	
							SYSCFG	
							68h[3:2]:	
							0 = No	
							1 = Recover	
							time 1s	

Page 214 912-2000-015

4.15.10 Programmable Chip Select Feature

FireStar provides programmable chip select features that require no chip signals to be sacrificed. A total of four programmable chip selects are available and can decode either memory cycles or I/O cycles. For I/O chip select decoding, granularity can be specified to-the-byte, decoding a total of 10 bits. For ROM chip select decoding, granularity is to 16KB blocks anywhere in the ISA bus address space (16MB).

Note that the memory chip select feature should be used cautiously for ROMs residing below 1MB. Since the ROM to be selected is on the SD bus, the XD bus buffer may be directed toward FireStar for memory reads and could conflict with SD bus ROMs.

The registers that control the programmability and relocation of the general purpose chip selects are shown in Table 4-135.

Table 4-135 Programmable Chip Select Registers

7	6	5	4	3	2	1	0		
SYSCFG 4Ah		(Chip Select 0 Bas	e Address Regist	ter		Default = 00h		
GPCS0# base	address: A[8:1] (I/O) or A[22:15] (N	Memory)						
SYSCFG 4Bh			Chip Select 0 (Control Register			Default = 00h		
GPCS0# base	Write	Read	Chip select	GPCS0# mask	k bits for address.	A[4:1] (I/O) or A[18	3:15] memory:		
address:	decode:	decode:	active:	A 1 in a partic	ular bit means tha	t the correspondin	g bit at		
A9 (I/O)	0 = Disable	0 = Disable	0 = w/Cmd	SYSCFG 4Ah	[3:0] is not compa	red. This is used t	o determine		
A23 (Memory)	1 = Enable	1 = Enable	1 = Before ALE	address block	size.				
SYSCFG 4Ch			Chip Select 1 Bas	a Addrass Ragist	lar		Default = 00h		
	address: A[8:1] (-	c Addiess regis	ici		Delault = 0011		
GFC31# base	addiess. A[6.1] (1/O) 01 A[22.15] (1	vieinory)						
SYSCFG 4Dh			Chip Select 1 (Control Register			Default = 00h		
GPCS1# base	Write	Read	Chip select	GPCS1# mask	k bits for address.	A[4:1] (I/O) or A[18	3:15] memory:		
address:	decode:	decode:	active:	A 1 in a partic	ular bit means tha	t the corresponding	g bit at		
A9 (I/O)	0 = Disable	0 = Disable	0 = w/Cmd	SYSCFG 4Ch	[3:0] is not compa	red. This is used t	o determine		
A23 (Memory)	1 = Enable	1 = Enable	1 = before ALE	address block	size.				
SYSCFG B3h			Chip Select Cyc	ele Type Register	i		Default = 00h		
GPCS3#	GPCS2#	GPCS1#	GPCS0#	GPCS3#	GPCS2#	GPCS1#	GPCS0#		
ROM width:	ROM width:	ROM width:	ROM width:	cycle type:	cycle type:	cycle type:	cycle type:		
0 = 8-bit	0 = 8-bit	0 = 8-bit	0 = 8-bit	0 = I/O	0 = I/O	0 = I/O	0 = I/O		
1 = 16-bit	1 = 16-bit	1 = 16-bit	1 = 16-bit	1 = ROMCS	1 = ROMCS	1 = ROMCS	1 = ROMCS		
OVOCEO DAL			N. C. L. J. O. D	- Address Besiel			Defeath ook		
SYSCFG BAh			Chip Select 2 Base	e Address Regist	er		Default = 00h		
GPCS2# base	address: A[8:1] (I/O) or A[22:15] (I	Memory)						
SYSCFG BBh			Chin Select 2.0	Control Register			Default = 00h		
	147.	Б.			12. 6. 11	ATA 41 (1/O)			
GPCS2# base address:	Write decode:	Read decode:	Chip select active:			A[4:1] (I/O) or A[18			
· ·						t the corresponding			
A9 (I/O) A23 (Memory)	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = w/Cmd 1 = before ALE	address block		red. This is used t	o determine		
AZ3 (WEITIOIY)	i = Liidbie	i = chapie	I = Delote ALC	addless DIOCK	3140.				
SYSCFG BCh		(Chip Select 3 Bas	e Address Regis	ter		Default = 00h		
GPCS3# base	GPCS3# base address: A[8:1] (I/O) or A[22:15] (Memory)								
		/ 5 4==5] (

Table 4-135 Programmable Chip Select Registers (cont.)

7	6	5	4	3	2	1	0	
SYSCFG BDh			Chip Select 3	Control Register			Default = 00h	
GPCS3# base address: A9 (I/O) A23 (Memory) Write decode: Chip select active: A 1 in a particular bit means that the corresponding bit at SYSCFG BCh[3:0] is not compared. This is used to determine address block size.								
SYSCFG BFh			Chip Select Gra	nularity Registe	r		Default = 0Fh	
GPCS3# base address:	GPCS2# base address:	GPCS1# base address:	GPCS0# base address:	GPCS3# mask bit:	GPCS2# mask bit:	GPCS1# mask bit:	GPCS0# mask bit:	
A0 (I/O) A14 (Memory)	A0 (I/O) A14 (Memory)	A0 (I/O) A14 (Memory)	A0 (I/O) A14 (Mem.)	A0 (I/O) A14 (Memory)	A0 (I/O) A14 (Memory)	A0 (I/O) A14 (Memory)	A0 (I/O) A14 (Memory)	

4.15.10.1 XDIR Control on GPCS# Ranges

FireStar provides a register (see Table 4-136) to control whether GPCS# decoding also controls the XD bus buffer direction. Since FireStar implements the XD bus buffer internally, using GPCS# decoding is the only way to control buffer direction for non-standard X bus devices.

The same control register also provides bits to individually enable and disable the decode. This feature somewhat dupli-

cates the bits already in the individual GPCS# programming registers that enable decoding separately for reads and writes on each GPCS# line. However, changing those bits requires multiple reads and writes; the global bits are provided here to allow a simplified means of temporarily disabling the decode. These bits default to "enabled" to remain backward compatible with the Viper-N+ BIOS.

Table 4-136 GPCS# Control Bits

SYSCFG FEh			GPCS# Global	Control Register			Default = 00h
GPCS3# decode: 0 = Enable 1 = Disable	GPCS2# decode: 0 = Enable 1 = Disable	GPCS1# decode: 0 = Enable 1 = Disable	GPCS0# decode: 0 = Enable 1 = Disable	GPCS3# read cycles drive XDIR low: 0 = Disable 1 = Enable	GPCS2# read cycles drive XDIR low: 0 = Disable 1 = Enable	GPCS1# read cycles drive XDIR low: 0 = Disable 1 = Enable	GPCS0# read cycles drive XDIR low: 0 = Disable 1 = Enable

Page 216 912-2000-015

4.16 ACPI Implementation

This section of the data book describes how the Microsoft Advanced Configuration and Power Interface (ACPI) is implemented in the FireStar silicon. ACPI is a standard register interface for power management functions jointly developed by Microsoft, Intel, and Toshiba. The features required by ACPI closely mirror the feature set already implemented in FireStar. In many cases, support of ACPI entails only a remapping of register bits already present in FireStar.

The ACPI register set does not replace the standard FireStar PMU register set, but is instead available in parallel. When ACPI is enabled, both register sets can be used interchangeably. Therefore, existing power management software can continue to run unchanged until the ACPI code is fully capable of replacing it.

4.16.1 Register Level Interface

ACPI defines two Power Management register blocks PM1_BLK and PM2_BLK, and Processor register block P_BLK, to accommodate most on-chip power management operations. ACPI further defines the optional General Purpose Event register blocks GPE0_BLK and GPE1_BLK to accommodate external events that require power management intervention. FireStar implements only GPE0_BLK so that GPE1_BLK can be implemented by another PCI device in the system if needed.

Many of the functions addressed by these bits correspond to existing FireStar features. The correspondence is noted where appropriate.

Table 4-137 is an overview of the above mentioned register blocks (the bit meanings are explained later in this chapter.)

Table 4-137 Register Block Overview

Offset	7	6	5	4	3	2	1	0		
PM1_BL	Register Set									
00h	Rese	erved	GBL_STS	BM_STS		Reserved		TMR_STS		
01h	WAK_STS		Reserved		PWRBTNOR_STS	RTC_STS	Reserved	PWRBTN_STS		
02h	Rese	Reserved GBL_EN Reserved								
03h			Reserved			RTC_EN	Reserved	PWRBTN_EN		
04h			Reserved			GBL_RLS	BM_RLD	SCI_EN		
05h	Rese	Reserved SLP_EN SLP_TYP Reserved								
06h-07h				Re	served					
08h				TMR_	_ VA L[7:0]					
09h				TMR_	VA L[15:8]					
0 A h				TMR_\	/A L[23:16]					
0Bh-0Dh					served					
	C Register Set									
00h				Reserved				ARB_DIS		
01h-07h				Re	served					
	egister Set									
00h		Reserved		THT_EN		CLK_ VA L		Reserved		
01h-03h				Re	served					
04h				P_	_LVL2					
05h				P_	_LVL3					
06h-07h				Re	served					
GPE0_BL	_K Register Set (b	it positions not s	pecified by ACPI)							
00h	ACPI7 LID_STS	ACPI6 EC_STS	ACPI5 USB_STS	ACPI4 RI_STS	ACPI3 FRI_STS	ACPI2 STSCHG_STS	ACPI1 DOCK_STS	ACPI0 UNDOCK_STS		
01h		Reserved		THRM_STS	ACPI11_STS	ACPI10_STS	ACPI9_STS	ACPI8_STS		
02h	ACPI7 LID_EN	ACPI6 EC_EN	ACPI5 USB_EN	ACPI4 RI_EN	ACPI3 FRI_EN	ACPI2 STSCHG_EN	ACPI1 DOCK_EN	ACPI0 UNDOCK_EN		
03h	BIOS_RLS	Res	erved	THRM_EN	ACPI11_EN	ACPI10_EN	ACPI9_EN	ACPI8_EN		
		Reserved								

912-2000-015 Revision: 1.0

4.16.2 Base Address Selection

The Base Address selection method for PM1_BLK, PM2_BLK, P_BLK, and GPE0_BLK is chipset-specific. For FireStar, these base addresses are individually selectable at any 16-bit I/O address (on dword boundaries only). These locations are programmed by the ACPI BIOS after a call from

the OS, using the FireStar PCIDV1 register set, as shown in Table 4-138.

In addition to the Base Address selection registers, Table 4-138 shows other ACPI related registers located in the PCIDV1 register space. These registers' features are individually addressed and discussed in the following sub-sections.

Table 4-138 PCIDV1 ACPI Related Registers

7	6	5	4	3	2	1	0	
PCIDV1 D0h	PM1_BLK Base Address Register - Byte 0: Address Bits [7:0] De						Default = 00h	
PM1 Block Base Address Bits - Address value A[15:0] defines the 16-bit starting address for PM1_BLK Register Set in system I/O space. The address is required to be paragraph-aligned (on a 16-byte boundary), so bits [3:0] are always 0.								
PCIDV1 D1h PM1_BLK Base Address Register - Byte 1: Address Bits [15:8]								
PCIDV1 D2h		PM2_BLK Ba	se Address Regi	ister - Byte 0: Add	dress Bits [7:0]		Default = 00h	
PM2 Block Base Address Bits - Address value A[15:0] defines the 16-bit starting address for PM2_BLK Register Set in system I/O space. The address is required to be qword-aligned (on an 8-byte boundary), so bits [2:0] are always 0.							PM2_BLK Register Set: 0 = Disable 1 = Enable	
PCIDV1 D3h		PM2_BLK Ba	se Address Regi	ster -Byte 1: Add	ress Bits [15:8]		Default = 00h	
PCIDV1 D4h		P_BLK Bas	e Address Regis	ter - Byte 0: Addı	ess Bits [7:0]		Default = 00h	
Processor Block Base Address Bits - Address value A[15:0] defines the 16-bit starting address for P_BLK Register Set in system I/O space. The address is required to be qword-aligned (on an 8-byte boundary), so bits [2:0] are always 0.							P_BLK Register Set: 0 = Disable 1 = Enable	
PCIDV1 D5h		P_BLK Base	Address Regist	er - Byte 1: Addre	ess Bits [15:8]		Default = 00h	
PCIDV1 D6h		GPE0_BLK B	ase Address Reg	ister - Byte 0: Ad	dress Bits [7:0]		Default = 00h	
General Purpose Event Block Base Address Bits - Address value A[15:0] defines the 16-bit starting address for GPE0_BLK Register Set in system I/O space. The address is required to be qword-aligned (on an 8-byte boundary), so bits [2:0] are always 0.							GPE0_BLK Register Set: 0 = Disable 1 = Enable	
PCIDV1 D7h		GPE0_BLK Ba	se Address Regi	ster - Byte 0: Add	dress Bits [15:8]		Default = 00h	
PCIDV1 D8h		A	CPI Source Cont	rol Register - By	te 0		Default = 00h	
ACPI7 LID: 0 = IRQ	ACPI6 EC#: 0 = IRQ	ACPI5 USB#: 0 = IRQ	ACPI4 RI#: 0 = IRQ	ACPI3 FRI#: 0 = IRQ	ACPI2 STSCHG#: 0 = IRQ	ACPI1 DOCK#: 0 = IRQ	ACPI0 UNDOCK#: 0 = IRQ	
Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	Driveback 1 = Discrete ACPI input	

Page 218 912-2000-015

Table 4-138 PCIDV1 ACPI Related Registers (cont.)

7	6	5	4	3	2	1	0
PCIDV1 D9h		Default = 00h					
	Rese	erved		ACPI11:	ACPI10:	ACPI9:	ACPI8:
				0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback
				1 = Discrete ACPI input			

Note: The bits in the ACPI Source Control Register (Bytes 0 and 1) select whether the specified ACPI input comes from the IRQ Driveback cycle or from an external pin source (one of the PIO pins or through ACPIMX option).

PCIDV1 DAh	ACPI Source Status Register - Byte 0							
ACPI7 LID:	ACPI6 EC#:	ACPI5 USB#:	ACPI4 RI#:	ACPI3 FRI#:	ACPI2 STSCHG#:	ACPI1 DOCK#:	ACPI0 UNDOCK#:	
0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	
PCIDV1 DBh	•		tus Register - Byt	te 1		Default = 00h		
	Res	erved		ACPI11:	ACPI10:	ACPI9:	ACPI8:	
1				0 – 10 м	0 - 1044	0 - 1014	0 – 1 0 м	

Note: The bits in the ACPI Source Status Register (Bytes 0 and 1) indicate the current state of the ACPI lines, either the discrete pins or the last IRQ Driveback value depending on the ACPI Source Control Register setting. This information may also be available elsewhere, since the IRQ Driveback values and PIO pin values can be read from other registers. However, this register provides a central means of reading signal state and is especially useful for signals such as LID (which generates an SCI, System Controller Interrupt, on both opening and closing events).

1 = High

1 = High

1 = High

1 = High

PCIDV1 DCh	PCIDV1 DCh ACPI Event Resume Control Register - Byte 0 Default =								
ACPI7 LID:	ACPI6 EC#:	ACPI5 USB#:	ACPI4 RI#:	ACPI3 FRI#:	ACPI2 STSCHG#:	ACPI1 DOCK#:	ACPI0 UNDOCK#:		
0 = Event will not cause Resume	0 = Event will not cause Resume	0 = Event will not cause Resume	0 = Event will not cause Resume	0 = Event will not cause Resume	0 = Event will not cause Resume	0 = Event will not cause Resume	0 = Event will not cause Resume		
1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend		
PCIDV1 DDh	PCIDV1 DDh ACPI Event Resume Control Register - Byte 1 Default = 00								
Reserved ACPI11: ACPI10: ACPI9: ACPI8:									

FCIDVI DDII	ACFI EVEIII RESullie C	Joillioi negistei -	byte i		Delault = 0011
	Reserved	ACPI11:	ACPI10:	ACPI9:	ACPI8:
		0 = Event will	0 = Event will	0 = Event will	0 = Event will
		not cause	not cause	not cause	not cause
		Resume	Resume	Resume	Resume
		1 = Event will	1 = Event will	1 = Event will	1 = Event will
		cause	cause	cause	cause
		Resume	Resume	Resume	Resume
		operation if	operation if	operation if	operation if
		system is in	system is in	system is in	system is in
		Suspend	Suspend	Suspend	Suspend
N. A. TI. LONG. III. AGDIE		1.45 1 1 1 1			

Note: The bits in the ACPI Event Resume Control Register (Bytes 0 and 1) select whether the specified ACPI input can wake the system from its Suspend mode. Note that any PCI device that sends its information via the IRQ Driveback cycle will wake the system when it activates its CLKRUN# pin.

912-2000-015 Revision: 1.0

Table 4-138 PCIDV1 ACPI Related Registers (cont.)

7	6	5	4	3	2	1	0
PCIDV1 DEh-DF	ih		Res	erved	<u> </u>		Default = 00h
PCIDV1 E0h			SI D. TVD Contro	ol Register - Byte	0		Default = 00h
PLVL17:		SCTL_PPWR17:	<u>=</u>	PLVL16:	ī .	SCTL_PPWR16:	
Selects state PPWR17 line will assume when SCTL_ PPWR17 set- ting is reached. 0 = Low	Refer to bit	s [2:0] for decode		Selects state PPWR16 line will assume when SCTL_ PPWR16 set- ting is reached. 0 = Low	000 = PPWRx switches when SLP_TYP (PM1_E Offset 05h[4:2) is set for ACPI S0 system state 001 = PPWRx switches when SLP_TYP (PM1_E Offset 05h[4:2) is set for ACPI S0 or S1 s tem state 010 = PPWRx switches when SLP_TYP (PM1_E		
1 = High				1 = High	system sta 011 = PPWRx sv Offset 05h S3 system 100 = PPWRx sv	PI S0, S1, or S2 _TYP (PM1_BLK PI S0, S1, S2, or _TYP (PM1_BLK PI S0, S1, S2,	
PCIDV1 E1h		SLP_TYP Control Register - Byte 1					Default = 00h
PLVL19:		SCTL_PPWR19:		PLVL18:		SCTL_PPWR18:	
Selects state PPWR19 line will assume when SCTL_ PPWR19 set- ting is reached. 0 = Low 1 = High	Refer to P0	CIDV1 E0h[2:0] fo	r decode.	Selects state PPWR18 line will assume when SCTL_ PPWR18 set- ting is reached. 0 = Low 1 = High	Refer to Po	CIDV1 E0h[2:0] fo	r decode.
PCIDV1 E2h			SLP_TYP Contro	ol Register - Byte	2		Default = 00h
PLVL21: Selects state PPWR21 line will assume when SCTL_ PPWR21 set- ting is reached. 0 = Low 1 = High		SCTL_PPWR21: CIDV1 E0h[2:0] fo		PLVL20: Selects state PPWR20 line will assume when SCTL_ PPWR20 set- ting is reached. 0 = Low 1 = High	Refer to Po	SCTL_PPWR20: CIDV1 E0h[2:0] fo	
PCIDV1 E3h			SLP_TYP Contro	l Register - Byte	3		Default = 00h
PLVL23: Selects state PPWR23 line will assume when SCTL_ PPWR23 set- ting is reached. 0 = Low 1 = High		SCTL_PPWR23: CIDV1 E0h[2:0] fo		PLVL22: Selects state PPWR22 line will assume when SCTL_ PPWR22 set- ting is reached. 0 = Low 1 = High	Refer to Po	SCTL_PPWR22: CIDV1 E0h[2:0] fo	

Page 220 912-2000-015

Table 4-138 PCIDV1 ACPI Related Registers (cont.)

PLVL25: Selects state PPWR25: Selects state PPWR25 Ine will assume When SCTL_ PPWR26 Ine will assume When SCTL_ PPWR27: PPWR26 Ine will assume When SCTL_ PPWR27: PPWR27: PPWR26 Ine will assume When SCTL_ PPWR27: PPWR27: PPWR27: PPWR27: PPWR26 Ine will assume When SCTL_ PPWR27: PPWR26 Ine will assume When SCTL_ PPWR28 Ine will assume Ine will assu	7	6	5	4	3	2	1	0		
Selects state PPWR25 line will assume when SCTL_ PPWR25 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 line will assume when SCTL_ PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR27 set- ting is reached. 0 = Low 1 = High PPWR28 set- ting is reached. 0 = Low 1 = High PPWR29 line will assume when SCTL_ PPWR29 set- ting is reached. 0 = Low 1 = High PPWR29 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR29 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR29 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR29 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR30 line will assume when SCTL_ PPWR30 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR30 line will assume When SCTL_ PPWR30 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR30 set- ting is reached. 0 = Low 1 = High PCIDV1 E0H(2.0) for decode. PPWR30 set- ting is reached. 0 = Low 1 = High POIDV1 E0H(2.0) for decode. 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR30 set- ting is reached. 0 = Low 1 = High PPWR	PCIDV1 E4h			SLP_TYP Contro	ol Register - Byte	4		Default = 00h		
Selects state PPWR27 line will assume when SCTL_ PPWR29 line will assume when SCTL_ PPWR29 setting is reached.	PLVL25: Selects state PPWR25 line will assume when SCTL_ PPWR25 set- ting is reached. 0 = Low 1 = High		SCTL_PPWR25: CIDV1 E0h[2:0] fo	r decode.	PLVL24: Selects state PPWR24 line will assume when SCTL_ PPWR24 set- ting is reached. 0 = Low 1 = High	Refer to Po	_			
PPWR26 line will assume when SCTL_ PPWR26 set ting is reached. 0 = Low 1 = High PPWR26 set ting is reached. 0 = Low 1 = High PPWR26 set ting is reached. 0 = Low 1 = High PPWR26 set ting is reached. 0 = Low 1 = High PCIDV1 E6h SLP_TYP Control Register - Byte 6 Default = 00h PLVL29: SCTL_PPWR29: Selects state PPWR28 line will assume when SCTL_ PPWR28 line will assume when SCTL_ PPWR28 line will assume when SCTL_ PPWR28 set ting is reached. 0 = Low 1 = High PCIDV1 E0h[2.0] for decode. PPWR28 line will assume when SCTL_ PPWR30 line will assume will assume will assume will assume will assume will	PLVL27:		SCTL_PPWR27:		PLVL26:		SCTL_PPWR26:			
PLVL29: SCTL_PPWR29: PLVL28: ScTL_PPWR28: Selects state PPWR29 line will assume when SCTL_ PPWR29 set- ting is reached. 0 = Low 1 = High PPWR31 ine will assume when SCTL_ PPWR31: SCTL_PPWR31: PLVL30: SCTL_PPWR30: ScTL_PPWR30: Selects state PPWR30 line will assume when SCTL_ PPWR31: SCTL_PPWR31: PLVL30: SCTL_PPWR30: Selects state PPWR30 line will assume when SCTL_ PPWR30 line will assume when SCTL_ PPWR30 set- ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low 1 = High Ting is reached. O = Low Ting is reached. O = Low Ting is reached. O = Low Ting i	PPWR27 line will assume when SCTL_ PPWR27 set- ting is reached. 0 = Low	Refer to P0	CIDV1 E0h[2:0] fo	r decode.	PPWR26 line will assume when SCTL_ PPWR26 set- ting is reached. 0 = Low	Refer to Po	CIDV1 E0h[2:0] fo	r de code .		
Selects state	PCIDV1 E6h			SLP_TYP Contro	ol Register - Byte	6		Default = 00h		
PPWR29 line will assume when SCTL_ PPWR29 set ting is reached. 0 = Low 1 = High PPWR31 line will assume will assume when SCTL_ PPWR28 set ting is reached. 0 = Low 1 = High PCIDV1 E7h SLP_TYP Control Register - Byte 7 Default = 00f PUL31: SCTL_PPWR31: SCTL_PPWR31: PUL30: SCTL_PPWR30: Selects state PPWR31 line will assume when SCTL_ PPWR31 line will assume when SCTL_ PPWR31 set ting is reached. 0 = Low 1 = High POWR Control Latch Set Register Default = 00f PPWR control line Selects Set Register Default = 00f PPWR control line Selects Set Register Default = 00f PPWR control line Setting: 00000 = PPWR0 O00001 = PPWR30 O00001 = PPWR31 O00001 = PPWR31 O00001 = PPWR31	PLVL29:		SCTL_PPWR29:		PLVL28:		SCTL_PPWR28:			
PCIDV1 E7h SLP_TYP Control Register - Byte 7 Default = 00h PLVL31: SCTL_PPWR31: PLVL30: SCTL_PPWR30: Selects state Refer to PCIDV1 E0h[2:0] for decode. Selects state Refer to PCIDV1 E0h[2:0] for decode. PPWR31 line will assume will assume when SCTL_ PPWR30 line when SCTL_ PPWR30 setting is reached. 0 = Low 0 = Low 1 = High 1 = High Default = 00h PCIDV1 E8h Power Control Latch Set Register Default = 00h Control line setting: 00000 = PPWR0 0 = Low setting: 00000 = PPWR1 11110 = PPWR30 1 = High 11111 = PPWR31	PPWR29 line will assume when SCTL_ PPWR29 set- ting is reached. 0 = Low	Refer to Po	CIDV1 E0h[2:0] fo	r decode.	PPWR28 line will assume when SCTL_ PPWR28 set- ting is reached. 0 = Low	Refer to Po	CIDV1 E0h[2:0] fo	r decode.		
Selects state	PCIDV1 E7h			SLP_TYP Contro	ol Register - Byte	7		Default = 00h		
Control line Reserved PPWR control line to be set:	Selects state PPWR31 line will assume when SCTL_ PPWR31 set- ting is reached. 0 = Low 1 = High		_	r de code.	Selects state PPWR30 line will assume when SCTL_ PPWR30 set- ting is reached. 0 = Low 1 = High		_			
setting: 00000 = PPWR0 0 = Low 00001 = PPWR1 11110 = PPWR30 1 = High 11111 = PPWR31		D	an cod	-ower Control			o cot:	Delauit = UUN		
PCIDV1 E9h Reserved Default = 00h	setting: 0 = Low	Hese	D9 VIG		00000 = PP W R0	 111	10 = PPWR30			
	PCIDV1 E9h			Res	served			Default = 00h		

912-2000-015 Revision: 1.0

Table 4-138 PCIDV1 ACPI Related Registers (cont.)

7	6	5	4	3	2	1	0
PCIDV1 EAh		Pov	ver Control Read	back Register - E	tyte 0		Default = FFh
PPWR7 state:	PPWR6 state:	PPWR5 state:	PPWR4 state:	PPWR3 state:	PPWR2 state:	PPWR1 state:	PPWR0 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EBh		Pov	ver Control Read	back Register - B	yte 1		Default = FFh
PPWR15 state:	PPWR14 state:	PPWR13 state:	PPWR12 state:	PPWR11 state:	PPWR10 state:	PPWR9 state:	PPWR8 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 ECh		Pov	ver Control Read	back Register - E	lyte 2		Default = F0h
PPWR23 state:	PPWR22 state:	PPWR21 state:	PPWR20 state:	PPWR19 state:	PPWR18 state:	PPWR17 state:	PPWR16 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EDh		Pov	ver Control Read	back Register - B		Default = F0h	
PPWR31 state:	PPWR30 state:	PPWR29 state:	PPWR28 state:	PPWR27 state:	PPWR26 state:	PPWR25 state:	PPWR24 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EEh			ACPI Thermal	Control Register			Default = 00h
		DIO : EA					Delault = 0011
Rese	erved	PIO pin FA auto-togo				vent granularity:	
		00 = Never	gied migni.			ue in SYSCFG F3I thermal managem	
		01 = During Leve	ol 1 and 2	toggles.	lat it generates a	illelillai illailagelli	entevent when it
		STPCLK# n		0000 = Bit 0	0100 = Bit 4 1	000 = Bit 8	1100 = Bit 12
		10 = During Leve	12 STPCLK#	0001 = Bit 1	0101 = Bit 5 1	001 = Bit 9	1101 = Bit 13
		modulation only		0010 = Bit 2			1110 = Bit 14
		11 = Reserved		0011 = Bit 3	0111 = Bit 7 1	011 = Bit 11	1111 = Bit 15

Page 222 912-2000-015

4.16.2.1 PM1 Register Block

The PM1 registers themselves are always located in system I/O space as offsets from the PM1_BLK I/O Base Address, PCIDV1 D0h-D1h.

A register map for the PM1 register set is shown in Table 4-139 with relevant bit information following.

Table 4-139 PM1 BLK Register Set

Offset	7	6	5	4	3	2	1	0			
00h	Rese	erved	GBL_STS	BM_STS		Reserved		TMR_STS			
01h	WAK_STS		Reserved		PWRBTNOR _STS	RTC_STS	Reserved	PWRBTN _STS			
02h	Rese	erved	GBL_EN		Rese	erved		TMR_EN			
03h		Reserved RTC_EN Reserved									
04h			Reserved			GBL_RLS	BM_RLD	SCI_EN			
05h	Rese	erved	SLP_EN		SLP_TYP		Rese	erved			
06h-07h				Rese	erved						
08h				TMR_VAL	[7:0] (RO)						
09h				TMR_VAL	[15:8] (RO)						
0Ah				TMR_VAL[23:16] (RO)						
0Bh-0Dh				Rese	erved						

SCI Enable

ACPI takes over power management by setting SCI_EN = 1. Until this point, any enabled event will generate an SMI (PMI#39, indicated active in SYSCFG DDh[7]).

- · SCI EN
 - If SCI occurs, generate:
 - 0 = SMI
 - 1 = IRQ13

24-bit Timer

The timer is a free-running "up" counter based on the 14MHz clock divided by 4. It runs whenever the 14MHz input clock to FireStar is present, and is cleared to 0 whenever PCIRST# is asserted. The TMR_VAL register is read-only. Whenever TMR_VAL[23] changes from 0-to-1 or from 1-to-0, the TMR_STS bit is set to 1; writing 1 back to TMR_STS clears the bit. If TMR_EN = 1 when TMR_STS = 1, an SCI occurs (if globally enabled).

- TMR STS
 - Has TMR_VAL[23] toggled (changed from high-to-low or low-to-high)?
 - 0 = No
 - 1 = Yes

Write 1 to clear

- TMR EN
 - Should TMR STS going to 1 cause SCI?
 - 0 = No
 - 1 = Yes

- TMR_VAL[23:0]
 - A read-only value that returns the power management timer count. The count is based on 14.31818MHz/4.
 The count is cleared by a PCI bus reset. Whenever bit 23 toggles, TMR_STS is set to indicate the event.
 Counts only while the system is active.

Bus Master Monitor

BM_STS goes high whenever a PCI REQ# line goes active (or an internal bus master device such as the IDE controller makes a bus request). Software writes back a 1 to clear the bit. No SCI can be generated by this event. However, if BM_RLD = 1, BM_STS going active returns the CPU to C0 (full active) state from C3 state.

- BM_STS
 - Has any REQ# gone active since this bit was last cleared?
 - 0 = No
 - 1 = Yes

Write 1 to clear

- BM RLD
 - Should BM_STS going to 1 wake up CPU (state restored to C0 from C3)?
 - 0 = No
 - 1 = Yes

Preliminary 82C700

Global Service Request

BIOS can get the attention of ACPI, or ACPI can get the attention of BIOS, through the Global Service Request bits.

BIOS request to ACPI:

BIOS writes 1 to BIOS_RLS (offset from GPE0_BLK 03h[7]), which will cause GBL_STS to be set to 1 until cleared (when ACPI code writes GBL_STS = 1). If GBL_EN = 1, GBL_STS going to 1 causes an SCI. BIOS_RLS is write-only; reads always return 0.

- · BIOS RLS
 - Does BIOS want to make a request to ACPI?
 - 0 = No effect
 - 1 = Yes

Write-only bit

- · GBL STS
 - Has software written BIOS RLS = 1?
 - 0 = No
 - 1 = Yes

Write 1 to clear

- GBL EN
 - Should GBL STS going to 1 cause SCI?
 - 0 = No
 - 1 = Yes

ACPI request to BIOS:

ACPI writes 1 to GBL_RLS, which will cause a software SMI. This bit is connected directly to SYSCFG 50h[7]. When BIOS services the SMI, it must clear the software SMI (by writing either GBL RLS or SYSCFG 50h[7]).

- GBL RLS
 - Does ACPI software wish to generate SMI to BIOS?
 - 0 = No
 - 1 = Yes

Wakeup Status

Uses bit WAK_STS to indicate that the system was in Suspend and was woken up due to an enabled Resume event. Similar to FireStar SYSCFG 5Ch[6].

- · WAK STS
 - Did system wake from Suspend mode after an enabled Resume event occurred?
 - 0 = No
 - 1 = Yes

Power Button

The PWRBTN# signal operation is exactly the same as the FireStar SUSP/RES pin operation when SYSCFG 61h[5:4] = 00. Driving PWRBTN# low when the system is active causes PWRBTN_STS to be set to 1, and will also cause an SCI if PWRBTN EN = 1.

PWRBTN# also has an additional "override" function. If PWRBTNOR_EN = 1 and the PWRBTN# signal is held active for more than four seconds, the system is forced to the "off" state with no software involved. In this case, PWRBTN_STS gets cleared to 0; PWRBTNOR_STS gets set to 1.

On FireStar, the override feature is implemented by forcing a write of SYSCFG 50h[0] = 1 after four seconds, which will do a Suspend sequence and toggle the PPWR pins.

- PWRBTN STS
 - Has user pressed power button?
 - 0 = No
 - 1 = Yes
- PWRBTN EN
 - Should PWRBTN_STS going to 1 cause SCI?
 - 0 = No
 - 1= Yes
- · PWRBTNOR STS
 - PWRBTN# Override Status PWRBTN# asserted for
 - > 4 sec?
 - 0 = No
 - 1 = Yes

RTC Management

The RTC interrupt, IRQ8#, can be used to generate an SCI event. Whenever IRQ8# goes active, RTC_STS goes to 1. If RTC EN = 1 also, an SCI is generated.

- RTC_STS
 - Has IRQ8# from RTC gone active?
 - 0 = No
 - 1 = Yes
- · RTC EN
 - Should RTC_STS going to 1 cause SCI?
 - 0 = No
 - 1 = Yes

Sleep Modes

ACPI software writes SLP_TYP to any desired value along with SLP_EN = 1 to force entry into a Sleep mode. SCTL_PPWRx bits (in the chipset-specific registers described earlier) select how the PPWR control lines will react to each SLP TYP selection.

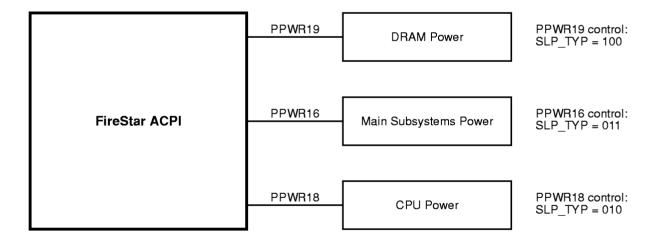
- SLP_EN
 - When written to 1, forces SLP_TYP Suspend mode. Always reads 0.
- SLP_TYP
 - Defines Sleep mode to enter when software sets SLP_EN = 1. ACPI ROM table associates 3-bit binary values with one of the system states S0-S4.

Page 224 912-2000-015 Revision: 1.0

- SCTL PPWRx
 - The SCTL_PPWRx (Sleep control) bits select the SLP_TYP modes for which the associated PPWR (peripheral device control line output from FireStar) should be controlled. If SCTL_PPWRx <= SLP_TYP, the PPWRx line will be controlled. "Controlled" means set to the PLVLx value associated with that PPWRx line.

For example, if SCTL_PPWR9 = 010, PLVL9 = 0, and the current state of PPWR9 is high, PPWR9 will be switched to low on entry to SLP_TYP mode 2 and higher but not when SLP_TYP = 1. On exit from Sleep, PPWR9 will be driven to its previous value.

ACPI defines five system states S0-S4.


- S0, SLP_TYP = 000
 - Active mode. Clock throttling, etc. determined by CPU state C0-C3.
- S1, SLP TYP = 001
 - Low-power Suspend mode with CPU and L2 cache alive. Selecting SLP_TYP = 011 causes SYSCFG ADh[5,3] to be set to 0,0 to allow powered CPU Suspend mode, and then forces a write to SYSCFG 50h[0]

to start the transition into Suspend mode. WAK_STS = 1 upon resume.

- S2, SLP TYP = 010
 - Same as S1, but power is removed from CPU, L2 cache, and selected peripheral devices. Selecting SLP_TYP = 010 causes SYSCFG ADh[5,3] to be set to 1,1 to allow 0V CPU Suspend mode, and then forces a write to SYSCFG 50h[0] to start the transition into Suspend mode. Auto-toggle occurs on selected PPWR pins to allow power to be removed from the devices automatically in the Suspend process. WAK_STS = 1 upon resume.
- S3, SLP TYP = 011
 - Same as S2, but power is removed from more devices.
 Typically, only DRAM, FireStar, and the keyboard controller (embedded controller) remain powered. Auto-toggle on PPWR lines is enabled more broadly to distinguish between S2 and S3.
- S4 SLP TYP = 100
 - Same as S3, but power is also removed from DRAM in this mode. Auto-toggle on PPWR lines is enabled more broadly to distinguish between S3 and S4.

A typical system organization is illustrated in Figure 4-41.

Figure 4-41 FireStar SLP TYP Power Control Scheme Example

4.16.2.2 PM2 Register Block

The registers addresses shown in Table 4-140 are offsets from the PM2_BLK I/O Base Address, PCIDV1 D2h-D3h.

Table 4-140 PM2_BLK Register Set

Offset	7	6	5	4	3	2	1	0					
00h		Reserved ARB_DIS											
01h-07h		Reserved											

ARB_DIS

 Software uses this bit to enable and disable system master devices. When set to 1, only the host CPU can own the system buses. When cleared to 0, other requesting bus masters will be granted the bus in the normal manner. This feature allows software to initiate time-critical operations without the possibility of another device disrupting the operation.

0 = Enable arbitration

1 = Disable

Page 226 912-2000-015

Revision: 1.0

4.16.2.3 Processor Register Block

The registers addresses in Table 4-141 are offsets from the P_BLK I/O Base Address, PCIDV1 D4h-D5h.

Table 4-141 P_BLK Register Set

Offset	7	6	5	4	3	2	1	0					
00h		Reserved		THT_EN		CLK_VAL		Reserved					
01h-03h		Reserved											
04h				P_	LVL2								
05h				P_	LVL3								
06h-07h	Reserved												

Clock Throttling

THT_EN and CLK_VAL bits work in conjunction with each other. The CLK_VAL bits correspond to FireStar SYSCFG 67h[2:0]. However, since the duty cycle mapping is not exact, the FireStar duty cycle for each range will be adjusted to the upper ACPI limit (001 = 12.5% ... 111 = 87.5%).

- · THT EN
 - Throttle enable Enables clock throttling.
 - 0 = Disable
 - 1 = Enable
- · CLK VAL
 - Clock throttle duty Sets STPCLK# throttling duty cycle.
 - 000 = Reserved
 - 001 = 0-12.5%
 - 010 = 12.5 25%
 - 011 = 25-37.5%
 - 100 = 37.5%-50%
 - 101 = 50-62.5%
 - 110 = 62.5-75%
- 111 = 75%-87.5%

CPU States

ACPI defines four CPU states C0-C3. The P_BLK registers control entry to levels C2 and C3.

- P_LVL2
 - Force Power Level 2 Reading this register forces clock control logic to C2 state. Writes are ignored. (SYSCFG 50h[3] - APM Doze Mode)
- P_LVL3
 - Force Power Level 3 Reading this register forces clock control logic to C3 state. Writes are ignored. (SYSCFG 50h[0] - 0V CPU Suspend Mode)

Hardware events control exit from any level to level C0:

- C0
 - CPU working state Full speed operation on FireStar.
- C:
 - CPU low power state 1 Achieved by software generating HLT instruction to CPU.
- C2
 - CPU low power state 2 Achieved by software reading P_LVL2 register, which causes chipset to assert STP-CLK# to the CPU. Same as FireStar APM Doze Mode.
- C3
 - CPU low power state 3 Achieved by software reading P_LVL3 register, which causes chipset to assert STP-CLK# to the CPU and then stop the clocks to the CPU. Same as FireStar APM Doze Mode, with the L2CLKOE signal wired to control CPU clocks as well as L2 cache clocks.

The original FireStar PMU hardware already implements most of the logic necessary to perform these operations. What is necessary in addition is a way to distinguish between P_LVL2 and P_LVL3. FireStar does this using the L2CLKOE signal.

4.16.2.4 General Purpose Bits

The General Purpose register bits are offsets from the GPE0_BLK I/O Base Address, PCIDV1 D6h-D7h. The regis-

ter bit positions for these blocks are not specifically defined by Microsoft. The OPTi mapping is shown in Table 4-142.

Table 4-142 GPE0_BLK Register Set

Offset	7	6	5	4	3	2	1	0
00h	ACPI7 LID_STS	ACPI6 EC_STS	ACPI5 USB_STS	ACPI4 RI_STS	ACPI3 FRI_STS	ACPI2 STSCHG_STS	ACPI1 DOCK_STS	ACPI0 UNDOCK_STS
01h		Reserved		THRM_STS	ACPI11_STS	ACPI10_STS	ACPI9_STS	ACPI8_STS
02h	ACPI7 LID_EN	ACPI6 EC_EN	ACPI5 USB_EN	ACPI4 RI_EN	ACPI3 FRI_EN	ACPI2 STSCHG_EN	ACPI1 DOCK_EN	ACPI0 UNDOCK_EN
03h	BIOS_RLS	Rese	erved	THRM_EN	ACPI11_EN	ACPI10_EN	ACPI9_EN	ACPI8_EN
04h- 07h				Re	served			

On OPTi Mobile products, certain status information (for example, USB_STS and RI_STS) arrives through the IRQ Driveback cycle. The mapping of IRQ Driveback bits to STS change events is described in Section 4.16.3, FireStar IRQ Driveback Feature.

Embedded Event

This event occurs whenever the EC# signal goes low, indicating an interrupt from the embedded controller (keyboard controller).

- EC STS
 - Embedded Controller Event Status Set if EC# line goes low.
- EC EN
 - Used to enable SCI from EC STS event:
 - 0 = Disable
 - 1 = Enable

USB Event

This event occurs whenever the USB# signal goes low from the USB controller.

- · USB STS
 - USB# Signal Status Set if USB# line goes low.
- USB EN
 - Used to enable SCI from USB_STS event:
 - 0 = Disable
 - 1 = Enable

Ring Indicator Events

The RI event occurs whenever the RI# signal goes low. It is assumed that RI# will arrive from another device (Super I/O chip, etc.) that will provide the telephone line filtering.

- · RI STS
 - RI# Signal Status Set if RI# goes low (local pin or from IRQ driveback).
- RI EN
 - Used to enable SCI from RI_STS event:
 - 0 = Disable
 - 1 = Enable

The FRI event occurs whenever the FRI# pin senses an input frequency between 12Hz and 68Hz, the range set aside by telephone companies for ring signalling. Modem cards put out a 5.0V signal that toggles with this frequency.

A frequency detection is used that only counts rising edges (since the duty cycle is undefined). The reason for the frequency detection circuit is that the phone lines are very noisy, which makes detecting a single transition unreliable and causes false wakeup events.

- FRI STS
 - FRI# Signal Status Set if FRI# goes low (local pin or from IRQ driveback).
- FRI_EN
 - Used to enable SCI from FRI_STS event:
 - 0 = Disable
 - 1 = Enable

Page 228 912-2000-015

Thermal Event

This event occurs when the monitored bit of the THFREQ value specified in TEMPGR[3:0] (PCIDV1 EEh[3:0]) toggles.

- · THRM STS
 - Has the bit of the THFREQ value specified in TEMPGR[3:0] toggled?
 - 0 = No
 - 1 = Yes
- THRM EN
 - Enable SCI on thermal event:
 - 0 = No
 - 1 = Yes

Lid Status Change Event

This event occurs whenever the LID signal goes high or low. Note that this signal is different from others in that it generates an event on both high- and low-going edges.

- · LID_STS
 - Lid open or close event status.
- LID_EN
 - Enable SCI on lid open/close event:
 - 0 = No
 - 1 = Yes

PCMCIA Status Change Event

This event occurs whenever the STSCHG# signal goes low if provided from a PCMCIA controller.

- · STSCHG STS
 - Status change event status.
- · STSCHG EN
 - Enable SCI on change event:
 - 0 = No
 - 1 = Yes

Dock/Undock Event

This event occurs whenever the DOCK# signal goes low if provided from a docking controller.

- DOCK STS
 - Docking or undocking event status.
- DOCK EN
 - Enable SCI on dock or undock event:
 - 0 = No
 - 1 = Yes

Undock Request Event

This event occurs whenever the UNDOCK# signal goes low. UNDOCK# is usually provided from a switch that is either local or on the docking station.

- UNDOCK STS
 - Undock request event status.
- UNDOCK EN
 - Enable SCI on undock request:
 - 0 = No
 - 1 = Yes

BIOS Request

BIOS can get the attention of ACPI, or ACPI can get the attention of BIOS, through the Global Service Request bits. This bit, BIOS_RLS, works in conjunction with the Global Service Request bits (PM1_BLK Register Set). See "Global Service Request" on page 224 for further information.

- BIOS RLS
 - Does BIOS want to make a request to ACPI?
 - 0 = No effect
 - 1 = Yes
 - Write-only bit; reads always return 0.

4.16.3 FireStar IRQ Driveback Feature

FireStar depends on the IRQ Driveback feature to obtain external event information from other OPTi Mobile products without using any pins. The IRQ Driveback cycle occurs when an external event takes place. The interrupting device becomes master of the PCI bus, and then writes its updated status information to a preprogrammed port address in the FireStar I/O space.

Two dwords are typically returned during an IRQ Driveback cycle. As seen in the tables below, Phase 1 returns IRQ information; Phase 2 returns PCI PCIRQ# information and ACPI event information. The mapping of ACPI0-11 to ACPI events

such as DOCK_STS and USB_STS is provided in Section 4.16.5, "ACPI-to-EPMI Mapping, Muxing".

Note that the chipset always handles the ACPI bits as edgegenerating events into edge-triggered logic. For example, if one device generates a cycle with ACPI7 = 1 (assuming ENACPI7# = 0), the event sets the corresponding General Purpose Register status bit if enabled. Software will write the status bit to 1 to clear it. If another device generates another cycle with ACPI7 = 1 before the first device performs an IRQ driveback with ACPI7 = 0, it will still cause the GP register status bit to be set to 1. The cycle in which ACPI7 is restored to 0 has no effect.

Table 4-143 Information provided on Data Phase 1 of IRQ Driveback Cycle

Low	AD15	A D14	A D13	AD12	AD11	A D10	A D9	AD8	A D7	AD6	AD5	A D4	AD3	AD2	AD1	A D0
Word	IRQ15	IRQ14	IRQ13 (NMI)	IRQ12	IRQ11	IRQ10	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2 (SMI)	IRQ1	IRQ0
High	AD31	AD30	A D29	AD28	AD27	AD26	AD25	AD24	AD23	AD22	AD21	AD20	A D19	A D18	AD17	A D16
Word	EN15#	EN14#	EN13#	EN12#	EN11#	EN10#	EN9#	EN8#	EN7#	EN6#	EN5#	EN4#	EN3#	EN2#	EN1#	EN0#

Table 4-144 Information provided on Data Phase 2 of IRQ Driveback Cycle

Low	AD15	A D14	AD13	AD12	A D11	A D10	A D9	A D8	A D7	A D6	A D5	A D4	AD3	A D2	AD1	A D0
Word	ACPI 11	ACPI 10	ACPI 9	ACPI 8	ACPI 7	A CPI 6	ACPI 5	ACPI 4	ACPI 3	ACPI 2	ACPI 1	ACPI 0	PCIRQ 3	PCIRQ 2	PCIRQ 1	PCIRQ 0
High	AD31	AD30	A D29	AD28	AD27	AD26	AD25	AD24	AD23	AD22	AD21	AD20	A D19	A D18	A D17	A D16
Word	EN ACPI 11#	EN ACPI 10#	EN A CPI 9#	EN ACPI 8#	EN A CPI 7#	EN ACPI 6#	EN ACPI 5#	EN ACPI 4#	EN ACPI 3#	EN ACPI 2#	EN ACPI 1#	EN ACPI 0#	EN P3#	EN P2#	EN P1#	EN P0#

Page 230 912-2000-015

4.16.4 Power Control

The ACPI version of FireStar will provide a total of 32 power control pins, as opposed to the 16 power control pins that are available on the initial FireStar revisions. Because the requirement for the ISA bus is expected to disappear during the lifetime of the FireStar class chips, the ACPI power control latch is now based on the SD[15:0] bus instead of the SA bus. The SD bus will always be available on FireStar class chips as a general purpose data port.

The PPWRL pin now takes on the additional role of PCTLH (Power Control Latch - High). On initial production FireStar chips with the standard PMU, PPWRL latches SA[15:0] to become PPWR[15:0]. On ACPI-enabled FireStar chips, PPWR[31:16] also become available and are latchable from SD[15:0].

PCTLL (Power Control Latch - Low) is a new PIO pin option available only on the RSTDRV pin. PCTLL is used to latch PPWR[15:0] from SD[15:0]. If ISA devices require the RSTDRV signal, it should be supplied by inverting the RESET# output signal from FireStar.

In summary:

 PPWR[31:16] are latched from SD[15:0] using PCTLH (existing PPWRL) pin. These pins can be auto-toggled.

- PPWR[15:0] are latched from SD[15:0] using PCTLL (RSTDRV) pin. These pins cannot be auto-toggled.
- PPWR[15:0] are available from SA[15:0] using PCTLH (existing PPWRL) pin for backward compatibility. In this case, PPWR[1:0] can be auto-toggled.
- PWR[31:16] are only available through the external latch. However, PPWR[15:0] are available as dedicated pins on spare PIO pins. PPWR[1:0] can be auto-toggled when supplied from PIO pins.

Note that PPWR[1:0] will auto-toggle when recovered from the SA bus bits [1:0], or when output on discrete I/O pins, but not when recovered from the SD bus using PCTLL. In new designs it is recommended to recover PPWR pins only from the SD bus, and to assign auto-toggle functions only to pins PPWR[31:16].

4.16.4.1 PPWR Control Register

The PPWR lines have a control mechanism under FireStar ACPI: PCI configuration registers are used to set the control lines and to read back their state. The registers are shown in Table 4-145.

BIOS code should use only these registers to set the PPWR lines, not the SYSCFG registers. No SYSCFG registers are provided to access PPWR[31:16].

Table 4-145 PPWR Control Registers

7	6	5	4	3	2	1	0
PCIDV1 E8h			Power Control L	atch Set Registe	r		Default = 00h
Control line	Rese	erved		PPW	R control line to b	e set:	
setting:			00	0000 = PPWR0			
0 = Low			00	0001 = PPWR1		10 = PPWR30	
1 = High				11 = PPWR31			
PCIDV1 E9h			Res	erved			Default = 00h
PCIDV1 EAh		Pov	ver Control Read	back Register - B	yte 0		Default = FFh
PPWR7 state:	PPWR6 state:	PPWR5 state:	PPWR4 state:	PPWR3 state:	PPWR2 state:	PPWR1 state:	PPWR0 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EBh		Pov	ver Control Read	back Register - B	Syte 1		Default = FFh
PPWR15 state:	PPWR14 state:	PPWR13 state:	PPWR12 state:	PPWR11 state:	PPWR10 state:	PPWR9 state:	PPWR8 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 ECh		Pov	ver Control Read	back Register - B	yte 2		Default = F0h
PPWR23 state:	PPWR22 state:	PPWR21 state:	PPWR20 state:	PPWR19 state:	PPWR18 state:	PPWR17 state:	PPWR16 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EDh		Pov	ver Control Read	back Register - E	yte 3		Default = F0h
PPWR31 state:	PPWR30 state:	PPWR29 state:	PPWR28 state:	PPWR27 state:	PPWR26 state:	PPWR25 state:	PPWR24 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High

Preliminary **82C700**

The recommended mapping of PPWR lines to power control functions is shown in the tables that follow. PPWR[31:16], which are capable of auto-toggle (switching with only the

32KHz clock stable) are assigned to the signals that require this function.

Table 4-146 PPWR Power Control Defaults

	Power Control Defaults Latched from SA Bus														
PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
High	High	High	High	Low	Low	Low	Low	High	High	High	High	Low	Low	Low	Low
					Power	r Control	Defaults	Latche	d from S	D Bus					
PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
High	High	High	High	High	High	High	High	High	High	High	High	High	High	High	High
PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR	PPWR
31	30	28	28	27	26	25	24	23	22	21	20	19	18	17	16
High	High	High	High	Low	Low	Low	Low	High	High	High	High	Low	Low	Low	Low

Page 232 912-2000-015

Table 4-147 Recommended PPWR Control Assignments

Area of Control	ACPI Signal	FireStar Pin	Auto-toggle Function	Default State	Comment
Main System	CLK_EN	PPWR20	Enabled	High	Main clock generator control
	RAMCLK_EN#	PPWR17	Enabled	Low	Control for clocks going to sync DRAM, L2 cache
	CPU_PWR#	PPWR18	Powered	Low	CPU power control
	DRAM_PWR#	PPWR19	Powered	Low	DRAM power control
Graphics	GR_PWR#	PPWR24	Powered	Low	
Subsystem	GR_RST#	PPWR25	Reset	Low	
	GR_SUS#	PPWR5		High*	
	GR_CLKPWR#	PPWR26	Powered	Low	
	GR_CLKEN#	PPWR27	Enabled	Low	
Audio	AUD_PWR#	PPWR6		High*	
Subsystem	AUD_RST	PPWR7		High*	
	AUD_ISO	PPWR28	Isolated	High	
	ADU_SUS#	PPWR12		High	
	AMP_SUS#	PPWR13		High	
IDE 0	IDE0_PWR#	PPWR16	Powered	Low	Only main drive is powered at reset
	IDE0_RST#	PPWR8		High*	
	IDE0_ISO	DBE0#	Isolated		Isolation occurs automatically when DBE0# is used
IDE 1	IDE1_PWR#	PPWR21	Off	High	
	IDE1_RST#	PPWR9		High*	
	IDE1_ISO	DBE1#	Isolated		Isolation occurs automatically when DBE1# is used
IDE 2	IDE2_PWR#	PPWR22	Off	High	
	IDE2_RST#	PPWR10		High*	
	IDE2_ISO	DBE2#	Isolated		Isolation occurs automatically when DBE2# is used
IDE 3	IDE3_PWR#	PPWR23	Off	High	
	IDE3_RST#	PPWR11		High*	
	IDE3_ISO	DBE3#	Isolated		Isolation occurs automatically when DBE3# is used
Floppy Disk	FDD_PWR#	PPWR14		High*	
Controller	FDD_ISO	PPWR15		High*	
Communication	PRT0_RST#	PPWR2		High*	
Ports	PRT0_ISO	PPWR29	Isolated	High	
	PRT0_SUS#	PPWR0		High*	
	PRT1_RST#	PPWR3		High*	
	PRT1_ISO	PPWR30	Isolated	High	
	PRT1_SUS#	PPWR1		High*	
Miscellaneous	CB_SUS#	PPWR31		High	Suspend control for CardBus controllers not designed with automatic power management
		PPWR4		High*	Unassigned

^{*}Assuming signals are latched from SD bus.

- · Assumptions made:
 - Isolation is enabled when control signal is high (buffer enable inputs are usually active when low).
 - Devices powered on when control line is low.
 - CPU clock generator is enabled when control signal is high.

Preliminary 82C700

IDE Control

The ACPI specification recommends a power switch scheme for independent control of IDE drives 0-3. In the signal descriptions below, 'x' refers to one of drives 0-3.

- IDEx PWR# Enables power to the drive when active (low). A PPWRx pin is used to implement this function.
- IDEx RST# Resets the drive when active (low). A PPWRx pin is used to implement this function.
- IDEx ISO# Isolates the drive when active (low). OPTi Mobile logic automatically tristates drive buffers between cycles by deasserting the DBE# signal associated with that drive. Note that the signal sense is opposite to that of the ACPI-specified signal.

Audio Control

The ACPI specification recommends a power switch scheme for independent control of the main and amplifier sections of the audio subsystem.

- AUD PWR# Enables power to the main audio chip when active (low). A PPWRx pin is used to implement this func-
- AUD RST Resets the (ISA) audio chip when active (high). A PPWRx pin is used to implement this function.
- AUD_ISO# Isolates the audio interface from the rest of the system when active (low). A PPWRx pin is used to implement this function.
- AUD SUS# Puts the powered main audio chip into its lowest power standby mode when active (low). A PPWRx pin is used to implement this function.
- AMP SUS# Puts the audio amplifier into its lowest power standby mode when active (low), possibly by removing power to the amp. A PPWRx pin is used to implement this function.

Graphics Control

The ACPI specification recommends the following control scheme for the graphics subsystem.

- GR PWR# Enables power to the central graphics logic when active (low). There is no GR ISO# signal, as it is assumed that the graphics chip has the isolation function built in. A PPWRx pin is used to implement the GR_PWR# function.
- GR RST# Resets the graphics chip when active (low). A PPWRx pin is used to implement this function.
- GR_SUS# Puts the powered graphics chip into its lowest power standby mode when active (low). A PPWRx pin is used to implement this function.
- GR_CLKPWR# Enables power to the graphics clock generator circuit when active (low). A PPWRx pin is used to implement this function.

GR CLKEN# - Enables clocks to the graphics chip when active (low) once the generator output is stable. A PPWRx pin is used to implement this function.

Miscellaneous Control

ACPI defines control signals for several other subsystems such as the serial ports, parallel ports, and floppy disk controller. It is assumed that the Super I/O chip taking care of these functions will provide appropriate control lines, but assignments are provided here just in case they are needed.

4.16.5 ACPI-to-EPMI Mapping, Muxing

ACPI calls for several power management inputs as requirements, and suggests several others as options. In addition, customers have made requests for special inputs. The following list provides the complete set of options to-date.

- · RI# Ring Indication from modem
- FRI# Filtered Ring Indication that signals SCI only if certain frequency is detected
- USB# Wakeup indication from USB port
- EC# Embedded Controller interrupt
- DOCK# Indication that docking/undocking event occurred
- UNDOCK# Indication that undock request has been
- STSCHG# Indication that status change event has occurred
- LID Indication that lid to notebook has been opened

OPTi Mobile ACPI-capable chips allow these signals to be passed transparently between OPTi peripheral devices and the OPTi host chipset by means of the ACPI0-11 bits of the IRQ Driveback cycle, which uses no pins on either device. It is necessary only to map the ACPI0-11 bits to their corresponding ACPI signal function and polarity.

Since not all devices in a system will conform to the OPTi standard, the ACPI inputs can also be brought into the host chipset through discrete pins. There are two options for doing this.

If there is a sufficient number of spare PIO pins available on the host chipset, they can be assigned as discrete ACPI inputs through the normal PIO programming scheme. Function group 7 has been added to the PIO programming matrix to accommodate ACPI0-11.

If many ACPI inputs are needed, they can be muxed in on the ACPIMX0-2 pins (also PIO options). External 4-to-1 muxes are used to select the pin being read. This method is identical to the EPMIMUX scheme used on some OPTi chipsets, and relies on the signals ATCLK and ATCLK/2 (another PIO pin).

Table 4-148 shows how ACPI0-11 are recommended to be

912-2000-015 Page 234

mapped to the ACPI signal function set. Reserved spots are for future assignment, but can be used as needed.

The mapping of ACPI event notification from either the IRQ driveback cycle or external pins is controlled by the register shown in Table 4-149.

Table 4-148 Recommended ACPI0-11 Mapping

ACPI Signal Function	Rsvd	Rsvd	Rsvd	Rsvd	LID	EC#	USB#	RI#	FRI#	STSCHG#	DOCK#	UNDOCK#
IRQ Driveback Name	ACPI 11	ACPI 10	ACPI 9	ACPI 8	ACPI 7	ACPI 6	ACPI 5	ACPI 4	ACPI 3	ACPI 2	ACPI 1	ACPI 0

Table 4-149 ACPI Source Control Register

7	6	5	4	3	2	1	0
PCIDV1 D8h		Α	CPI Source Cont	rol Register - By	te 0		Default = 00h
	The bits in this register select whether the specified ACPI input comes from the IRQ Driveback cycle or from an external pin source (one of the PIO pins or through ACPIMX option).						pin source
ACPI7 LID:	ACPI6 EC#:	ACPI5 USB#:	ACPI4 RI#:	ACPI3 FRI#:	ACPI2 STSCHG#:	ACPI1 DOCK#:	ACPI0 UNDOCK#:
0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback
1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input
PCIDV1 D9h		A	CPI Source Cont	rol Register - By	te 1		Default = 00h
	Rese	erved		ACPI11:	ACPI10:	ACPI9:	ACPI8:
					0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback
					1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input

4.16.6 Temperature Trip Points

FireStar incorporates temperature monitoring hardware that allows it to select trip points for temperature monitoring. ACPI has special requirements that an SCI be generated on passing periodic temperature levels, while hardware clock throttling be enforced at specific levels.

The existing FireStar temperature monitoring circuit uses a 16-bit counter to keep track of temperature. The current value of this counter is readable at SYSCFG F4h-F3h as THFREQ[15:0]. The new ACPI registers shown in Table 4-150 allow toggling on any bit in this register to generate a thermal management event.

Example

Assume that the thermal sensor hardware in a specific design causes THFREQ reflected in SYSCFG F4h-F3h to change by 1 for every 0.25°C change in CPU temperature. So a change of 4°C in CPU temperature would result in a THFREQ change of 16 (10 hex). Therefore, to generate an SCI on every 4°C change in CPU temperature, the Temperature Event Granularity setting TEMPGR[3:0] would need to be set to 3 so that every time bit 3 of THFREQ changes, an SCI would result.

Note that an SCI is generated when the selected bit toggles as the temperature is rising, but no SCI is generated when passing through that point immediately afterward; the logic

uses the next most significant bit to determine this situation. For example, if TEMPGR[3:0] = Ch, pointing to bit 12, and the counter value first passes from

0101 1111 1111 1111

to

0110 0000 0000 0000

a thermal management SCI event would be generated. However, if the temperature immediately started to decrease so that bit 12 toggled back to 1 again, a new SCI would not be generated. The value would have to decrease to

0100 1111 1111 1111 or increase to

0111 0000 0000 0000

before the next SCI would occur. This operation ensures that a system that is maintaining a steady temperature will not cause excessive SCIs if the temperature is floating around a specific trip point.

4.16.6.1 Fan Control

The ACPI-enabled FireStar chips allow reaching of the LOF-REQ (SYSCFG A7h-A6h) or HIFREQ (SYSCFG A9h-A8h) trip points to toggle the FAN pin (PIO option). This control line can be used to control a fan to help cool the CPU. PCIDV1 EEh[5:4] control this feature.

Table 4-150 ACPI Thermal Control Register

7	6	5	4	3	2	1	0
PCIDV1 EEh ACPI Therma				Control Register	•		Default = 00h
Rese	erved		nodulation el 2 STPCLK#		f the THFREQ va that it generates a 0100 = Bit 4 0101 = Bit 5 0110 = Bit 6		3h-F4h that will be nent event when it 1100 = Bit 12 1101 = Bit 13 1110 = Bit 14 1111 = Bit 15

Page 236 912-2000-015

4.16.7 New PIO Pin Options

ACPI-enabled FireStar-class products provide the following PIO pin options.

- PCTII
 - Power Control Latch-Low is used to latch PPWR[15:0] from SD[15:0].
- PWRBTN#
 - Power Button is the ACPI-defined Suspend/Resume input that has a special hardware override feature to allow a forced Suspend sequence.

- ACPI0-11
 - Discrete ACPI event inputs pins are provided for devices that cannot use the OPTi IRQ Driveback cycle to convey this information.

The FireStar ACPI PIO pin options are shown in Table 4-151 and are italicized. For a complete listing of all PIO pin options refer to Table 3-3 "PIO Functions" on page 33.

Table 4-151 ACPI PIO Pin Options

Group	Function	Sub-function Number	Description			
Misc.	GPCSx#	0-3h	General Purpose Chip Select outputs, x=0-3			
Outputs Group 3h	Reserved	4-7h				
	CDIR	8h	Compact ISA Cable Buffer Direction signal			
	L2CLKOE	9h	L2 Cache Clock Output Enable			
	PCICLKOE	Ah	PCI Clock Output Enable (to ext. clock generator)			
	HGNT#	Bh	UMA Split Buffer Control signal			
	FAN	Ch	CPU overtemp fan control output			
	Reserved	Dh				
	PCTLL	Eh	Power control latch low is available only on PIO15 (RSTDRV) and is used to latch PPWR[15:0] from SD[15:0]			
	ATCLK/2	Fh	ATCLK divided by 2 (for KBCLK and/or ACPIMX)			
IDE Controller	DDACK0#	0h	Dedicated IDE DMA acknowledge (Primary cable)			
Outputs Group 4h	DDACK1#	1h	Dedicated IDE DMA acknowledge (Secondary cable)			
	DRD#	2h	Dedicated IDE command			
	DWR#	3h				
	DCS1#	4h	Dedicated IDE chip select			
	DCS3#	5h				
	DA0	6h	Dedicated IDE address			
	DA1	7h				
	DA2	8h				
	DBEX#	9h	IDE buffer control for drive X			
	DBEY#	Ah	IDE buffer control for drive Y			
	DBEZ#	Bh	IDE buffer control for drive Z			
	DDACK0-0#	Ch	Dedicated IDE DMA acknowledge (Primary Cable, Drive 0)			
	DDACK0-1#	Dh	Dedicated IDE DMA acknowledge (Primary Cable, Drive 1)			
	DDACK1-0#	Eh	Dedicated IDE DMA acknowledge (Secondary Cable, Drive 0)			
	DDACK1-1#	Fh	Dedicated IDE DMA acknowledge (Secondary Cable, Drive 1)			

Preliminary **82C700**

Table 4-151 ACPI PIO Pin Options (cont.)

Group	Function	Sub-function Number	Description			
ACPI Inputs Group	UNDOCK# (ACPI0)	0h	Active low input			
7h	DOCK# (ACPI1)	1h	Active low input			
	STSCH# (ACPI2)	2h	Active low input			
	FRI# (ACPI3)	3h	Active low input			
	RI# (ACPI4)	4h	Active low input			
	USB# (ACPI5)	5h	Active low input			
	EC# (ACPI6)	6h	Active low input			
	LID (ACPI7)	7h	Active high input			
	(ACPI8)	8h	Active high input			
	(ACPI9)	9h	Active high input			
	(ACPI10)	Ah	Active high input			
	(ACPI11)	Bh	Active high input			
	ACPIMX0	Ch	Time-multiplexed input of ACPI0-3			
	ACPIMX1	Dh	Time-multiplexed input of ACPI4-7			
	ACPIMX2	Eh	Time-multiplexed input of ACPI8-11			
	PWRBTN#	Fh	Power button with hardware-enforced Suspend feature			

Page 238 912-2000-015

4.17 System Management Interrupt (SMI)

The 3.3V Pentium processor offers a System Management Interrupt (SMI) that allows external logic to signal to the CPU that a high priority event has occurred and must be serviced but should not in any way interfere with the application currently being processed. When the CPU senses its SMI# input active, it saves the context of its current application and loads the context of its System Management Mode (SMM) handler routine from a protected part of RAM. SMM code can then proceed to determine the reason for the interrupt, service it appropriately, and return to application processing through a special RESUME instruction that restores the context as it originally was before the SMI.

FireStar handles 39 Power Management Interrupt (PMI) events that can be selectively enabled to cause an SMI to the CPU. Since some of these PMI events are actually a single indication from a group of events (such as a single PMI #6 that indicates whether any of the selected IRQ lines has gone active), the effective number of events that can be indicated is actually much greater than 39.

The PMI events that can be programmed to generate an SMI are listed in Table 4-152.

Table 4-152 SMI Sources

Table 4-132 Sivil Sources						
Source	PMI Name	Description				
IRQ, DRQ, and EPMI SMI Sources						
#3	LOWBAT	Activity on Low Battery Pin				
#O	LLOWBAT	Activity on Very Low Battery Pin				
#1	EPMI0#	Activity on External Power Management Input 1				
#2	EPMI1#	Activity on External Power Management Input 2				
#24	EPMI2#	Activity on External Power Management Input 3				
#25	EPMI3#	Activity on External Power Management Input 4				
#26	RINGI	Activity detected on RINGI				
#7	SUS/RES	SUS/RES input has been toggled				
#6	INTRGRP	An interrupt from the INTRGRP set has occurred while the system was running				
	- or - RSMGRP	-or-				
#00	DMA TRAP	An interrupt from the RSMGRP has occurred and resumed the system from Suspend mode				
#28		Activity on DMA DRQ lines				
#33	DOZE RELOAD	Exit from hardware Doze mode				
Time-Ou	ut Event SMI Sourc	es				
#35	APM EXIT	Exit from APM (software) Doze mode				
#4	IDLE_TIMER	IDLE_TIMER has timed out due to no I/O activity				
#27	DOZE_TIMER	DOZE_TIMER has timed out due to inactivity				
#5	R_TIMER	R_TIMER has timed out on its normal periodic basis				
#8	LCD_TIMER	LCD_TIMER has timed out because of no screen activity				
#9	DSK_TIMER	Floppy (and/or external hard) disk timer has timed out because of no activity				
#19	HDU_TIMER	Time-out has occurred because no access has occurred in the internal IDE range				
#10	KBD_TIMER	Keyboard timer has timed out because of no controller accesses				
#11	GNR1_TIMER	Time-out has occurred because the memory or I/O range selected by GNR1 has had no activity				
#16	GNR2_TIMER	Time-out has occurred because the memory or I/O range selected by GNR2 has had no activity				
#30	GNR3_TIMER	Time-out has occurred because the memory or I/O range selected by GNR3 has had no activity				
#32	GNR4_TIMER	Time-out has occurred because the memory or I/O range selected by GNR4 has had no activity				
#17	COM1_TIMER	Time-out has occurred because no access has occurred in the COM1 range				
#18	COM2_TIMER	Time-out has occurred because no access has occurred in the COM2 range				
Access	Event SMI Sources					
#14	KBD_ACCESS	Keyboard controller has been accessed, either before or after timer time-out depending on Current/Next Access setting				

Table 4-152 SMI Sources (cont.)

Source	PMI Name	Description
#12	LCD_ACCESS	LCD controller has been accessed, either before or after timer time-out depending on Current/Next Access setting
#13	DSK_ACCESS	Floppy (or external hard) disk controller has been accessed, either before or after timer time-out depending on Current/Next Access setting
#23	HDU_ACCESS	Internal IDE has been accessed, either before or after timer time-out depending on Current/Next Access setting
#15	GNR1_ACCESS	GNR1 range has been accessed, either before or after timer time-out depending on Current/Next Access setting
#20	GNR2_ACCESS	GNR2 range has been accessed, either before or after timer time-out depending on Current/Next Access setting
#29	GNR3_ACCESS	GNR3 range has been accessed, either before or after timer time-out depending on Current/Next Access setting
#31	GNR4_ACCESS	GNR4 range has been accessed, either before or after timer time-out depending on Current/Next Access setting
#21	COM1_ACCESS	COM1 has been accessed, either before or after timer time-out depending on Current/Next Access setting
#22	COM2_ACCESS	COM2 has been accessed, either before or after timer time-out depending on Current/Next Access setting
Miscella	neous Event SMI S	Sources
#34	Hot Dock_TIMER	Time-out has occurred in an attempt at hot docking.
#36	Serial IRQ	An SMI has been signalled by a device using the serial interrupt line.
#37	DMA_ACCESS	A DMA controller register is being accessed
#38	IRQ_DRIVEBACK	An SMI has been signalled by a device using IRQ driveback.

4.17.1 SMI Operation and Initialization

The 3.3V Pentium CPU uses the SMIACT# pin to indicate that it is currently executing SMM code. While in SMM, the default addresses put out by the CPU are in the 3000h and 4000h segments to execute SMM code and to access SMM data. However, the SMBASE Register of the CPU is programmable, and can be set to any other segment if desired. These SMRAM addresses put out by the CPU must be mapped to the A000h-B000h segments. FireStar directs these accesses to translation is performed only during SMM when FireStar receives the SMIACT# signal from the CPU. The A000h-B000h segments of DRAM main memory are usually unused and not accessed during normal mode because accesses to this area are redirected to the ISA or local bus for video. These segments are utilized by initializing them with SMM code/data at boot-up and write protecting them during normal mode of operation.

4.17.1.1 Loading Initial SMM Code and Data

On system initialization, the system management code and data segments must be loaded from ROM with the appropriate information. This information will reside in the DRAM segments at physical starting addresses A0000h and B0000h and, once loaded, will be write-protected except when the system is operating in SMM.

Step 1: System Initialization (not in SMM)

On system initialization, the BIOS must load initial code and data into the protected SMM memory space. Normally the system will still be executing out of ROM at this point, but the memory subsystem is configured and enabled. A mechanism is provided by which the A000h-B000h DRAM area may be accessed even if the CPU is not in SMM. This mechanism is used to initialize the A000h-B000h DRAM area with SMM handler code/data.

The registers that pertain to initialization are shown in Table 4-153. SYSCFG 13h[3] is the SMRAM access control and provides a global control for address translation. The value of SYSCFG 14h[3] has different meanings according to whether the CPU is in SMM or not. If SYSCFG 13h[3] = 1, and SYSCFG 14h[3] = 1, normal mode CPU accesses in the A000h-B000h range are redirected to the DRAM A000h-B000h area. This feature is used for initializing the DRAM A000h-B000h range.

Page 240 912-2000-015

Table 4-153 SMRAM Access Control Bits

7	6	5	4	3	2	1	0		
SYSCFG 13h Memory Decode Control Register 1									
				SMRAM: 0 = Disable 1 = Enable See SYSCFG 14h[3]					
SYSCFG 14h			Memory Decode	Control Register	2		Default = 00h		
(1) If SYSCFG 1	2h[2] is set			SMRAM control: Inactive SMIACT#: 0 = Disable SMRAM 1 = Enable SMRAM(1) Active SMIACT#: 0 = Enable SMRAM for both Code and Data(1) 1 = Enable SMRAM for Code only(1)					

SYSCFG 13h[3] and 14h[3] are used as follows when the CPU is not in SMM:

- 13h[3] = 0:
 - No relocation. This setting prevents application software from accessing SMI memory space.
- 13h[3] = 1:
 - If 14h[3] = 1, CPU addresses in the A000h-B000h segments go to SMI memory space the DRAM segments at A000h-B000h. This setting provides the mechanism for initially loading SMI code to the A000h-B000h region.
 - If 14h[3] = 0, the A000h-B000h area in DRAM cannot be accessed.

The significance of 14h[3] during SMM is explained in Section 4.17.1.2, "Run-Time SMI Address Relocation".

The BIOS sets 13h[3] = 1 and 14h[3] = 1. It can then load code and data into DRAM segments A000h and B000h. This first load operation **must** be addressed to the A000h and B000h segments. Upon completing the loading of all initial SMM code and data, the BIOS clears 14h[3] to 0 to protect the SMM space.

Step 2: Loading the Code to Change the SMBASE Register of the CPU

Having loaded the code and data, the BIOS must now generate an SMI to enter SMM so that it can complete the SMM initialization process (changing SMBASE to A0000h and for performing system-specific tasks; the SMBASE Register can only be changed from within SMM mode). The SMBASE Register of the CPU is by default 30000h, and the first code fetch in SMM is from 38000h. Before generating an SMI, the ROM BIOS must load code from physical address 38000h onwards to change the SMBASE Register of the CPU and to resume normal mode.

Step 3: Software generation of SMI

To allow software SMI generation to take place, SYSCFG 59h[7] must be written to 1. Writing SYSCFG 50h[7] = 1 asserts SMI# to the CPU to start SMM operation. Writing SYSCFG 50h[7] = 0 clears the SMI. The SMI routine **must** clear this bit; otherwise, SMI requests will be generated continuously. (Refer to Table 4-154.)

Step 4: Reprogramming SMBASE

Once the system has entered SMM for the first time at 38000h, the CPU SMBASE value can be reprogrammed for future use.

- 1. SMM initialization code updates the SMBASE value in the CPU register save area to A0000h.
- SMM initialization code clears the Software Start SMI (SYSCFG 50h[7]).
- 3. SMM initialization code generates a RESUME instruction to return control to the BIOS initialization code. The new SMBASE value gets written to the CPU registers.

4.17.1.2 Run-Time SMI Address Relocation

The Dynamic SMI Relocation feature provides full memory access control while in SMM. SMI relocation at run time is controlled by SYSCFG 14h[3] if SYSCFG 13h[3] = 1. (Refer back to Table 4-153 for bit definitions.)

If SYSCFG 13h[3] is set, during SMM, either all CPU accesses to the A000h-B000h range, or only accesses to code may be mapped to the A000h-B000h range in DRAM memory. The active SMIACT# signal and the status of SYSCFG 14h[3] determine whether both code and data accesses or only code accesses are mapped to DRAM. If SYSCFG 14h[3] = 1, only code accesses are mapped to DRAM and data accesses are not translated to SMI space. This allows data in the A000h-B000h memory space to be accessed and saved to disk. If SYSCFG 14h[3] = 0, both code and data accesses are translated to SMI space.

Table 4-154 Software SMI Enable Register Bits

7	6	5	4	3	2	1	0
SYSCFG 50h			PMU Contr	ol Register 4			Default = 00h
Software start SMI:							
0 = Clear SMI 1 = Start SMI							
SYSCFG 59h			PMU Ever	nt Register 2			Default = 00h
Allow software SMI:							
0 = Disable 1 = Enable							

Page 242 912-2000-015

4.17.2 SMI Event Generation

The registers shown in Table 4-155 control the events that are allowed to generate an SMI. The programming occurs as follows: time-out, access, and interrupt events must be programmed to generate a PMI, then the PMI event must be enabled to generate the SMI signal; finally, SMIs are globally unmasked to allow full operation.

4.17.2.1 Time-out Event Generation of SMI

For time-out events, simply loading a non-zero timer value and generating a dummy access presets PMI generation on the next time-out. Refer to the section titled "Timers" on page 172 for information on programming the timers.

4.17.2.2 Access Event Generation of SMI

Access events can be programmed to generate an SMI. FireStar classifies accesses as "Current Access" or "Next Access" depending on whether the timer associated with that access range is still running or has timed out.

 Next Access - Occurs after a time-out, the first time software attempts to access the range that caused the timeout. The Next Access feature provides a way for I/O accesses to a peripheral whose timer has timed out to

- cause an SMI so that the peripheral can be powered up before the access takes place. Next Access can also restart system clocks when the system is in the Doze mode.
- Current Access Occurs any time this feature is enabled for a range, whether or not the device has timed out. The Current Access PMI can be programmed to cause an SMI, but cannot provide any automatic means of controlling system clocks.

If both the Current Access and Next Access features are enabled for an event and the timer has timed out, an access will only cause a single SMI. Since both access types use the same PMI#, clearing either one clears both events.

The I/O blocking bit, SYSCFG DBh[7], operates as follows. This selection allows the I/O access that causes a Next Access PMI to be either blocked (if the peripheral is turned off, for example) or passed through. DBh[7] = 1 means the I/O will not be blocked; DBh[7] = 0 means the I/O on Next Access will be blocked and the CPU must be programmed to restart the I/O command if desired. The feature defaults to "blocked".

Table 4-155 Current and Next Access Registers

7	6	5	4	3	2	1	0
SYSCFG 5Bh if	SYSCFG 5Bh if AEh[7] = 0 PMU Event Register 4						
Reserved	Global SMI control: 0 = Allow 1 = Mask	Reso	erved	GNR1 Next Access PMI#15: 0 = Disable 1 = Enable	KBD Next Access PMI#14: 0 = Disable 1 = Enable	DSK Next Access PMI#13: 0 = Disable 1 = Enable	LCD Next Access PMI#12: 0 = Disable 1 = Enable
SYSCFG 5Bh if	AEh[7] = 1		PMU Event	Register 4A			Default = 00h
Reserved				GNR5 Next Access PMI#15: 0 = Disable 1 = Enable		Reserved	
SYSCFG DBh if	AEh[7] = 0	Ne	xt Access Event	Generation Regis	ter 2		Default = 00h
I/O blocking control: 0 = Block I/O on Next Access trap 1 = Unblock	SMI on cooldown clocking entry/exit: 0 = Disable 1 = Enable	EPMI3# pin polarity: 0 = Active high 1 = Active low	EPMI2# pin polarity: 0 = Active high 1 = Active low	HDU_ ACCESS PMI#23 on Next Access: 0 = No 1 = Yes	COM2_ ACCESS PMI#22 on Next Access: 0 = No 1 = Yes	COM1_ ACCESS PMI#21 on Next Access: 0 = No 1 = Yes	GNR2_ ACCESS PMI#20 on Next Access: 0 = No 1 = Yes
SYSCFG DBh if	AEh[7] = 1	Nex	t Access Event C	eneration Regist	ter 2A		Default = 00h
			Reserved				GNR6_ ACCESS

912-2000-015 Revision: 1.0

Table 4-155 Current and Next Access Registers (cont.)

7	6	5	4	3	2	1	0
SYSCFG DEh if	AEh[7] = 0	Curr	ent Access Even	t Generation Reg	ister 1		Default = 00h
HDU_ ACCESS PMI#23 on Current Access: 0 = No 1 = Yes	COM2_ ACCESS PMI#22 on Current Access: 0 = No 1 = Yes	COM1_ ACCESS PMI#21 on Current Access: 0 = No 1 = Yes	GNR2_ ACCESS PMI#20 on Current Access: 0 = No 1 = Yes	GNR1_ ACCESS PMI#15 on Current Access: 0 = No 1 = Yes	KBD_ ACCESS PMI#14 on Current Access: 0 = No 1 = Yes	DSK_ ACCESS PMI#13 on Current Access: 0 = No 1 = Yes	LCD_ ACCESS PMI#12 on Current Access: 0 = No 1 = Yes
SYSCFG DEh if	AEh[7] = 1	Curre	nt Access Event	Generation Regi	ster 1A		Default = 00h
GNR6_				erved			
SYSCFG E9h if	AEh[7] = 0		PMU Even	it Register 7			Default = 00h
GNR4_ACCI 00 = Disable 01 = Positive	GNR4_TIMER PMI#30 GNR3_TIMER PM GNR4_ACCESS PMI#32: GNR3_ACCESS PI 00 = Disable 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 10 = Positive decode			GNR4_ ACCESS PMI#32 on Current Access: 0 = No 1 = Yes	GNR4_ ACCESS PMI#32 on Next Access: 0 = No 1 = Yes	GNR3_ ACCESS PMI#31 on Current Access: 0 = No 1 = Yes	GNR3_ ACCESS PMI#31 on Next Access: 0 = No 1 = Yes
SYSCFG E9h if	AEh[7] = 1		PMU Event	Register 7A			Default = 00h
				GNR8_ ACCESS PMI#32 on Current Access: 0 = No 1 = Yes	GNR8_ ACCESS PMI#32 on Next Access: 0 = No 1 = Yes	GNR7_ ACCESS PMI#31 on Current Access: 0 = No 1 = Yes	GNR7_ ACCESS PMI#31 on Next Access: 0 = No 1 = Yes

Page 244 912-2000-015

4.17.2.3 Interrupt Event Generation of SMI

Asynchronous events from peripheral devices requesting service from the CPU are known as interrupt events. Interrupts in this context include both the traditional AT architecture IRQs and additional inputs known as external power management inputs. For FireStar logic, the desired interrupts are all grouped into a single event called INTRGRP. INTRGRP can then be enabled to cause an SMI.

If it is desired to generate an SMI from the INTRGRP event, setting SYSCFG 57h[6] = 1 will allow any of the selected interrupt events to generate PMI#6. Once in the SMI handler, the SMM code can read the SYSCFG 64h and A4h to determine which of the interrupt(s) caused the event. The IRQs will remain latched for reading in these registers until PMI#6 is cleared, at which time any latched sources are cleared. The INTRGRP IRQ Select Registers are shown in Table 4-156.

4.17.2.4 DRQ Event Generation of SMI

FireStar allows activity on the DRQ pins to generate an SMI. The SMI takes place before the DMA transfer occurs, allowing SMM code to emulate or modify the operation. Writing the bit to clear the PMI allows any pending DMA operation to take place immediately. Note that there are certain latency limitations for DMA operations. For example, floppy disk DMA transfers generally must be serviced within 14µs from receipt of DRQ2 in order to avoid an overrun condition. Entry into SMM requires a considerable amount of time in itself. Therefore, SMM routines that trap DMA accesses must be structured concisely so that the DMA cycle is allowed to occur before the latency limit exceeded. Table 4-157 shows which register bits apply to this application.

Table 4-156 INTRGRP IRQ Select Register Bits

		J					
7	6	5	4	3	2	1	0
SYSCFG 57h			PMU Contr	ol Register 5			Default = 08h
	INTRGRP generates PMI#6: 0 = Disable 1 = Enable						
SYSCFG 64h			INTRGRP IRQ	Select Register 1			Default = 00h
IRQ14:	IRQ8:	IRQ7:	IRQ6:	IRQ5:	IRQ4:	IRQ3:	IRQ1:
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
SYSCFG A4h			INTRGRP IRQ	Select Register 2			Default = 00h
	IRQ15:	IRQ13:	IRQ12:	IRQ11:	IRQ10:	IRQ9:	IRQ0:
	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable

Table 4-157 DMA DRQ Trap SMI Register Bits

7	6	5	4	3	2	1	0
SYSCFG D6h			PMU Contro	ol Register 10			Default = 00h
	DMA trap PMI#28 SMI: 0 = Disable 1 = Enable						
SYSCFG DDh		PMU	SMI Source Reg	ister 4 (Write 1 to	Clear)		Default = 00h
		PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMI#28, DMA Request: 0 = Inactive 1 = Active				

912-2000-015 Revision: 1.0

4.17.3 Enabling of Events to Generate SMI

The registers listed in Table 4-158 allow PMI events that are enabled to generate timer time-outs, accesses, and interrupts to cause SMIs. Before setting the SMI Event Enable Registers, time-outs, accesses, and interrupts must be individually enabled to generate PMI events as follows.

- For time-out events, loading a non-zero timer value and generating a dummy access presets PMI generation on the next time-out.
- For Current Access events, the appropriate current access enable bit must be set to preset PMI generation on the following access.
- For Next Access events, the appropriate next access enable bit must be set. Then, a valid time-out must take place to preset PMI generation on the following access.

 For interrupt events, the corresponding INTRGRP bit must be set and INTRGRP must be enabled to generate PMI#6.
 Then, on any enabled interrupt PMI#6 will occur.

Only after all desired PMI events have been enabled should the PMI be enabled to generate an SMI through the register set below. Setting SYSCFG 5Bh[6] = 1 then unmasks all the SMIs previously enabled.

Note that a Resume event can be enabled to generate PMI#6. Refer to the "Suspend and Resume" section for details on enabling resume events.

4.17.3.1 PMI#25 Triggers

The PMI#25 event is shared by both EPMI3# and the thermal management unit. SYSCFG D9h[3:2] enable SMI for EPMI3# only. SYSCFG DBh[6] enables SMI only for cool-down clocking entry and exit.

Table 4-158 SMI Event Enable Registers

7	6	5	4	3	2	1	0
SYSCFG 58h			PMU Even	it Register 1			Default = 00h
LOWBAT F	MI#3 SMI:	EPMI1# PMI#2 SMI:		EPMI0# P	MI#1 SMI:	LLOWBAT PMI#0 SMI:	
00 = Dis	sable	00 = Dis	sable	00 = Dis	sable	00 = Dis	sable
11 = Ena	able	11 = En	able	11 = En	able	11 = En	able
SYSCFG 59h			PMU Even	t Register 2			Default = 00h
			RGRP PMI#6,	_	MER	_	TIMER
			PMI#7 SMI:		5 SMI:	PMI#4	
		00 = Dis		00 = Dis		00 = Dis	
		11 = En	able	11 = En	able	11 = En	able
0,0050 541 %	4 E I (==) 0		DAUL E				D (!! 00!
SYSCFG 5Ah if	AEn[/] = 0		PMU Even	Default = 00h			
GNR1_TIM		KBD_TIMER PMI#10		DSK_TIMER PMI#9		LCD_TIMER PMI#8	
_	ESS PMI#15:	KBD_ACCESS PMI#14:		DSK_ACCESS PMI#13:		LCD_ACCESS PMI#12:	
00 = Disable		00 = Disable		00 = Disable		00 = Disable	
01 = Positive		01 = Positive decode		01 = Positive decode		01 = Reserved 10 = Reserved	
10 = Positive o	decode, SMI	10 = Positive 11 = SMI	decode, SMI	10 = Positive decode, SMI 11 = SMI		10 = Reserved 11 = SMI	
		11 = 31/11					
SYSCFG 5Ah if	AEh[7] = 1		PMU Event	Register 3A			Default = 00h
GNR5_TII	MER PMI:			Rese	erved		
00 = Disable							
01 = Positive							
10 = Positive	decode, SMI						
11 = SMI							
SYSCFG 5Bh if AEh[7] = 0			PMU Even	t Register 4			Default = 00h
	Global SMI						
	control:						
	0 = Allow						
	1 = Mask						
					l	L	

Page 246 912-2000-015

Table 4-158 SMI Event Enable Registers (cont.)

7	6	5	4	3	2	1	0	
SYSCFG D8h if	SYSCFG D8h if AEh[7] = 0 PMU Event Register 5							
HDU_TIMER PMI#19 HDU_ACCESS PMI#23: 00 = Disable 01 = Reserved 01 = Reserved 11 = SMI		_		COM1_TIMER PMI#17 COM1_ACCESS PMI#21: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		GNR2_TIMER PMI#16 GNR2_ACCESS PMI#20: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		
SYSCFG D8h if	AEh[7] = 1		PMU Event	Register 5A			Default = 00h	
Reserved				GNR6_ACCI 00 = Disable 01 = Positive	01 = Positive decode 10 = Positive decode, SMI			
SYSCFG D9h			PMU Even	it Register 6			Default = 00h	
PMI#2 00 = Disab 01 = Enabl 10 = Enabl	DOZE_TIMER PMI#27 SMI: 00 = Disable 01 = Enable DOZE_0 10 = Enable DOZE_1 11 = Enable both		RINGI PMI#26 SMI: 00 = Disable 11 = Enable		EPMI3# cool-down clocking PMI#25 SMI: 00 = Disable 11 = Enable		EPMI2# PMI#24 SMI: 00 = Disable 11 = Enable	
SYSCFG DBh if	AEh[7] = 0	Ne	kt Access Event (Default = 00h			
	SMI on cool- down clocking entry/exit: 0 = Disable 1 = Enable			J				
SYSCFG E9h if	AEh[7] = 0		PMU Even	it Register 7			Default = 00h	
GNR4_TIMER PMI#30 GNR4_ACCESS PMI#32: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		GNR3_TIMER PMI#29 GNR3_ACCESS PMI#31: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI						
SYSCFG E9h if	AEh[7] = 1		PMU Event	Register 7A			Default = 00h	
GNR8_TIMER PMI#30 GNR8_ACCESS PMI#32: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		GNR7_TIMER PMI#29 GNR7_ACCESS PMI#31: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI						

4.17.4 Servicing an SMI

The register set shown in Table 4-159 is used by SMM code to enable system events to cause SMIs, to determine the events that caused an active SMI, and to clear the events. Determining the source of the SMI is an uncomplicated procedure.

- Upon entry to SMM, read the SYSCFG 5Ch, 5Dh, DCh, DDh, and EAh. Any non-zero bits indicate PMI sources. More than one can be active.
- The PMI number will indicate the source of the service request. If the PMI#6 is generated, also read SYSCFG

- 64h and A4h (described earlier in Section 4.17.2.3, "Interrupt Event Generation of SMI") to determine which IRQ line was responsible for the event.
- Service the events in the order desired; upon completion
 of each service, write a 1 back to the event source register bit to clear that event. Continue in this manner until all
 events are serviced and all the service registers are
 clear.
- 4. Issue the proper CPU instruction to return from SMM operation. If any events are still pending, most CPUs will immediately re-enter SMM.

Table 4-159 SMI Service Registers

	Sim Service registers							
7	6	5	4	3	2	1	0	
SYSCFG 5Ch		PMI	SMI Source Regi		Default = 00h			
PMI#7, Suspend: 0 = Not Active 1 = Active	PMI#6, Resume or INTRGRP: 0 = Not Active 1 = Active	PMI#5, R_TIMER time-out: 0 = Not Active 1 = Active	PMI#4, IDLE_TIMER time-out: 0 = Not Active 1 = Active	PMI#3, LOWBAT: 0 = Not Active 1 = Active	PMI#2, EPMI1#: 0 = Not Active 1 = Active	PMI#1, EPMI0#: 0 = Not Active 1 = Active	PMI#0, LLOWBAT: 0 = Not Active 1 = Active	
OVOCEO EDI: H	AFLIZI O	DAG	CMI Course Doni	-1 0 ///-i/- 4 1-	Olares)		Dataulk 00h	
SYSCFG 5Dh if	AEn[/] = 0	PMI	SMI Source Regi	ster 2 (Write 1 to	Clear)		Default = 00h	
PMI#15, GNR1_ ACCESS: 0 = None 1 = Active	PMI#14, KBD_ACCESS: 0 = Not Active 1 = Active	PMI#13, DSK_ACCESS: 0 = Not Active 1 = Active	PMI#12, LCD_ACCESS: 0 = Not Active 1 = Active	PMI#11, GNR1_TIMER: 0 = Not Active 1 = Active	PMI#10, KBD_TIMER: 0 = Not Active 1= Active	PMI#9, DSK_TIMER: 0 = Not Active 1 = Active	PMI#8, LCD_TIMER: 0 = Not Active 1 = Active	
SYSCFG 5Dh if AEh[7] = 1 PMI S			MI Source Regis	ter 2A (Write 1 to	1	Default = 00h		
PMI#15, GNR5_ ACCESS: 0 = None 1 = Active		Reserved		PMI#11 GNR5_TIMER: 0 = None 1 = Active		Reserved		
SYSCFG DCh if	A Eb[7] = 0	DMII	SMI Source Regi	istor 2 (Write 1 to	Clear)		Default = 00h	
		1		`	,	I		
PMI#23, HDU_ ACCESS:	PMI#22, COM2_ ACCESS:	PMI#21, COM1_ ACCESS:	PMI#20, GNR2_ ACCESS:	PMI#19, HDU_ TIMER:	PMI#18, COM2_ TIMER:	PMI#17, COM1_ TIMER:	PMI#16, GNR2_ TIMER:	
0 = Inactive 1 = Active	0 = Inactive 1 = Active	0 = Inactive 1 = Active	0 = Inactive 1 = Active	0 = Inactive 1 = Active	0 = Inactive 1 = Active	0 = Inactive 1 = Active	0 = Inactive 1 = Active	
SYSCFG DCh if	AEh[7] = 1	PMU S	SMI Source Regis	ster 3A (Write 1 to	o Clear)		Default = 00h	
	Reserved		PMI#20, GNR6_ ACCESS: 0 = Clear 1 = Active		Reserved		PMI#16, GNR6_ TIMER: 0 = Clear 1 = Active	

Page 248 912-2000-015

Revision: 1.0

Table 4-159 SMI Service Registers (cont.)

7	6	5	4	3	2	1	0
SYSCFG DDh		PMU	SMI Source Regi	ster 4 (Write 1 to	Default = 00h		
PMI#39, PCI retry limit: 0 = Inactive 1 = Active	PMI#38, CISA/PCI IRQ driveback trap: 0 = Inactive 1 = Active	PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMI#28, DMA Request: 0 = Inactive 1 = Active	PMI#27, DOZE_ TIMER: 0 = Inactive 1 = Active	PMI#26, RINGI: 0 = Inactive 1 = Active	PMI#25, EPMI3# pin/ cool-down clocking: 0 = Inactive 1 = Active	PMI#24, EPMI2# pin: 0 = Inactive 1 = Active
SYSCFG DDh -	FS ACPI Version	PMU	SMI Source Regi	ster 4 (Write 1 to	Clear)		Default = 00h
PMI#39, ACPI SMI: 0 = Inactive 1 = Active	PMI#38, CISA/PCI IRQ driveback trap: 0 = Inactive 1 = Active	PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMI#28, DMA Request: 0 = Inactive 1 = Active	PMI#27, DOZE_ TIMER: 0 = Inactive 1 = Active	PMI#26, RINGI: 0 = Inactive 1 = Active	PMI#25, EPMI3# pin/ cool-down clocking: 0 = Inactive 1 = Active	PMI#24, EPMI2# pin: 0 = Inactive 1 = Active
SYSCFG EAh if	AEh[7] = 0	PMU	SMI Source Regi	ster 5 (Write 1 to	Clear)		Default = 00h
PMI#36, Serial IRQ trap: 0 = Inactive 1 = Active	PMI#35, APM Doze exit: 0 = Inactive 1 = Active	PMI#34, Hot docking time-out SMI: 0 = Inactive 1 = Active	PMI#33, H/W DOZE_ TIMER reload (on Doze exit): 0 = Inactive 1 = Active	PMI#32, GNR4_ ACCESS 0 = Inactive 1 = Active	PMI#31, GNR3_ ACCESS 0 = Inactive 1 = Active	PMI#30, GNR4_ TIMER 0 = Inactive 1 = Active	PMI#29, GNR3_ TIMER 0 = Inactive 1 = Active
SYSCFG EAh if	AEh[7] = 1	PMU	SMI Source Regi	ster 8 (Write 1 to	Clear)		Default = 00h
Reserved				PMI#32, GNR8_ ACCESS 0 = Inactive 1 = Active	PMI#31, GNR7_ ACCESS 0 = Inactive 1 = Active	PMI#30, GNR8_ TIMER 0 = Inactive 1 = Active	PMI#29, GNR7_ TIMER 0 = Inactive 1 = Active

4.17.4.1 PMI Source Register Details

SYSCFG 5Ch, 5Dh, DCh, DDh, and EAh indicate the SMI source. When a PMI event occurs, the corresponding bit will be set to 1 and the SMI# signal will then be generated. In the SMI service routine, SMM code must check these registers for the PMI source(s) and then clear them. Otherwise, for all but the EPMI pins, the latched PMI source will generate SMI# continuously. SMI code normally clears only one event at a time to keep track of the events as they are serviced, but all events can be cleared at once if desired. Note that clearing SYSCFG 5Ch[6] will clear SYSCFG 5Ch[7] also.

Refer to Section 4.15.5, "Suspend and Resume" for information on PMI#6 when it is used to indicate a resume event.

4.17.4.2 EPMI Pin PMI Sources

The EPMI[1:0]# pins' PMI source indicator bits behave a little differently than the rest of the PMI source indicator bits. For PMI#1 and PMI#2, the EPMI[1:0]# inputs are **not** latched by default, so SYSCFG 5Ch[2:1] are not latched. Therefore, an external device could trigger an SMI by toggling one of the

EPMI[1:0]# lines, but if the device returns the EPMI line to its inactive state before SMM code reads SYSCFG 5Ch[2:1], the code would not be able to recognize the event that triggered the SMI. Likewise, an EPMI[1:0]# edge could initiate a resume from suspend mode, but then would not be recognized if the EPMI pin went to its inactive state.

SYSCFG A1h[0] is provided to allow EPMI[1:0]# to be latched like other PMIs. If SYSCFG A1h[0] is written to 1, EPMI[1:0]# events will be latched at SYSCFG 5Ch[2:1]. Writing a 1 into the active bit(s) then clears the PMI.

For PMI#24 and PMI#25, the EPMI[3:2]# inputs are always latched, regardless of the A1h[0] setting.

4.17.5 I/O SMI Trap Indication

FireStar provides a means for SMM code to determine the I/O port whose access caused the SMI, a bit to indicate whether the access was a read or a write, as well as the write data with SBHE# status for write instructions. The registers that provide the above data are shown in Table 4-160.

Table 4-160 I/O SMI Trap Indication Registers

7	6	5	4	3	2	1	0			
SYSCFG D6h	YSCFG D6h PMU Control Register 10									
			APM doze exit PMI#35:	SBHE# status trap (RO)	I/O port access trapped (RO):	Access trap bit A9 (RO)	Access trap bit A8 (RO)			
			0 = Disable 1 = Enable		0 = I/O read 1 = I/O write					

SYSCFG D7h Access Port Address Register 1

Default = 00h

Access trap address bits A[7:0]:

- These bits, along with SYSCFG D6h[1:0] and SYSCFG EBh[7:0] provide the 16-bit address of the port access that caused the SMI trap.
- SYSCFG D6h[2] indicates whether an I/O read or an I/O write access was trapped.
- SYSCFG D6h[3] gives the status of the SBHE# signal for the I/O instruction that was trapped.

SYSCFG EBh	Access Port Address Register 2	Default = 00h
Reserved	Access trap address bits A[15:10]:	
	These bits along with SYSCFG D6h[1:0] and D7h[7:0] provide the 16-bit address o that caused the SMI trap. D6h[2] indicates whether an I/O read or an I/O write accedental D6h[3] gives the status of the SBHE# signal for the I/O instruction that was trapped.	ess was trapped.

SYSCFG ECh Write Trap Register 1 (RO) Default = 00h

I/O write data trap[15:8]:

- Along with SYSCFG EDh[7:0], this register provides the 16-bit write data for trapped I/O write instructions.

SYSCFG EDh Write Trap Register 2 (RO) Default = 00h

I/O write data trap[7:0]:

- Along with SYSCFG ECh[7:0], this register provides the 16-bit write data for trapped I/O write instructions

Page 250 912-2000-015

4.17.6 Trapping with NMI Instead of SMM

Many system events require more immediate service than is possible with the current SMI scheme, which takes approximately $4\mu s$ to enter SMM and another $4\mu s$ to exit. Therefore, FireStar offers the possibility of selectively diverting the PMI event from generating SMI with NMI. The drawback to this scheme is the lack of protection involved. The interrupt vector

in low memory cannot be write-protected. Hence, using NMI trapping is not as secure as SMI trapping.

Note that the NMI Trap Enable bit must not be set if an SMI is enabled for this PMI event. Table 4-161 shows the NMI Trap Enable registers.

Table 4-161 NMI Trap Enable Bits

7	6	5	4	3	2	1	0	
SYSCFG 38h	NMI Trap Enable Register 1							
PMI#7 NMI:	PMI#6 NMI:	PMI#5 NMI:	PMI#4 NMI:	PMI#3 NMI:	PMI#2 NMI:	PMI#1 NMI:	PMI#0 NMI:	
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	
SYSCFG 39h			NMI Tran Ens	ıble Register 2			Default = 00h	
						I		
PMI#15 NMI:	PMI#14 NMI:	PMI#13 NMI:	PMI#12 NMI:	PMI#11 NMI:	PMI#10 NMI:	PMI#9 NMI:	PMI#8 NMI:	
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	
0.005001							D (11 001	
SYSCFG 3Ah			NIVII Irap Ena	ble Register 3			Default = 00h	
PMI#23 NMI:	PMI#22 NMI:	PMI#21 NMI:	PMI#20 NMI:	PMI#19 NMI:	PMI#18 NMI:	PMI#17 NMI:	PMI#16 NMI:	
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	
SYSCFG 3Bh			NMI Trap Ena	ble Register 4			Default = 00h	
PMI#31 NMI:	PMI#30 NMI:	PMI#29 NMI:	PMI#28 NMI:	PMI#27 NMI:	PMI#26 NMI:	PMI#25 NMI:	PMI#24 NMI:	
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	
SYSCFG 3Ch			NMI Trap Ena	ble Register 5			Default = 00h	
Rese	erved	PMI#37 NMI:	PMI#36 NMI:	PMI#35 NMI:	PMI#34 NMI:	PMI#33 NMI:	PMI#32 NMI:	
		0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	
		1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	

4.18 Utility Registers

The registers below provide SMM code with a general purpose storage region and a means of generating warning

beeps on the system speaker without modifying the ISA-compatible I/O ports.

Table 4-162 Utility Registers

7	6	5	4	3	2	1	0			
SYSCFG 51h	SYSCFG 51h Beeper Control Register									
	Beeper 00 = No Ac 01 = 1kHz 10 = Off 11 = 2kHz									
SYSCFG 52h			Scratchpa	d Register 1			Default = 00h			
	ose storage byte: onfiguration Cycle	s: Data phase info	ormation, low byte							
SYSCFG 53h			Scratchpa	d Register 2			Default = 00h			
	ose storage byte. onfiguration Cycle	s: Data phase info	ormation, high byte	Э						
SYSCFG 6Ch			Scratchpa	d Register 3			Default = 00h			
	ose storage byte onfiguration Cycle	s: Address phase	1 information, low	v byte						
SYSCFG 6Dh			Scratchpa	d Register 4			Default = 00h			
	ose storage byte onfiguration Cycle	s: Address phase	1 information, hig	h byte						
SYSCFG 6Eh			Scratchpa	d Register 5			Default = 00h			
	ose storage byte onfiguration Cycle	s: Address phase	2 information, low	v byte						
SYSCFG 6Fh			Scratchpa	d Register 6			Default = 00h			
	ose storage byte onfiguration Cycle	s: Address phase	2 information, hig	h byte						

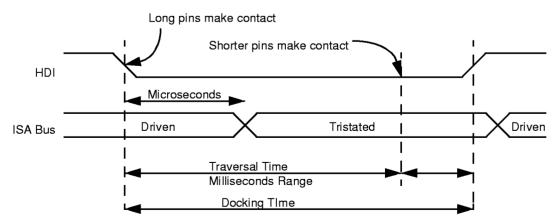
Page 252 912-2000-015

4.19 Hot Docking Feature

The "hot" attachment of a docking station to a notebook computer requires the computer to have certain capabilities that are listed below:

- A mechanism to sense the beginning and the end of docking.
- The ability to tristate the ISA and PCI buses when docking is in progress and to not generate bus cycles during that period.
- The capability of either continuing with normal operation, or of generating an SMI if the end of docking is not sensed within a certain time period.

The docking station also needs to have the capability of indicating the start of docking and the capability to indicate the completion of docking. This is usually accomplished by using special dock connectors that have "early" and "late" connections. The male connector is on the docking station and has several long pins. During insertion, these pins make contact with their counterparts on the notebook earlier than the other pins. One of these pins (HDI - Hot Docking Indicator) may be asserted by the docking station and can be used to indicate the beginning of insertion. Later on, when all pins make contact, the HDI pin may be deasserted to indicate the completion of docking, following which the notebook may start driving the ISA bus again. Referring to Figure 4-42, traversal time may be defined as the time taken for the shorter pins to make contact after the longer pins have made contact. The ISA bus signals have to be tristated after the HDI pin is detected as active and before the shorter pins make contact. This is not expected to be a problem because traversal time is usually of the order of a few milliseconds, whereas the longest back-to-back ISA cycles are of the order of a few


microseconds; hot docking may therefore be detected and the ISA bus tristated well within the traversal time period.

FireStar implements this feature by making use of one of the EPMI# inputs as the HDI pin and a programmable time-out counter that is loaded with a value that is an estimate of the traversal time. Any one of the EPMI# inputs may be programmed to perform the HDI function. An active EPMI# input is an indication to the chipset that docking is in progress.

On the occurrence of an active signal on the selected EPMI# input, the time-out counter is started, as shown in Figure 4-43. FireStar's logic then causes the CPU to stop operation after the current cycle is completed by placing it on hold to ensure that another ISA bus cycle is not started while docking is in progress. After the system completes the current ISA bus cycle, which could be in the order of a few microseconds for certain ISA bus cycles, the ISA bus signals are tristated. and remain tristated till either the time-out counter runs out, or the HDI input is deasserted, whichever occurs earlier. The HDI input is expected to be deasserted within the time-out period. If the HDI input is deasserted within the time-out period as shown in Figure 4-43, it indicates that docking was completed within the expected time of insertion, and that the ISA bus may be driven again. If it is not deasserted within the time-out period as shown in Figure 4-44, it may be construed that docking was not completed in the expected time. In this situation, the option of either generating an SMI or ignoring the time-out and driving the ISA bus again is provided. Figure 4-44 shows the case where an SMI is generated due to the time-out period elapsing.

Note that the PCI bus is automatically disabled, and its signals tristated, when the ISA bus is tristated. Therefore, it may be possible to hot dock on the PCI bus as well as the ISA bus.

Figure 4-42 Insertion Times

912-2000-015 Revision: 1.0

Figure 4-43 HDI Input Deasserted Within Time-out Period

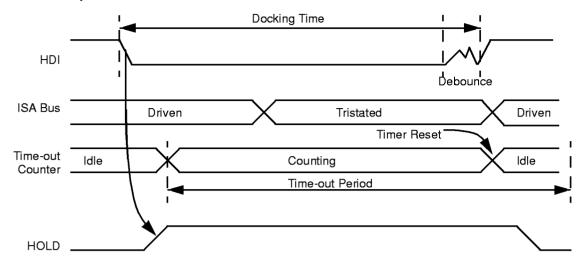
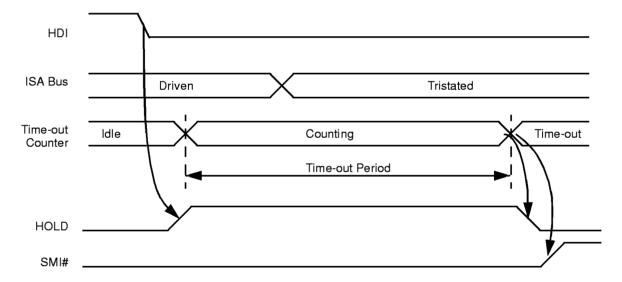



Figure 4-44 HDI Input Not Deasserted Within Time-out Period (SMI generated on time-out)

4.19.1 Initialization Procedure:

- 1. Select the EPMI# input on which HDI will be provided by appropriately setting SYSCFG F0h[1:0].
- Set SYSCFG EFh[6:5] if debouncing is required on the selected EPMI# pin. It is recommended that debouncing be enabled.
- Select the polarity of the HDI input by appropriately setting SYSCFG 40h[2], or 40h[1], or DBh[5], or DBh[4], depending on which EPMI# input is selected as the HDI input.
- 4. Docking may be done when the system is in suspend. If so desired, disable the capacity of the selected EPMI# to generate a resume by setting SYSCFG B1h[7], or B1h[6], or 6Ah[7], or 6Ah[6] to 0. If a resume operation on docking is desired, the appropriate bit must be set to 1.

- Set the time-out period by programming SYSCFG EFh[2:0]. If the system is in suspend, a default time-out of 1ms generated from the 32kHz clock is used to override this setting.
- If an SMI is to be generated on time-out, set SYSCFG EFh[4].
- 7. Enable the capacity of the selected EPMI# input to generate an SMI by setting SYSCFG 58h[5:4], or 58h[3:2], or D9h[3:2], or D9h[1:0] to 11b.
- 8. Enable hot docking by setting SYSCFG EFh[7] to 1.
- 9. Finally, enable the global SMI generation control by setting SYSCFG 5Bh[6] to 0.

Table 4-163 shows the register bits associated with hot docking.

Table 4-163 Hot Docking Control Register Bits

7	6	5	4	3	2	1	0		
SYSCFG EFh			Default = 00h						
Hot docking	HDI input de		HDI active level:	HDI SMI:			DI time-out period:		
enable: 0 = Disable	00 = 100μs 01 = 512μs		0 = Active high 1 = Active low	0 = No SMI on time-out	000 = 1ms 001 = 8ms				
1 = Enable	10 = 1ms		Also see	(Default)	010 = 64m		-		
(Default)	11 = 2ms		SYSCFG	1 = Generate	011 = 256r	ns 111 = 1	6s		
			AAh[0]	SMI on time-out					
			l		l .				
SYSCFG AAh			Thermal Manag	ement Register 6	5		Default = 00h		
							HDI input:		
							0 = HDI		
							1 = EPMI indi- cated by		
							SYSCFG		
							F0h[1:0]		
SYSCFG F0h			Hot Docking Co	ontrol Register 2			Default = 00h		
31301011			Tiot bocking C	ontior negister 2					
							er for HDI:		
						00 = EF 01 = EF	**		
						10 = EF			
						11 = EP	**		
						Also see SYSCF	G AAh[0]		
0,0000 401			DMII OI-	-1.0			D-(II OOL		
SYSCFG 40h			PMU Contr	ol Register 1			Default = 00h		
					EPMI1#	EPMIO#			
					polarity: 0 = Active high	polarity: 0 = Active high			
					1 = Active low	1 = Active low			

912-2000-015 Revision: 1.0

Table 4-163 Hot Docking Control Register Bits (cont.)

7	6	5	4	3	2	1	0
SYSCFG DBh if	AEh[7] = 0	Ne	xt Access Event	Generation Regis	eter 2		Default = 00h
		External EPMI3# pin polarity: 0 = Active high 1 = Active low	External EPMI2# pin polarity: 0 = Active high 1 = Active low				
SYSCFG B1h			RSMGRP IF	RQ Register 2			Default = 00h
EPMI3# Resume: 0 = Disable 1 = Enable	EPMI2# Resume: 0 = Disable 1 = Enable						
SYSCFG 6Ah			RSGGRP IF	RQ Register 1			Default = 00h
EPMI1# Resume: 0 = Disable 1 = Enable	EPMI0# Resume: 0 = Disable 1 = Enable						
SYSCFG 58h			PMU Even	ıt Register 1			Default = 00h
		00 = Di: 11 = En	able	00 = Dis 11 = En	able		
SYSCFG D9h				ıt Register 6			Default = 00h
				EPMI3# cool- PMI#2 00 = Dis 11 = En	5 SMI: sable able	PMI#2 00 = Dis 11 = En	able
SYSCFG 5Bh if				t Register 4			Default = 00h
	Global SMI control: 0 = Allow 1 = Mask						

Page 256 912-2000-015

Register Descriptions 5.0

There are three broad classes of FireStar configuration registers spaces:

- 1) PCI Configuration Register Space
- System Control Register Space
- 3) I/O Register Space

Table 5-1 details the locations and access mechanisms for registers located within these register spaces.

- Notes: 1. Bits/registers that are new or have changed (between Data Book Rev 0.2 and Data Book Rev 1.0), are underlined and denoted with a change bar in the margin.
 - 2. All bits/registers are read/write and their default value is 0 unless otherwise specified.
 - 3. All reserved bits/registers MUST be written to 0 unless otherwise specified.

Table 5-1 **Register Locations and Access Mechanisms**

Register Space	Location	Access Mechanism	Reference Section
System Control	SYSCFG 00h-FFh	Index loaded in 022h, Data to/from index through 024h	Section 5.1, SYSCFG Register Space
PCI Configuration	PCIDV0 00h-FFh	Through PCI Configuration Mechanism #1 as: Bus #0, Device #0, Function #0	Section 5.2, PCIDV0 Register Space
	PCIDV1 00h-FFh	Through PCI Configuration Mechanism #1 as: Bus #0, Device #1, Function #0	Section 5.3, PCIDV1 Register Space
	PCIIDE 00h-47h	Through PCI Configuration Mechanism #1 as: Bus #0, Device #14h, Function #0, or Bus #0, Device #1, Function #1	Section 5.4, IDE Register Space
I/O Register	Port 000h-FFFFh	CPU Direct I/O R/W	Section 5.5, I/O Register Space

Preliminary 82C700

The following briefly describes how to access FireStar and PCI devices. FireStar uses PCI Configuration Mechanism #1 to access the configuration spaces. Two I/O locations are used in this mechanism. The first I/O location, CF8h (which must be a double-word), references a read/write register called CONFIG ADDRESS. The second I/O address, CFCh (which can be byte, word, or double-word), references a register called CONFIG DATA. The general mechanism for accessing the configuration space is to write a value into CONFIG ADDRESS that specifies the PCI bus, the device on that bus, and the configuration register in that device being accessed. A read or write to CONFIG DATA will then cause FireStar to translate that CONFIG ADDRESS value to the requested configuration cycle on the PCI bus. Below is an example to read PCIDV1 00h (the register located at 00h in the PCI Configuration Space of the 82C700):

MOV EAX,80000800h ;specifies the device, function,

and register number

MOV DX,0CF8h ;CONFIG ADDRESS

OUT DX,EAX

MOV DX,0CFCh ;CONFIG_DATA

IN EAX,DX

The content of the CONFIG_ADDRESS shown above possesses the following meanings (device number 00001b means the 82C700 is designed to use AD12 as the IDSEL) as shown in Table 5-2.

Table 5-3 shows the correspondence of device number of the IDSEL actually generated on the PCI bus during configuration cycles.

Table 5-2 CONFIG ADDRESS Example

31	30 24	23 16	15 11	10 8	7 2	1	0
1	Reserved	Bus Number	Device Number	Function Number	Register Number	0	0
1	000 0000	0000 0000	0000 1	0000 1 000		0	0
	80h	00h	30	3h	00	h	

Table 5-3 Device Number Decode

Device Number	IDSEL
PCIDV1 0h (82C700)	AD11
PCIDV0 1h (82C700)	AD12
2h	AD13
3h	AD14
4h	AD15
5h	AD16
6h	AD17
7h	AD18
8h	AD19
9h	AD20
Ah	AD21

Device Number	IDSEL
Bh	AD22
Ch	AD23
Dh	AD24
Eh	AD25
Fh	AD26
10h	AD27
11h	AD28
12h	AD29
13h	AD30
PCI IDE 14h (IDE Controller)	AD31

Page 258 912-2000-015 Revision: 1.0

5.1 SYSCFG Register Space

An indexing scheme is used to access the System Control Register Space (SYSCFG). Port 022h is used as the Index Register and Port 024h as the Data Register. Each access to a register within this space consists of:

- 1) a write to Port 022h, specifying the desired register in the data byte,
- followed by a read or write to Port 024h with the actual register data.

The index resets after every access; so every data access (via Port 024h) must be preceded by a write to Port 022h even if the same register is being accessed consecutively.

Port 023h is the Data Register for DMA clock select.

Table 5-5 gives the bit formats for the registers located at SYSCFG 00h-2Fh. Table 5-6 gives the bit formats for the registers located at SYSCFG 30h-FFh which are the power management registers.

5.1.1 System Configuration Register Index/Data Programmable

The SYSCFG index/data ports default to 022h/024h as in previous OPTi chipsets, but now these registers are accessible at other locations as well. PCIDV1 5Fh is provided to program the upper bits of the index/data port I/O address. These register bits default to 0, leaving the traditional 022h/024h locations as index/data. Refer to Table 5-4.

Table 5-4 SYSCFG Base Select Register

7 6 5	4	3	2	1	0
-------	---	---	---	---	---

PCIDV1 5Fh

Config. Register Index/ Data Port Address

Configuration Register Index/Data Port Address bits A[15:8]:

This byte provides the upper address bits of the 16-bit address for the system configuration registers index/data port. Bits A[7:0] always point to 022h/024h. At reset this register defaults to 0, so the full I/O address for the index/data ports is 0022/0024h.

Table 5-5 SYSCFG 00h-2Fh

7	6	5	4	3	2	1	0		
SYSCFG 00h	Byte Merge/Prefetch & Sony Cache Module Control Register								
Enable pipelining of single CPU cycles to memory: 0 = Disable 1 = Enable	Video memory byte/word read prefetch enable: 0 = Disable 1 = Enable Setting enables/ disables the prefetching of bytes/words from PCI video memory by the CPU.	Sony SONIC- 2WP support enable: ⁽¹⁾ 0 = No Sony SONIC- 2WP installed 1 = Sony SONIC- 2WP installed	Byte/word merge support: 0 = Disable 1 = Enable	Byte/word merging with CPU pipelining (NA# genera- tion) support: 0 = Disable 1 = Enable	byte/wor 00 = 4 0 01 = 8 0 10 = 12 11 = 16		Enable internal HOLD requests to be blocked while perform- ing byte merge: 0 = Disable 1 = Enable		
(1) If bit 5 is set,	ensure that the L2	2 cache has been	disabled (i.e., set	SYSCFG 02h[3:2]	= 00).	_			
SYSCFG 01h	SYSCFG 01h DRAM Control Register 1 Default = 00h								

SYSCFG 01h		DRAM Con	Default = 00h		
Row address HOLD after RAS# active: 0 = 2 CPUCLKs 1 = 1 CPUCLK	RAS# active/ inactive when starting a master cycle: 0 = Active (normal page mode) 1 = Inactive	RAS pulse width used during refresh: 00 = 7 CPUCLKs 01 = 6 CPUCLKs 10 = 5 CPUCLKs 11 = 4 CPUCLKs	CAS pulse width during reads: 0 = 3 CPUCLKs 1 = 2 CPUCLKs For 1 CPUCLK width, refer to SYSCFG 1 Ch[0].		RAS precharge time: 00 = 6 CPUCLKs 01 = 5 CPUCLKs 10 = 4 CPUCLKs 11 = 3 CPUCLKs

7	6	5	4	3	2	1	0
*			<u> </u>			<u>'</u>	
SYSCFG 02h			Cache Cont	rol Register 1			Default = 00h
L2 cache size If SYSCFG OFh[0] = 0 00 = 64KB 01 = 128KB 10 = 256KB 11 = 512KB	e selection: If SYSCFG OFh[0] = 1 00 = 1MB 01 = Reserved 10 = Reserved 11 = Reserved	L2 cache write policy: 00 = L2 cache write-through 01 = Adaptive writeback Mode 1 10 = Adaptive writeback Mode 2 11 = L2 cache writeback		L2 cache operating mode select: 00 = Disable 01 = Test Mode 1; External Tag Write (Tag data write- through SYSCFG 07h) 10 = Test Mode 2; External Tag Read (Tag data read from SYSCFG 07h) 11 = Enable L2 cache		DRAM posted write: 0 = Disable 1 = Enable	CAS precharge time: 0 = 2 CPUCLKs 1 = 1 CPUCLK
SYSCFG 03h			Cache Cont	rol Register 2			Default = 00h
Timing for b to L2 c 00 = X-4-4-4 01 = X-3-3-3		to L2 (time for writes cache: 10 = 3-X-X-X 11 = 2-X-X-X	to L2 o	burst reads cache: 10 = X-2-2-2 11 = X-1-1-1	to L2	time for reads cache: 10 = 3-X-X-X 11 = 2-X-X-X
3.11.000							
SYSCFG 04h				Control Register 1	<u> </u>		Default = 00h
CC000h-cread/write P 00 = Read/write P 01 = Read from D PCI 10 = Read from P DRAM 11 = Read/write D	e control: PCI bus PRAM/write to CI/write to PRAM	read/write 00 = Read/write 01 = Read from I PCI 10 = Read from I DRAM 11 = Read/write I	DRAM/write to PCI/write to DRAM	Sync SRAM pipelined read cycle 1-1-1-1 enable: ⁽¹⁾ 0 = Implies leadoff T- state for read pipe- lined cycle = 2 ⁽²⁾ 1 = Enables leadoff T- state for read pipe- lined cycle = 1 ⁽³⁾	E0000h- EFFFFh range selection: Determines whether this region will be treated like the F0000 BIOS area or whether it will always be non-cacheable. 0 = E0000h- EFFFFh area will always be non-cacheable 1 = E0000h- EFFFFh area will be treated like the F0000h BIOS area. If this bit is set, then SYSCFG 06h[3:2] and [1:0] Should be set identically.		DRAM/write to

- (1) If SYSCFG 03h[3:2] = 11, then this register setting is valid.
- (2) It will be a 3-1-1-1 cycle followed by a 2-1-1-1 cycle, or a 3-1-1-1 cycle for successive pipelined cycles, based on SYSCFG 10h[5].
- (3) It will be a 3-1-1-1 cycle followed by a 1-1-1-1 cycle for successive pipelined cycles. SYSCFG 10h[5] must be set to 1.

Page 260 912-2000-015

access to finish and then do the snooping

7	6	5	4	3	2	1	0				
SYSCFG 05h Shadow RAM Control Register 2 Default =											
DC000h-DFFFFh read/write control: 00 = Read/write PCI bus 01 = Read from DRAM/write to PCI 10 = Read from PCI/write to DRAM		read/write control: 00 = Read/write PCI bus 01 = Read from DRAM/write to PCI 10 = Read from PCI/write to 10 = Read from PCI/write to PCI 10 = Read from PCI/write to PCI 10 = Read from PCI/write to		read/write control: read/write 00 = Read/write PCI bus 01 = Read from DRAM/write to PCI read/write 00 = Read/write 01 = Read from PCI		DRAM/write to					
11 = Read/write I	DRAM			DHAM 11 = Read/write DRAM						11 = Read/write DRAM	
SYSCFG 06h			Shadow RAM C	Control Register 3	1		Default = 00h				
DRAM hole in system memory from 80000h- 9FFFFh:(1) 0 = No hole in memory 1 = Enable hole in memory	Wait state addition for PCI master snooping: 0 = Do not add a wait state for the cycle access finish to do the snooping 1 = Add a wait state for the cycle	C0000h- C7FFFh cacheability: 0 = Not cacheable 1 = Cacheable in L1 and L2 (L1 dis- abled by SYSCFG 08h[0])	F0000h- FFFFFh cacheability: 0 = Not cacheable 1 = Cacheable in L1 and L2 (L1 dis- abled by SYSCFG 08h[0])	F0000h- read/write I 00 = Read from E PCI 10 = Read from E DRAM 11 = Read/write I If SYSCFG 04h[2 E0000h-EFFFFh trol should have tas this.	e control: PCI bus DRAM/write to PCI/write to DRAM PI = 1, then the read/write con-		DRAM/write to				

(1) This setting gives the user the option to have some other device in the address range 80000h-9FFFFh instead of system memory. When bit 7 is set, the 82C700 will not start the system DRAM controller for accesses to this particular address range.

SYSCFG 07h Tag Test Register Default = 00h

- Data from this register is written to the tag, if in Test Mode 1 (refer to SYSCFG 02h).
- Data from the tag is read into this register, if in Test Mode 2 (refer to SYSCFG 02h).

7	6	5	4	3	2	1	0		
SYSCFG 08h	CPU Cache Control Register								
Reserved	Snoop filtering for bus masters: ⁽¹⁾ 0 = Disable 1 = Enable	CPU HITM# pin sample timing: 0 = Delay 1 CLK (HITM# sampled on 3rd rising edge of PCICLK after EADS# assertion) 1 = No delay (HITM# sampled on 2nd rising edge of PCICLK after EADS# assertion)	Parity checking: 0 = Disable 1 = Enable Not supported.	Reserved	CPU address pipelining for DRAM burst cycles: 0 = Disable 1 = Enable (Allow: X-2-2-3-2-2-2 if SYSCFG. 1Fh[5] = 1 or X-2-2-2-2-2-2 if SYSCFG 1Fh[5] = 0 or X-2-2-2-X-2-2 if SYSCFG. 1Fh[5] = 0 or X-1-2-2-2-2 if SYSCFG. 1Fh[5] = 0 and 11[4] = 1)	L1 cache write back and write-through control: 0 = Write- through only 1 = Write back enabled	BIOS area cacheability in L1 cache: Determines if system BIOS area E0000h-FFFFH (if SYSCFG 04h[2] = 1) or F0000h-FFFFH (if SYSCFG 04h[2] = 0), and video BIOS area C0000h-C7FFFH is cacheable in L1 or not. 0 = Cacheable 1 = Not Cacheable		

⁽¹⁾ For a master request if the subsequent read/write is within the same cache line, CPU 'Inquire' cycles are not done until there is a cache line miss (i.e., line comparator not activated for accesses within the same cache line).

SYSCFG 09h	System Memory	Function Register	Default = 00h
DRAM Hole B size:	DRAM Hole B control mode:	DRAM Hole A size:	DRAM Hole A control mode:
00 = 512KB 10 = 2MB	00 = Disable	00 = 512KB 10 = 2MB	00 = Disable
01 = 1MB	01 = WT for L1 and L2	01 = 1MB	01 = WT for L1 and L2
Address for this hole is specified	10 = Non-cacheable for L1 and L2	Address for this hole is specified	10 = Non-cacheable for L1 and L2
in SYSCFG 0Bh[7:0] and 0Ch[3:2]	11 = Enable hole in DRAM	in SYSCFG 0Ah[7:0] and 0Ch[1:0]	11 = Enable hole in DRAM

SYSCFG 0Ah

DRAM Hole A Address Decode Register

Default = 00h

DRAM Hole A starting address:

- These bits along with SYSCFG 0Ch[1:0] are used to specify the starting address of DRAM Hole A.
- These bits, AST[7:0], map onto HA[26:19] lines.

SYSCFG 0Bh

DRAM Hole B Address Decode Register

Default = 00h

DRAM Hole B starting address:

- These bits along with SYSCFG 0Ch[3:2] are used to specify the starting address of DRAM Hole B.
- These bits, BST[7:0], map onto HA[26:19] lines.

Page 262 912-2000-015

Table 5-5 SYSCFG 00h-2Fh (cont.)

7	6	5	4	3	2	1	0
SYSCFG 0Ch			DRAM Hole H	ligher Address			Default = 00h
1 = Generate ADSC# 2 CPU clocks after CPU ADS# is asserted. This is used in case sync SRAM can't run at 3-1-1-1. Not supported.	Fast BRDY# generation for DRAM write page hits. BRDY# for DRAM writes generated on: 0 = 4 th CPUCLK 1 = 3 rd CPUCLK	HACALE cycle: 0 = Normal timing 1 = HACALE one-half a clock cycle early Applies to async cache. Not supported.	If set, CPU-to-PCI memory device can not be X-3-3-3 except line hit with previous cycle. This bit will have effect only if SYSCFG 1Fh[2] is turned on and CPU/ PCI CLK is synchronous Not supported.		YSCFG 0Bh to ng address of hese bits,	DRAM starting. These bits are us with the bits in S' specify the starting DRAM Hole A. The AST[9:8], map or	ed in conjunction YSCFG 0Ah to ng address of hese bits,
SYSCFG 0Dh			Clock Con	trol Register			Default = 00h
Sync SRAM clock source: 0 = CPU clock 1 = ECLK Not supported.	CPU memory cycle always preempts GUI: 0 = Enable 1 = Disable (UMA feature - not supported)	BOFF# generation control: 0 = No change in BOFF# generation 1 = BOFF# not generated if request from PCI-to-ISA bridge is removed before last BRDY# Recommend to set this bit if ISA refresh is enabled.	Preempt GUI whenever MGNT# is active: 0 = No change 1 = Yes (Do not set it if not necessary) (UMA feature - not supported)	Enable A0000h- BFFFFh as system memory: 0 = No 1 = Yes	Add one more wait state during PCI master cycle with Intelty pe address toggling ⁽¹⁾ : 0 = No 1 = Yes	Give FireStar control of the PCI bus on STOP# genera- tion after HITM# is active: 0 = No 1 = Yes ⁽²⁾	CPU clock is slowed down to below 33MHz: 0 = No 1 = Yes

⁽¹⁾ If the PCI master does its address toggling in the style of the Intel 486 burst, rather than a linear burst mode style, then one wait state needs to be added.

⁽²⁾ FireStar has control over the PCI bus until the writeback is completed. If PCI master pre-snoop has been enabled (SYSCFG 0Fh[7] = 1), 0Dh[1] should be set to 1.

Table 5-5 SYSCFG 00h-2Fh (cont.)

7	6	5	4	3	2	1	0
SYSCFG 0Eh			PCI Master Burst	Control Register	r 1		Default = 00h
0 = PCI master / L2 concur- rency with CPU non- burst cycle only 1 = PCI master / L2 concur- rency for all cycles Not supported.	ISA/DMA master through internal MRD#/ MWR#: 0 = Disable 1 = Enable This bit must be turned off for DMA sup- port with SDRAM.	0 = Disable 1 = GUI high priority request in PCI master HITM# will not retry (UMA feature - not supported)	0 = Disable 1 = PCI master write won't be retried if GUI owns the bus (UMA feature - not supported)	Parity check during master cycles (if SYSCFG 08h[4] = 1): 0 = Enable 1 = Disable	Generate NA# for every single transfer cycle: 0 = Disable 1 = Enable	Write protection for L1 BIOS: 0 = No 1 = Yes	PCI line comparator (if SYSCFG 08h[6] = 1): 0 = Use line comparator in PCI master 1 = Generate inquire cycle for every new FRAME#
SYSCFG 0Fh			PCI Master Burst	Control Register	r 2		Default = 00h
	•		0 = Default method 1 = If internal PCICYC and BKFRAME are active. retry the PCI cycle block EADS# generation.		Generate ADSC# for sync SRAM 1 clock after CPU ADS# in read cycle: 0 = No 1 = Yes ⁽²⁾	Write pulse width: 0 = 1 CPUCLK 1 = CPUCLK/2 ± internal delay line Used only in 3-X-X-X write in async SRAM mode. Not supported.	Cache size selection: This bit along with SYSCFG 02h[1:0] defines the L2 cache size. 0 = < 1MB 1 = 1MB
(2) SYSCFG 0F	h[2] needs to be s	et if pipelined syn	c SRAMs are bein	g used.			
SYSCFG 10h			Miscellaneous (Control Register	1		Default = 00h
CPU to PCI/ ISA slave cycle triggered: 0 = After 2 nd T2 1 = After 1 st T2	Cache modified write cycle timing: 0 = No delay on CA4 1 = CA4 is delayed one-half clock	Leadoff cycle for a pipelined read: 0 = 3-X-X-X read followed by a 3-X-X-X pipelined read cycle 1 = 3-X-X-X read followed by a 2-X-X-X	2-X-X-X pipelined write hit cycles: 0 = Disable 1 = Enable	Move the write pulse one-half a clock later in X-2-2-2 write hit cycles: 0 = No 1 = Yes	Move the write pulse one-half a clock earlier in 3-X-X-X write hit cycles: 0 = No 1 = Yes	Reserved	PCICLK select control:(1) 0 = PCICLK is async to CPUCLK 1 = PCICLK is sync to CPUCLK

(1) If bit 0 is set, (i.e., sync PCI implementation) then the timing constraints between the PCICLK and CPUCLK inputs to FireStar must be met. PCICLK <= CPUCLK/2 period before CPUCLK PCICLK <= 0.5ns after CPUCLK. Note that in the sync PCICLK option, PCICLK = CPUCLK/2.

Page 264 912-2000-015

Table 5-5 SYSCFG 00h-2Fh (cont.)

7	6	5	4	3	2	1	0
SYSCFG 11h			Miscellaneous (Control Register	2		Default = 00h
duri state This trols select SF 0 = SF ac alv 1 = SF ina		Cache inactive during Idle state control: This bit con- trols the chip selects of the SRAMs. 0 = SRAM active always 1 = SRAM inactive dur- ing Idle state	CPU address pipelining for DRAM burst cycles: 0 = Controlled by SYSCFG 08h[2] and 1F[5] 1 = Slow pipe- lining (allow X-2-2-2-X- 2-2-2 when SYSCFG 08h[2] = 1 and 1F[5] = 0	0 = TAG[7:0] pins as TAG[7:0] outputs 1 = TAG[7:0] pins as CAS[7:0]# outputs	Page miss posted write: 0 = Enable 1 = Disable	ATWLRDYB used to block CSX when BOFFX	Delay start: 0 = Do not delay inter- nal master cycles after an inquire cycle 1 = Delay inter- nal master cycles by 1 PCICLK after inquire cycle
SYSCFG 12h			Refresh Co	ntrol Register			Default = 00h
REFRESH# pulse source: 0 = 82C700 or ISA master is source of REFRESH# input 1 = 32KHz clock Not supported.	Sync SRAM, linefill cache write timing: 0 = Normal 1 = Delay 1 CPUCLK	Suspend mode refresh: 00 = From CPUCLK state machine 01 = Self-refresh based on 32KHz only 10 = Normal refresh based on 32KHz only 11 = Reserved		Slow refresh: Refresh on: 00 = Every REFRESH#/32KHz falling edge 01 = Alternate REFRESH#/32KHz falling edge 10 = One in four REFRESH#/ 32KHz falling edge 11 = Every REFRESH#/32KHz toggle		LA[23:17] enable from 8Fh during refresh: 0 = Disable 1 = Enable	MP[7:4] output enable during PCI master write: 0 = Disable (from CPU address) 1 = Enable Not supported.
SYSCFG 13h			Memory Decode	Control Register	· 1		Default = 00h
Reserved	Full decode 000 = 0Kx36 001 = 256Kx36 (010 = 512Kx36 (011 = 1Mx36 (8M	2MB) 101 = 4 4MB) 110 = 8	1 (RAS1#): Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)	SMRAM: 0 = Disable 1 = Enable See SYSCFG 14h[3]	Full decode 000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (4 011 = 1Mx36 (8M	2MB) $101 = 44MB$) $110 = 8$	0 (RAS0#): 2Mx36 (16MB) 4Mx36 (32MB) 8Mx36 (64MB) 6Mx36 (128MB)

7	6	5	4	3	2	1	0
SYSCFG 14h			Memory Decode	Control Register	2		Default = 00h
Data buffer control during configuration cycles: 0 = Normal 1 = Generate internal HDOE# signal Must = 1 for EDO timing.	Full decode for logical Bank 3 (RAS3#): 000 = 0Kx36			SMRAM control: Inactive SMIACT#: 0 = Disable SMRAM 1 = Enable SMRAM(1) Active SMIACT#: 0 = Enable SMRAM for both Code and Data(1) 1 = Enable SMRAM for Code only(1)	Full decode 000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (4 011 = 1Mx36 (8N	2MB) 101 = 4 4MB) 110 = 8	2 (RAS2#): Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)
(1) If SYSCFG 1	ਤਸਤ੍ਰਿ is set.						
SYSCFG 15h			פרו הייהו ה	ntral Pagister 4			Default 001
		T	-	ntrol Register 1			Default = 00h
write IRD\ 00 = 3 PCICL 01 = 2 PCICL 10 = 1 PCICL	naster to PCI memory slave write IRDY# control: = 3 PCICLKs after data = 2 PCICLKs after data = 1 PCICLK after data = 0 PCICLK after data = 0 PCICLK after data = 1 PCICLK after data		oursting control: no bursting ,, no bursting h conservative	Selects the retry is a one of the selects of the retry is a one of the selects of	ttempted. CICLKs CICLKs CICLKs		PCI FRAME# generation control: 0 = Conserva- tive mode in CPU pipelined cycle 1 = Aggressive mode
SYSCFG 16h			Dirty/Tag RAM	Control Register	•		Default = A0h
This bit along with bit 5 and PCICLK3 strap define DIRTY. CMD# as PCICLK3 on the CMD# pin, and CACS# or DIRTY options on the CACS# pin.(11)	Reserved	Tag RAM size selection: 0 = 8-bit 1 = 7-bit (Default) Selects CACS# for 7-bit and DIRTY for 8-bit tag ⁽¹⁾	Single write hit leadoff cycle in a combined Dirty/Tag implementation 0 = 5 cycles 1 = 4 cycles	Pre-snoop control: 0 = Pre-snoop for starting address 0 only 1 = Pre-snoop for all addresses except those on the line boundary	Synchronization between PCICLK and CPUCLK: 0 = PCICLK async to CPUCLK 1 = PCICLK sync to CPUCLK (skew not to exceed -2ns to 15ns)	Reserved	Internal HDOE# timing control: 0 = Negated normally 1 = Negated one clock before the cycle fin- ishes
(1) ROMCS#: Bits 7 & 5 00 01 10 11	KBDCS# strappe CACS# CACS# CACS# DIRTY CACS#	<u>#Pin </u>	CMD# Pin DIRTY DIRTY CMD# CMD#	(1) ROMCS#: Bits 7 & 5 00 01 10 11	KBDCS# strappe CACS# DIRTY CACS# DIRTY CACS#	<u>#Pin </u>	CMD#Pin PCICLK3 PCICLK3 PCICLK3 PCICLK3

Page 266 912-2000-015

Table 5-5	SYSCFG 00h-2Fh	(cont.)
-----------	----------------	---------

7	6	5	4	3	2	1	0
SYSCFG 17h			PCI Cycle Co	ntrol Register 2			Default = 00h
Reserved	Generate NA# for PCI slave access in async PCICLK mode: 0 = No 1 = Yes	Two banks of sync SRAM are installed: 0 = Disable 1 = Enable Not supported.	Rese	erved	Pipelining during byte merge: 0 = Disable 1 = Enable	Sync SRAM type (if SYSCFG 11h[3] = 1): 0 = Standard 1 = Pipelined	Burst type: 0 = Intel burst protocol 1 = Cyrix linear burst protocol
SYSCFG 18h			Interface Co	ntrol Register			Default = 00h
Reserved	Drive strength on RAS lines: 0 = 16mA 1 = 4mA	CAS lines voltage selection: 0 = 5.0V 1 = 3.3V	Drive strength on memory address lines and write enable line: 0 = 4mA 1 = 16mA		Rese	erved	
SYSCFG 18h - F	S ACPI Version		Interface Co	ntrol Register			Default = 00h
Drive strength on SDRAS and SDCAS lines: 0 = 16mA 1 = 4mA	Drive strength on RAS lines: 0 = 16mA 1 = 4mA	CAS lines voltage selection: 0 = 5.0V 1 = 3.3V	Drive strength on memory address lines: 0 = 4mA 1 = 16mA	Drive strength on write enable line: 0 = 16mA 1 = 20mA	Reserved	Reserved	Test bit: 0 = Default method 1 = No latch for TAG. use as internal test mode. For test only, do not use, Write to 0.
					-		D (1: 00)
SYSCFG 19h			-	Control Register	3		Default = 00h
Pin functionality: 0 = GWE# 1 = RAS5#		2MB) 101 = 4 4MB) 110 = 8		Bank 4 (RAS4#): 0 = Disable 1 = Enable	Full decode 000 = 0Kx36 001 = 256Kx36 (3 010 = 512Kx36 (4 011 = 1Mx36 (8M	2MB) $101 = 4$ 4MB) $110 = 8$	4 (RAS4#): Mx36 (16MB) Mx36 (32MB) Mx36 (64MB) 6Mx36 (128MB)
SYSCFG 1Ah		r	Memory Shadow	Control Register	· 1		Default = 00h
SLIC: 0 = Disable 1 = Enable		ensured for bus g every 15µs of peration: ⁽¹⁾ th guarantee ee	C8000h- DFFFFFh shadowing granularity: 0 = 16KB 1 = 8KB	Read and wi	rite control of th for shadowing 1Ah[4] = 1: PCI bus DRAM/write to PCI/write to	CA000h-CBFFF	DRAM/write to

7	6	5	4	3	2	1	0				
SYSCFG 1Bh	YSCFG 1Bh Memory Shadow Control Register 2										
Read and write control of DE000h-DFFFFh for shadowing if SYSCFG 1Ah[4] = 1:		Read and write control of DA000h-DBFFFh for shadowing if SYSCFG 1Ah[4] = 1:		Read and write control of D6000h-D7FFFh for shadowing if SYSCFG 1Ah[4] = 1:		Read and write control of D2000h-D3FFFh for shadowing if SYSCFG 1Ah[4] = 1:					
00 = Read/write I	PCI bus	00 = Read/write I	PCI bus	00 = Read/write I	PCI bus	00 = Read/write	PCI bus				
01 = Read from [PCI	01 = Read from DRAM/write to 01 = Read from DRAM/write to		01 = Read from [PCI	DRAM/write to	01 = Read from I PCI	DRAM/write to					
10 = Read from PCI/write to DRAM		10 = Read from PCI/write to DRAM		10 = Read from PCI/write to DRAM		10 = Read from PCI/write to DRAM					
11 = Read/write [DRAM	11 = Read/write [e DRAM 11 = Read/write Di		DRAM	RAM 11 = Read/write [
SYSCFG 1Ch			EDO DRAM C	ontrol Register			Default = 00h				
Bank 5: 0 = FPM DRAM 1 = EDO DRAM	Bank 4: 0 = FPM DRAM 1 = EDO DRAM		Bank 2: 0 = FPM DRAM 1 = EDO DRAM	Bank 1: 0 = FPM DRAM 1 = EDO DRAM	Bank 0: 0 = FPM DRAM 1 = EDO DRAM	82C700 operating at a frequency of 50MHz:(1) 0 = No 1 = Yes Also see SYSCFG 1Dh[7].	CAS pulse width during DRAM accesses: 0 = CAS pulse width determined by SYSCFG 01h[3] 1 = CAS pulse width is 1 CPUCLK ⁽²⁾				

- (1) Bit 1 can be set by the BIOS when FireStar is operating at <= 50MHz. The setting of this bit can improve DRAM access times by allowing X-2-2-2 burst to DRAM even if the user is not using EDO DRAMs, but uses 60ns fast page mode DRAM instead.
- (2) The width of the pulse is one CPUCLK for read accesses to banks that are populated with EDO DRAMs (selected by bits [7:2]), resulting in X-2-2-2 burst to EDO DRAM at 50/60/66MHz. SYSCFG 14h[7] and PCIDV0 44h[0] must be set in prior to setting this bit. X-2-2-2 burst cycles enabled by this bit apply only during CPU read bursts to EDO DRAM banks that are enabled in SYSCFG 1Ch[7:2].

SYSCFG 1Dh			Miscellaneous (Control Register	3		Default = 00h
Generate internal HDOE# signal one-half clock earlier during CPU reads from DRAM: 0 = Disable 1 = Enable Only for 50MHz with X-2-2-2 operation.	When set (to 1). address latching in DRAM module will take place on the 3rd clock after ADS# if fast write posting is enabled through SYSCFG 0Ch[6] and CPU-to-DRAM buffer is not enabled. Not supported.	DWE# timing selection: ⁽¹⁾ 0 = Normal 1 = Removed 1 CPUCLK earlier	DRAM read leadoff cycle: 0 = Normal 1 = Reduced by 1 CPUCLK	DMA accesses from system memory: 0 = Enable 1 = Disable	When set (to 1) PEN becomes MPERR# input. Not supported.	Accesses to B0000h- BFFFFh during SMM mode: 0 = Accesses go to main memory 1 = Accesses go to PCI bus	Accesses to A0000h- AFFFh during SMM mode: 0 = Accesses go to main memory 1 = Accesses go to PCI bus
(1) When using a	a buffered DWE# :	solution and the D	RAM load is subs	tantial, bit 5 may h	nave to be set if the	e system begins to	o malfunction.

Page 268 912-2000-015

Table 5-5 SYSCFG 00h-2Fh (cont.)

7	6	5	4	3	2	1	0	
SYSCFG 1Eh Control Register								
PCI master read cycle: 0 = Wait for IRDY# to be asserted before asserting TRDY# 1 = Generate TRDY# without checking for the status of IRDY#	GUI block FRAME# one CLK earlier: 0 = Disable 1 = Enable (UMA feature - not supported)	Retry PCI pre- snoop HITM# cycle: 0 = Disable 1 = Enable	BOFF# generation if the PCI retry cycle is in 80000h-FFFFFh range: 0 = Not generated 1 = Generated Note: Bit 3 must = 1, otherwise the setting of this bit has no effect.	Deadlock situation:(1) 0 = No way to avert dead- lock situa- tion if write posting buffer on the PCI-to- PCI bridge has been enabled 1 = BOFF# is asserted to the CPU if deadlock situation occurs	Must be set to 1 to correct glitch on DWE# out- put pin. This bit works in conjunction with SYSCFG 20h[7].	When set to 1, PCI bursting will be disabled if BE[7:4]# and/or BE[3:0]# are not all 0.	Reserved	

(1) In a situation where there is a PCI-to-PCI bridge in a system and that bridge supports write posting, the following deadlock condition can occur. The bridge posts data from a master on the secondary PCI bus into its FIFO. If at the same time the 82C700 is accessing the bridge as a target, then the bridge will tell the 82C700 to retry its request after it has serviced out its FIFO. This will result in a deadlock situation. Bit 3 needs to be set to 1 if an OPTi 82C824 or 82C814 bridge, or a DEC 21050 PCI-to-PCI bridge (or a similar chip) is used.

SYSCFG 1Fh		EDO Timing C	ontrol Register			Default = 00h
0 = Normal 1 = Generate conflict during EDO detection (bit 6 set) if necessary	NA# generation for burst DRAM accesses: 0 = Aggressive (X-2-2-2- 2-2-2 if SYSCFG 08h[2] = 1) 1 = Controlled by SYSCFG 08h[2] Also see SYSCFG 11h[4]	DRAM read cycle leadoff reduced by 1 clock to sup- port 5-2-2-2 at 50MHz: 0 = No (normal) 1 = Yes	Reserved	0 = Async SRAM use 8 CS# and one WE#. 1 = Async SRAM use one CS# and 8 WE#. swap CS# and ECAWE# in this mode. This is only good for single bank cache. Also ECA4 and OCA4 are swapped. Not supported.	PCI write triggering: 0 = Normal 1 = Default Method	OD0000- ODFFFH is cacheable in L1 and L2:(1) O = No 1 = Yes

⁽¹⁾ Before turning on bit 0, 0D0000-0DFFFFh needs to be readable/writable and shadowed. When cached into L1, it will be in writeback mode if SYSCFG 08h[1] = 1. There is no write protection in this region if bit 0 is set.

7	6	-2FII (COIIL.)	4	3	2	4	0
7	6	5				1	0
SYSCFG 20h			DRAM Burst C	Control Register			Default = 00h
Must be set to 1 to correct glitch on DWE# output pin. This bit works in conjunction with SYSCFG 1Eh[2].	DRAM post write during HITM# cycle during PCI mas- ter access: 0 = Disable 1 = Enable	0 = IRDY# inactive for > 3 clocks 1 = Lockup may occur Must be set to 0 to correct lockup if a master IRDY# is not asserted within 3 CLKs after FRAME#.	PCI master parity: 0 = Disable 1 = Enable		3-3-3 2-2-2		3-3-3 2-2-2
SYSCFG 21h			PCI Concurrence	y Control Registe	er		Default = 01h
Concurrency timer: 0 = Conserva- tive 1 = Aggressive	invalid cycle 1X = PCI master concurrence	ency on PCI CPU/L2 I] = 1, then: and CPU/L2 e for PCI write	Concurrency on PCI master- PCI slave, and CPU/L2/DRAM: 0 = No 1 = Yes	0 = Normal Tag write 1 = If bit 1 is set, always write invalid Tag during linefill	0 = If Tag = 11011111b => invalid combination 1 = If cache size = 256K, Tag = 0000 1100b => invalid combination (C-F0000h). If cache size > 256K, Tag = 101111111b => invalid combination Valid only when bit 1 = 1.	L2 cache write mode during master cycle: 0 = Write- through 1 = Writeback	0 = HOLD/ HLDA protocol 1 = BOFF#/ AHOLD protocol (Default) Must be set to 1. HOLD/HLDA protocol not supported on FireStar.
SYSCFG 22h			Inquire Cycle (Control Register			Default = 00h
HLDA inactive: 0 = Yes 1 = No Must be set to 0. HOLD/HLDA protocol not supported on FireStar.	Reserved	Must be set to 0 to correct glitch on (internal) HRQ signal.	HRQ is sync to PCICLK: 0 = No 1 = Yes Must = 1 for DDMA opera- tion	0 = No write allocation 1 = CPU single write, L2 miss cache allocation	00 = Normal for i 01 = 1 CPUCLK 10 = 1 CPUCLK	. ,	Inquire cycle to PCI clock syn- chronization: 0 = Use rising edge only (old mode) 1 = Use rising and falling edges

Page 270 912-2000-015

Table 5-5	SYSCFG 00h-2Fh ((cont.)
-----------	------------------	---------

7	6	5	4	3	2	1	0
SYSCFG 23h			Pre-Snoop C	ontrol Register			Default = 00h
Generate internal BREAK signal during master accessing of local memory cycle:(1) 0 = Default Mode 1 = New Mode	0 = Bank 0 is the first bank 1 = Bank 0 becomes the last bank and Bank 1 is the first bank Purpose of this bit is to give system a choice when UMA is supported. (UMA feature - not supported)	Pre-snoop for PCI X-1-1-1 write invalidate: 0 = Disable 1 = Enable	Pre-snoop for PCI X-1-1-1 read multiple and read line: 0 = Disable 1 = Enable	Half clock shift of cache hit latching when fast NA is enabled: 0 = Disable 1 = Enable	Fix a glitch on GUIP: 0 = No glitch removal 1 = Remove glitch on GUIP signal (UMA feature - not supported)	0 = Normal 1 = MREQ# block UMA feature - not supported)	Reserved
	onditions: Sync SF						
SYSCFG 24h		Asy	mmetric DRAM (Configuration Re	Default = 00h		
00 = Sym DR. 01 = Asym DF 10 = Asym DF	RAM - x8 type	Logical Bank 00 = Sym DR/ 01 = Asym DF 10 = Asym DF 11= Asym DR	RAM - x8 type RAM - x9 type	00 = Sym DR. 01 = Asym DF 10 = Asym DF	RAM - x8 type	Logical Bank 00 = Sym DR, 01 = Asym DF 10 = Asym DF 11= Asym DR	RAM - x8 type RAM - x9 type
SYSCFG 25h			GIII Memory I	ocation Register			Default = 00h
	memory location:	A[31:27] <u>(UMA fe</u>			UMA size: 0 = Decided by SYSCFG 26h[5:4] 1 = 0.5MB if SYSCFG 26h[5:4] = 00 (UMA feature -	Reserved	Split buffer present: 0 = No 1 = Yes UMA feature - not supported)

7	6	5	4	3	2	1	0
SYSCFG 26h			UMA Contr	ol Register 1			Default = 00h
ISA master to DRAM cycle CAS width: 0 = Controlled by ISA R/W command pulse width 1 = 2 PCICLKs This bit is effec- tive only when SYSCFG 0Eh[6] = 1	ISA SA address latch: 0 = SA latch is always transparent (pass- through) 1 = SA latch is on for retry only. (When first CPU/ISA cycle is retried, SA address will be latched.)	GUI men 00 = 1M 01 = 2M 10 = 3M 11= 4M For 0.5MB size, 300 and SYSCFG (UMA feature - n	MB MB B set these bits to 25h[2] = 1.	5-2-2-2 EDO DRAM read tim- ing at 66MHz in a cacheless system: 0 = Disable 1 = Enable	00 = Normal 01 = For low prio 82C700 will more CPUC 10 = Reserved 11 = GUI is alway (UMA feature - no	wait for two LKs vs at high priority	UMA support: 0 = Disable 1 = Enable (UMA feature - not supported)
SYSCFG 27h			Miscellaneous C	Control Register	4		Default = 00h
Master to EDO DRAM read cycle controlled by DWE#: 0 = Disable 1 = Enable	Dynamic cache write hit lead- off 3 clock: 0 = Disable 1 = Enable, only valid for 4-X-X-X write hit	PCI master write line invalid cycle HITM# or L2 dirty no stopping: 0 = Disable 1 = Enable	Generate AHOLD at 2nd T2 on CPU single write hit not Dirty cycle: 0 = Disable 1 = Enable	Fast NA# with L2 cache: 0 = Disable 1 = Enable	Non-ISA refresh counter: 000 = Disable, use external refresh pin 001 = Reserved 010 = Reserved 100 = 66MHz external CPU clock 101 = 60MHz external CPU clock 110 = 50MHz external CPU clock 111 = 40MHz external CPU clock		al refresh pin <u>J clock</u> J clock J clock J clock
SYSCFG 28h			SDRAM Con	trol Register 1			Default = 00h
Delay CS#: 0 = Disable 1 = Enable	001 = 1 010 = 2 011 = 3	DRAM CAS# laten		Write-through: 0 = Sequential 1 = Interleaved	$\frac{000 = 1}{010 = 4}$	AM burst length co	
SYSCFG 29h			SDRAM Con	trol Register 2			Default = 00h
Pipeline read: 0 = 7-1-1-1- 5-1-1-1-1 1 = 7-1-1-1 2-1-1-1	2N rule: 0 = Disable 1 = Enable	tRP t 00 = 2 CLK 4 01 = 4 CLK 5 10 = 3 CLK 6	control: RAS _ tMRS CLK 3 CLK CLK 3 CLK CLK 2 CLK CLK Rsvd time to activate e to precharge time	Bank 3 SDRAM: 0 = Disable 1 = Enable	Bank 2 SDRAM: 0 = Disable 1 = Enable	Bank 1 SDRAM: 0 = Disable 1 = Enable	Bank 0 SDRAM: 0 = Disable 1 = Enable

Page 272 912-2000-015

7	6	5	4	3	2	1	0
SYSCFG 2Ah			PCI-to-DRAM C	ontrol Register 1			Default = 00h
Back-to-back PCI cycle control: 0 = Enable PCI master cycle to be pending 1 = All PCI mas- ter cycles will be retried if the previous cycle doesn't finish Not supported.	master read cyc request 00 = FP mode, g bus to GUI 01 = Select only EDO time-o current banl 1X = Selects eith SDRAM, or	ASAP either SDRAM or ut depending on information er FP mode, EDO depending ank information	PCI TRDY# wait state control with PCI-to-DRAM deep buffer: 0 = 0WS (X-1-1-1) 1 = 1WS (X-2-2-2)	Write burst with PCI-to-DRAM deep buffer: 0 = Disable 1 = Enable	Read burst with PCI-to-DRAM deep buffer: 0 = Disable 1 = Enable	PCI-to-DRAM deep buffer size: 0 = Determined by bit 0 1 = 32 dword, overrides bit 0 Not supported.	PCI-to-DRAM deep buffer size: 0 = 16 dword 1 = 24 dword

SYSCFG 2Bh

SDRAM time-out count during a GUI request:

EDO time-out count during a GUI request:

The register value plus 9 is the number of CPUCLKs delaying the GUI request to stop the DRAM controller.

The register value plus 6 is the number of CPUCLKs delaying the GUI request to stop the DRAM controller.

(UMA feature - not supported) (UMA feature - not supported)

PCI-to-DRAM Control Register 2

SYSCFG 2Ch CPU-to-DRAM Buffer Control Register

Default = 00h

Default = 00h

0.00.020		J	i o to bitAiii bai	ici common nega	ste.		Belaun = 0011
CPU-to-PCI	This bit needs	When set (to 1)	CPU-to-PCI	Enable internal	BOFF# asser-	Data merging	Allow data
read and CPU-	<u>SYSCFG</u>	along with CPU-	write and CPU-	LMEM# during	tion during	when CPU	collection while
to-DRAM write	2Ch[5] to be	to-DRAM buffer	to-DRAM read	special cycles:	DRAM read	owns DRAM	CPU-to-DRAM
concurrency:	enabled. When	and PBSRAM,	concurrency:	0 = No	cycles:	bus:	FIFO is
0 = Disable	set (to 1), the	the DRAM con-	0 = Disable	1 = Yes	0 = Disable	0 = Possible	flushing:
1 = Enable	cache write to	troller will first	1 = Enable		1 = Enable	only when	0 = Disable ⁽²⁾
	CPU-to-DRAM	supply the data				GUI owns	1 = Enable
	<u>buffer becomes</u>	to the CPU				DRAM bus	
	more aggre-	before writing				(UMA fea-	
	sive.Will save	the previous				ture - not	
	approximately	data back to				supported)	
	3 clocks over	DRAM during a				1 = Always	
	the previous	cache miss dirty				possible	
	method.	cycle.(1)				possible	
	Not supported.						

(1) Bit 5's function needs the CPU-to-DRAM buffer to be enabled. DRAM processing for the read will start concurrently while data from cache will be written to the CPU-to-DRAM buffer.

(2) BOFF# is generated for the next DRAM write cycle as long as there is data in the FIFO.

SYSCFG 2Dh		Miscellaneous Control Register 5	Default = 00h
Split buffer concurrency: 0 = Disable 1 = Enable ⁽¹⁾	Predictive reading: 0 = Disable 1 = Enable	Bankwise selection for 5-X-X-X at 66MHz or 4-X-X-X at 50MHz DRAM read cy 0 = Default setting 1 = 5-X-X-X/4-X-X-X	cle:

(1) Even if the CPU-to-DRAM buffer is not empty, a read/write to a non-shared memory space can continue when the GUI owns the memory bus. (UMA feature - not supported)

Preliminary **82C700**

Table 5-5 SYSCFG 00h-2Fh (cont.)

7	6	5	4	3	2	1	0	
SYSCFG 2Eh		UMA Control Register 2						
Allow SDRAM self-refresh in Suspend mode: 0 = Disable (SDRAM engages auto- refresh mode) 1 = Enable (need to enable SDRAM self-refresh if SYSCFG 12h[5:4] = 01 or 10)	Allow RFSH# signal from IPC to connect to DRAM controller: 0 = Disable 1 = Enable	Allow SDRAM on RAS4#: 0 = Disable 1 = Enable Not supported.	0 = Extra half. clock CPU hold time for pipeline cycle (Default) 1 = No hold time for pipeline cycle	CPU-to-PCI FIFO control module: 0 = Disable 1 = Enable	Number of address posting: 0 = 6 level 1 = 3 Level	PCI master HITM# cycle if GUI high priority request jumps in before first BRDY#: 0 = Retry all PCI cycles 1 = Retry only PCI master read (UMA feature - not supported)	PCI master request retries during GUI cycles: 0 = All PCI master requests retried 1 = PCI master read retried, write accepted (UMA feature - not supported)	

Page 274 912-2000-015 Revision: 1.0

Table 5-5	SYSCFG 00h-2Fh ((cont.)
-----------	------------------	---------

7	6	5	4	3	2	1	0
SYSCFG 2Fh			UMA Contr	ol Register 3			Default = 00h
Column address to CAS delay for page miss cycles: 0 = Default 1 = 1 CLK	See Below	0 = Only at Idle & Run state GUI will be granted even though it is a non- share bank cycle. 1 = GUI will be granted immedi- ately when it is a non- share bank cycle (UMA feature - not supported)	See	Below	000 = Burst refre 001 = Always state 010 = Always state up to 3 011 = Always state up to 7 100 = Burst refrect 101 = Dynamic state 110 = Dynamic state 111 = Dynamic state Note: This feature	art with Bank 0, no art with Bank 0, re art with Bank 0, re	e refresh ahead fresh ahead fresh ahead efresh ahead esh ahead up to 3 esh ahead up to 7 e enabled if
00 00 00 10 10	4, and 3: Burst m 00 = Mode 0, RWI 01 = Mode 1, RWI 10 = BLEN = 3 11 = BLEN = 4 00 = Mode 0, RWI 01 = Mode 2, RWI 10 = BLEN = 2 11 = BLEN = 3	M = 5, BLEN = 2 M = 4	lection	BLEN: Minimum Mode 0: Refresh Refresh burst is p GUI request is podrops below RW refresh continues 3/7 refreshes. Mode 1: Refresh Refresh burst is p drops below RW or equal to the B refresh continues 3/7 refreshes. Mode 2: Refresh Refresh burst is p GUI request is podrops GUI request is perfresh cycle per request is pendir below RWM and equal to the BLE	equest water mark number of refresh prequest is general predictions. Refresh but if CPU/PCI request is general predictions. Refresh but if count is zero in request is general predictions. Refresh but if count is greater in general predictions. Refresh but if in umber of refresh in umber of refresh in the production of the production of the prediction of the predictio	n cycles in a burst ated at reaching/or end of current cycurst is preempted at the ated at reaching/or end of current cycurst is preempted, refresh cycle performed at the ated at reaching/or end of current cycurst is preempted, or equal to the BL preempted, once a cycle performed is pending. Otherw	cossing RWM. cle, if high priority conce the count therwise the tes ahead up to cossing RWM. cle, if high priority conce the count commed is greater Cotherwise the tes ahead up to cossing RWM. cle, if high priority conce number of EN, if CPU the count drops is greater or rise the refresh

Table 5-6 SYSCFG 30h-FFh (Power Management)

7	6	5	4	3	2	1	0
SYSCFG 30h-37	<u>'</u> 'h		Res	erved			Default = 00h
SYSCFG 38h			NMI Trap Ena	ble Register 1			Default = 00h
PMI#7 NMI:	PMI#6 NMI:	PMI#5 NMI:	PMI#4 NMI:	PMI#3 NMI:	PMI#2 NMI:	PMI#1 NMI:	PMI#0 NMI:
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
SYSCFG 39h	NMI Trap Enable Register 2						
PMI#15 NMI:	PMI#14 NMI:	PMI#13 NMI:	PMI#12 NMI:	PMI#11 NMI:	PMI#10 NMI:	PMI#9 NMI:	PMI#8 NMI:
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
SYSCFG 3Ah			NMI Trap Ena	ıble Register 3			Default = 00h
PMI#23 NMI:	PMI#22 NMI:	PMI#21 NMI:	PMI#20 NMI:	PMI#19 NMI:	PMI#18 NMI:	PMI#17 NMI:	PMI#16 NMI:
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
SYSCFG 3Bh			NMI Trap Ena	ble Register 4			Default = 00h
PMI#31 NMI:	PMI#30 NMI:	PMI#29 NMI:	PMI#28 NMI:	PMI#27 NMI:	PMI#26 NMI:	PMI#25 NMI:	PMI#24 NMI:
0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
SYSCFG 3Ch			NMI Trap Ena	ble Register 5			Default = 00h
Rese	erved	PMI#37 NMI:	PMI#36 NMI:	PMI#35 NMI:	PMI#34 NMI:	PMI#33 NMI:	PMI#32 NMI:
		0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
		1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
SYSCFG 3Dh-3F	- Th		Res	erved			Default = 00h
SYSCFG 40h			PMU Contr	ol Register 1			Default = 00h
Test bit for	Global timer	LLOWBAT	LOWBAT	Reserved	EPMI1#	EPMIO#	RSMRST
counters using 32KHz:	divide:	polarity:	polarity:		polarity:	polarity:	select:
0 = Test Disable	0 = ÷1 1 = ÷4	0 = Active high 1 = Active low	0 = Active high 1 = Active low		0 = Active high 1 = Active low	0 = Active high 1 = Active low	0 = Disable 1 = Enable
1 = Test Enable	' 	1 = Active low	1 = Active low		1 = Active low	1 = Active low	Allows
For test only, do							RESET# and
not use.							RSTDRV to be
							generated in
							Resume.

Page 276 912-2000-015

Table 5-6 SYSCFG 30h-FFh (Por	wer Management) (cont.)
-------------------------------	-------------------------

7	6	5	4	3	2	1	0
SYSCFG 41h			DOZE_TIM	ER Register			Default = 00h
DOZE_0 time-out select: 000 = 2ms 001 = 4ms 010 = 8ms 011 = 32ms 100 = 128ms 101 = 512ms 110 = 2s 111 = 8s Time-out generates PMI#27.		Doze mode STPCLK# modulation (STPCLK# modulated by BCLK defined in SYSCFG E6h[7:6]): $000 = \text{No Modulation (STPCLK# = 1)} \\ 001 = \text{STPCLK# } t_{hi} = 0.75 * 16 \text{ BCLKs} \\ 010 = \text{STPCLK# } t_{hi} = 0.5 * 16 \text{ BCLKs} \\ 011 = \text{STPCLK# } t_{hi} = 0.25 * 16 \text{ BCLKs} \\ 100 = \text{STPCLK# } t_{hi} = 0.125 * 16 \text{ BCLKs} \\ 101 = \text{STPCLK# } t_{hi} = 0.0625 * 16 \text{ BCLKs} \\ 101 = \text{STPCLK# } t_{hi} = 0.0625 * 16 \text{ BCLKs} \\ 110 = \text{STPCLK# } t_{hi} = 0.03125 * 32 \text{ BCLKs} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKS} \\ 111 = \text{STPCLK# } t_{hi} = 0.0156$		ACCESS events reset Doze mode: 0 = Disable 1 = Enable	Doze control select: 0 = Hardware 1 = Software		
SYSCFG 42h if	AEh[7] = 0		Clock Source	ce Register 1			Default = 00h
			ource for TIMER	Clock so DSK_	ource for TIMER		ource for TIMER
SYSCFG 42h if	<u> AEh[7] = 1</u>		Clock Sourc	e Register 1A			Default = 00h
	ource for TIMER			Rese	erved		
SYSCFG 43h			PMU Contro	ol Register 2			Default = 00h
LCD_ACCESS includes I/O range 3B0h- 3DFh: 0 = Yes 1 = No	LCD_ACCESS includes mem- ory A0000- BFFFFh: 0 = Yes 1 = No	LOWBAT pin 00 = 32s 01 = 64s A PMI is generat LOWBAT is sam			Rese	erved	
SYSCFG 44h Time count by	rte for LCD_TIME	R: Monitors LCD_/	LCD_TIME ACCESS. Time-ou	ER Register t generates PMI#	8.		Default = 00h
SYSCFG 45h Time count by	rte for DSK_TIME	R: Monitors DSK_	DSK_TIME ACCESS. Time-ou	ER Register ut generates PMI#	9.		Default = 00h
SYSCFG 46h Time count by	rte for KBD_TIME	R: Monitors KBD_	KBD_TIME ACCESS. Time-ou	E R Register ut generates PMI#	10.		Default = 00h
SYSCFG 47h if Time count by		ER: Monitors GNF	GNR1_TIM R1_ACCESS. Time	ER Register e-out generates Pl	VII#11.		Default = 00h
SYSCFG 47h if A		ER: Monitors GNF	GNR5_TIM R5_ACCESS. Time	ER Register e-out generates Pl	MI#11.		Default = 00h
SYSCFG 48h if GNR1_ACCE	AEh[7] = 0 SS base address:	A[8:1] (I/O) or A[2		ddress Register			Default = 00h
SYSCFG 48h if	AEh[7] = 1 R base address: A	_	GNR5_Timer Base	e Address Regis	<u>ler</u>		Default = 00h

7	6	5	4	3	2	1	0
SYSCFG 49h_if_/	<u> </u>		GNR1 Con	rol Register			Default = 00h
GNR1 base	Write	Read	GNF	R1 mask bits for a	ddress A[5:1] (I/O	or A[19:15] mem	ory:
address:	decode:	decode:			t the correspondin	•	48h[4:0]
A9 (I/O) A23 (Memory)	0 = Disable 1 = Enable	0 = Disable 1 = Enable	is not compare	ed. This is used to	determine addres	s block size.	
SYSCFG 49h if A	•	1 - Liidalo	GNR5 Timer C	Control Register			Default = 00h
Base address:	Write	Read			base address A[5:	11 (I/O)	
A9 (I/O)	decode:	decode:		<u>anno</u>	odse dudiess Ajo.	<u>11 (#C/</u>	
<u>,</u>	<u>0 = Disable</u>	0 = Disable					
	<u>1 = Enable</u>	<u>1 = Enable</u>					
SYSCFG 4Ah		(Chip Select 0 Bas	e Address Regis	ter		Default = 00h
GPCS0# base	address: A[8:1] (I/O) or A[22:15] (N	Memory)				
SYSCFG 4Bh			Chip Select 0 (Control Register			Default = 00h
GPCS0# base	Write	Read	Chip select				
address:	decode:	decode:	active:		ular bit means tha		
A9 (I/O)	0 = Disable	0 = Disable	0 = w/Cmd		[3:0] is not compa	red. This is used t	o determine
A23 (Memory)	1 = Enable	1 = Enable	1 = Before ALE	address block	SIZE.		
SYSCFG 4Ch		C	Chip Select 1 Bas	e Address Regis	ter		Default = 00h
GPCS1# base	address: A[8:1] (I/O) or A[22:15] (N	Memory)				
SYSCFG 4Dh			Chip Select 1 (Control Register			Default = 00h
GPCS1# base	Write	Read	Chip select	GPCS1# masl	k bits for address	4[4:1] (I/O) or A[18	3:15] memory:
address:	decode:	decode:	active:	•	ular bit means tha	•	•
A9 (I/O) A23 (Memory)	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = w/Cmd 1 = before ALE	address block	[3:0] is not compa	rea. Inis is usea t	o determine
, 20 ()	1 - 2114516	2.125.5	1 - 501010 1122	444.000 2.001	5.20.		
			Idla Baland Event	Enable Register	· 1		Default = 00h
SYSCFG 4Eh <u>if /</u>	<u> AEh[7] = 0</u>	I	idle neload Evelli				
GPCS1#_	GPCS0#_	LPT_	GNR3_	GNR1_	KBD_	DSK_	LCD_
GPCS1#_ ACCESS:	GPCS0#_ ACCESS:	LPT_ ACCESS:	GNR3_ ACCESS:	ACCESS:	ACCESS:	ACCESS:	ACCESS:
GPCS1#_ ACCESS: 0 = Disable	GPCS0#_ ACCESS: 0 = Disable	LPT_ ACCESS: 0 = Disable	GNR3_ ACCESS: 0 = Disable	ACCESS: 0 = Disable	ACCESS: 0 = Disable	ACCESS: 0 = Disable	ACCESS: 0 = Disable
GPCS1#_ ACCESS: 0 = Disable 1 = Enable	GPCS0#_ ACCESS: 0 = Disable 1 = Enable	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable	ACCESS:	ACCESS: 0 = Disable 1 = Enable
GPCS1#_ ACCESS: 0 = Disable 1 = Enable	GPCS0#_ ACCESS: 0 = Disable 1 = Enable	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable dle Reload Event	ACCESS: 0 = Disable 1 = Enable Enable Register	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Default = 00
GPCS1#_ ACCESS: 0 = Disable 1 = Enable	GPCS0#_ ACCESS: 0 = Disable 1 = Enable	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable dle Reload Event GNR7:	ACCESS: 0 = Disable 1 = Enable Enable Register GNR5:	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Any PCI	ACCESS: 0 = Disable 1 = Enable
GPCS1#_ ACCESS: 0 = Disable	GPCS0#_ ACCESS: 0 = Disable 1 = Enable	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable dle Reload Event GNR7: 0 = Disable	ACCESS: 0 = Disable 1 = Enable Enable Register GNR5: 0 = Disable	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Any PCI requests:	ACCESS: 0 = Disable 1 = Enable Default = 00
GPCS1#_ ACCESS: 0 = Disable 1 = Enable	GPCS0#_ ACCESS: 0 = Disable 1 = Enable	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable dle Reload Event GNR7:	ACCESS: 0 = Disable 1 = Enable Enable Register GNR5:	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Any PCI	ACCES: 0 = Disable 1 = Enable Default = 00f
GPCS1#_ ACCESS: 0 = Disable 1 = Enable SYSCFG 4Eh if	GPCS0#_ ACCESS: 0 = Disable 1 = Enable	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable dle Reload Event GNR7: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Enable Register GNR5: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Any PCI requests: 0 = Disable	ACCESS: 0 = Disable 1 = Enable Default = 00t Reserved
GPCS1#_ ACCESS: 0 = Disable 1 = Enable SYSCFG 4Eh if /	GPCS0#_ ACCESS: 0 = Disable 1 = Enable AEh[7] = 1 Reserved	LPT_ ACCESS: 0 = Disable 1 = Enable	GNR3_ ACCESS: 0 = Disable 1 = Enable dle Reload Event GNR7: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable Enable Register GNR5: 0 = Disable 1 = Enable	ACCESS: 0 = Disable 1 = Enable 1A Reserved	ACCESS: 0 = Disable 1 = Enable Any PCI requests: 0 = Disable	ACCES: 0 = Disable 1 = Enable Default = 00f

Page 278 912-2000-015

Table 5-6	SYSCFG	30h-FFh (Power	Management)	(cont.)
-----------	--------	----------------	-------------	---------

7	6	5	4	3	2	1	0	
SYSCFG 50h			PMU Contr	ol Register 3			Default = 00h	
Software start SMI: 0 = Clear SMI 1 = Start SMI	Reserved	IRQ8 polarity: 0 = Active low 1 = Active high	14.3MHz to 82C700: 0 = Enable 1 = Disable	Write = 1 to start Doze Read = Doze status: 0 = Counting 1 = Timed out	Ready to Resume (RO): 0 = Not in Resume 1 = Ready to Resume	PMU mode (RO): 0 = Nothing pending 1 = Suspend active (clear PMI#6)	Start Suspend (WO): 1 = Enter Suspend mode	
SYSCFG 51h Beeper Control Register Default =								
Reserved Beeper co 00 = No Actio 01 = 1kHz 10 = Off 11 = 2kHz								
SYSCFG 52h General purpose storage byte: - For CISA Configuration Cycles: Data phase information, low byte								
SYSCFG 53h Scratchpad Register 2 Default = 00I General purpose storage byte. - For CISA Configuration Cycles: Data phase information, high byte								
SYSCFG 54h			Power Control	Latch Register 1			Default = 00h	
Ena	able [3:0] to write la 0 = Disable 1 = Enable	atch lines PPWR[3	3:0]:	О	Read/write data b = Latch output lov = Latch output hiç			
SYSCFG 55h			Power Control	Latch Register 2			Default = 0Fh	
Ena	able [3:0] to write la 0 = Disable 1 = Enable	atch lines PPWR[7	7:4]:	0	rite data bits for P = Latch output lov = Latch output hiç		= 1111):	
SYSCFG 56h			Res	erved			Default = 00h	
SYSCFG 57h			PMU Contr	ol Register 4			Default = 08h	
Reserved	INTRGRP generates PMI#6: 0 = Disable 1 = Enable	DSK_ACCESS includes FDD: 0 = Yes 1 = No	DSK_ACCESS includes HDD: 0 = Yes 1 = No	LCD video area includes A and B segments: 0 = Disable 1 = Enable	LCD video frame buffer area. use PCIDV0 41h[7:0] and 40h[7:6]; 0 = Disable 1 = Enable		erved	

Table 5-6 SYSCFG 30h-FFh (Power Management) (cont.)

Table 5-6	SYSCEG 30h	-FFII (Fower i	vianagement)	(COIIL.)				
7	6	5	4	3	2	1	0	
SYSCFG 58h			PMU Ever	nt Register 1			Default = 00h	
LOWBAT	PMI#3 SMI:	EPMI1# P	MI#2 SMI:	EPMI0# PMI#1 SMI:		LLOWBAT	PMI#0 SMI:	
		00 = Di:	·	00 = Di:		00 = Di		
11 = Er	able	11 = En	able	11 = En	able	11 = Er	11 = Enable	
SYSCFG 59h			PMU Ever	nt Register 2		Default = 00h		
Allow software	Reload timers	Resume INTI	RGRP PMI#6,	R_TI	MER IDLE_TIMER			
SMI:	on Resume:	Suspend PMI#7 SMI: PMI#5 SMI:				4 SMI:		
0 = Disable	0 = No	00 = Di	-	00 = Dis		00 = Di		
1 = Enable	1 = Yes	11 = Enable 11 = Enable			11 = Er	able		
SYSCFG 5Ah <u>if AEh[7] = 0</u> PMU Event Register 3 Defa						Default = 00h		
	MER PMI#11	KBD TIMI	ER PMI#10		FR PMI#9	I CD TIM	ER PMI#8	
_	R1_ACCESS PMI#15: KBD_ACCESS PMI#14:			DSK_TIMER PMI#9 DSK_ACCESS PMI#13:		I —	SS PMI#12:	
00 = Disable		00 = Disable		00 = Disable		00 = Disable	_	
01 = Positive			01 = Positive decode 10 = Positive decode			01 = Reserve	_	
10 = Positive	<u>decode. SMI</u>	10 = Positive	<u>decode. SMI</u>	10 = Positive	<u>decode, SMI</u>	<u>10 = Reserved</u> 11 = SMI		
11 = SMI		11 = SMI		11 = SMI				
SYSCFG 5Ah if	<u>AEh[7] = 1</u>		PMU Even	t Register 3A			Default = 00h	
<u>GNR5_TI</u>	IMER PMI:			Rese	<u>erved</u>			
00 = Disable								
01 = Positive decode								
10 = Positive decode. SMI 11 = SMI								
11 = 0111								
SYSCFG 5Bh <u>if</u>	AEh[7] = 0		PMU Ever	nt Register 4			Default = 00h	
Reserved	Global SMI	Rese	erved	GNR1	KBD	DSK	LCD	
	control:			Next Access	Next Access	Next Access	Next Access	
	0 = Allow			PMI#15:	PMI#14:	PMI#13:	PMI#12:	
	1 = Mask			0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	
0.400=0 =D1 14					I = Eliable	I = Chable		
SYSCFG 5Bh if			PMU Even	t Register 4A	ı		Default = 00h	
	<u>Rese</u>	erved		GNR5		Reserved		
				Next Access PMI#15:				
				0 = Disable				
				<u>1 = Enable</u>				
evecto tob		Dist	CMI Course Desi	otor 1 (Minito 4 1-	Cloor)		Default - 005	
SYSCFG 5Ch	I DALLING D			ster 1 (Write 1 to		T DIVINA	Default = 00h	
PMI#7, Suspend:	PMI#6, Resume or INTRGRP:	PMI#5, R TIMER	PMI#4, IDLE TIMER	PMI#3, LOWBAT:	PMI#2, EPMI1#:	PMI#1, EPMI0#:	PMI#0, LLOWBAT:	
0 = Not Active	0 = Not Active	time-out:	time-out:	0 = Not Active	0 = Not Active	0 = Not Active	0 = Not Active	
1 = Active	1 = Active	0 = Not Active	0 = Not Active	1 = Active	1 = Active	1 = Active	1 = Active	
		1 = Active	1 = Active					
						1		

Page 280 912-2000-015

Table 5-6	SYSCFG	30h-FFh (Power	Management)	(cont.)
-----------	--------	----------------	-------------	---------

			nanagomont,	(001101)					
7	6	5	4	3	2	1	0		
SYSCFG 5Dh if	AEh[7] = 0	PMI	SMI Source Regi	ster 2 (Write 1 to	Clear)		Default = 00h		
PMI#15, GNR1_ ACCESS: 0 = None 1 = Active	PMI#14, KBD_ACCESS: 0 = Not Active 1 = Active	PMI#13, DSK_ACCESS: 0 = Not Active 1 = Active	PMI#12, LCD_ACCESS: 0 = Not Active 1 = Active	PMI#11, GNR1_TIMER: 0 = Not Active 1 = Active	PMI#10, KBD_TIMER: 0 = Not Active 1= Active	PMI#9, DSK_TIMER: 0 = Not Active 1 = Active	PMI#8, LCD_TIMER: 0 = Not Active 1 = Active		
SYSCFG 5Dh if	AEh[7] = 1	PMI S	SMI Source Regis	ter 2A (Write 1 to	o Clear)		Default = 00h		
PMI#15, GNR5_ ACCESS: 0 = None 1 = Active		Reserved		PMI#11_ GNR5_TIMER: 0 = None 1 = Active		Reserved			
SYSCFG 5Eh			Res	erved			Default = 00h		
SYSCFG 5Fh			PMU Contr	ol Register 5			Default = 00h		
LCD_ACCESS includes ISA bus video access: 0 = Yes 1 = No	LCD_ACCESS includes local (PCI) bus video access: 0 = No 1 = Yes	RSMGRP IRQs can Resume system: 0 = No 1 = Yes	Transitions on RINGI can Resume system: 0 = No 1 = Yes	Numl	oer of RINGI trans	itions to cause Re	esume		
CVCCEC 60b	SYSCFG 60h R Timer Count Register Default = 00h								
SYSCFG 60h R_Timer Count Register Default = 00h Read R Timer original count									
	-								
SYSCFG 61h			Debound	e Register			Default = 00h		
	3		evel-controlled level-sampled s level-sampled s 5.8.2, "SUS/	PPWR0 auto- toggle in APM STPCLK mode: 0 = No PPWR0 auto-toggle 1 = Auto-toggle PPWR0 on entry & exit from APM STPCLK mode	STPCLK# signal 0 = Disable 1 = Enable	signal 00 = 120µs 0 = Disable 01 = 240µs			
SYSCFG 62h			IRQ Doze	Register 1			Default = 00h		
IRQ13 Doze reset: 0 = Disable 1 = Enable	IRQ8 Doze reset: 0 = Disable 1 = Enable	IRQ7 Doze reset: 0 = Disable 1 = Enable	IRQ12 Doze reset: 0 = Disable 1 = Enable	IRQ5 Doze reset: 0 = Disable 1 = Enable	IRQ4 Doze reset: 0 = Disable 1 = Enable	IRQ3 Doze reset: 0 = Disable 1 = Enable	IRQ0 Doze reset: 0 = Disable 1 = Enable		
SYSCFG 63h		I	dle Time-Out Sel	ect Register 1 (W	7 O)		Default = 00h		
EPMI0# Level-trig'd: 0 = Disable 1 = Enable	IRQ13: 0 = Disable 1 = Enable	IRQ8: 0 = Disable 1 = Enable	IRQ7: 0 = Disable 1 = Enable	IRQ5: 0 = Disable 1 = Enable	IRQ4: 0 = Disable 1 = Enable	IRQ3: 0 = Disable 1 = Enable	IRQ0: 0 = Disable 1 = Enable		

Table 5-6	SYSCFG 30h-FFh	(Power Management)	(cont.)
-----------	----------------	--------------------	---------

Table 5-6	01001 0 0011	1111(1011011	vianagement)	(COIIC.)				
7	6	5	4	3	2	1	0	
SYSCFG 64h			INTRGRP IRQ	Select Register 1	Select Register 1 Default = 00			
IRQ14: 0 = Disable 1 = Enable	IRQ8: 0 = Disable 1 = Enable	IRQ7: 0 = Disable 1 = Enable	IRQ6: 0 = Disable 1 = Enable	IRQ5: 0 = Disable 1 = Enable	IRQ4: 0 = Disable 1 = Enable	IRQ3: 0 = Disable 1 = Enable	IRQ1: 0 = Disable 1 = Enable	
SYSCFG 65h			Doze	Register			Default = 00h	
All interrupts to CPU reset Doze mode: 0 = Disable 1 = Enable	Reserved	EPMI0# Doze reset: 0 = Disable 1 = Enable	Recognize SMI during STPCLK#: 0 = No 1 = Yes	IRQ1 Doze reset: 0 = Disable 1 = Enable	EPMI3# Doze reset: 0 = Disable 1 = Enable	EPMI2# Doze reset: 0 = Disable 1 = Enable	EPMI1# Doze reset: 0 = Disable 1 = Enable	
SYSCFG 66h			PMU Contr	ol Register 6			Default = 00h	
Suspend-to- Normal refresh delay: 0 = None 1 = Three 32KHz CLKs Write to 1 always.	Suspend mode ATCLK frequency: 0 = Derived from PCICLK 1 = 32KHz Setting can be overridden by SYSCFG 79h[0]	Doze type: 0 = Modulate STPCLK# 1 = Keep STPCLK# asserted	Reserved	refresh 00 = Normal refre 01 = Refresh pul 10 = Refresh pul	se is 32KHz	Hot docking refresh control. 0 = Normal refresh 1= Refresh pulse is 32KHz and engage Suspend type DRAM refresh	STPGNT cycle wait option: 0 = Do not wait 1 = Wait for STPGNT cycle before negating STPCLK#	
SYSCFG 67h			PMU Contr	ol Register 7			Default = 00h	
	Rese	erved		Prevent STPCLK# generation by SYSCFG50h[3] when INTR is active: 0 = Disable 1 = Enable	Normal mode STPCLK# modulation (read return current STPCLK modulation setting only; STPCLK modulated by BCLK defined in SYSCFG E6h[7:6]			
SYSCFG 68h			Clock Sour	ce Register 2			Default = 00h	
	ource for MER		ource for TIMER	Resume recovery time: PPWR[and exit fro 0 = Disa	0] auto-toggle on entry exit from Suspend: = Disable = Enable	
SYSCFG 69h			R_TIME	R Register			Default = 00h	

- Time count byte for R_TIMER - starts to count after a non-zero write to this register.

- Unlike the other timer registers, a read from this register returns the **current** count.
- Time-out generates PMI#5.

Page 282 912-2000-015

Table 5-6 SYSCFG 30h-FFh (Por	wer Management) (cont.)
-------------------------------	-------------------------

	Table 5-6 SYSCEG 30n-FFN (Power Management) (cont.)									
7	6	5	4	3	2	1	0			
SYSCFG 6Ah			RSMGRP IF	RQ Register 1			Default = 00h			
EPMI1# Resume: 0 = Disable 1 = Enable	EPMI0# Resume: 0 = Disable 1 = Enable	IRQ8 Resume: 0 = Disable 1 = Enable	IRQ7 Resume: 0 = Disable 1 = Enable	IRQ5 Resume: 0 = Disable 1 = Enable	IRQ4 Resume: 0 = Disable 1 = Enable	IRQ3 Resume: 0 = Disable 1 = Enable	IRQ1 Resume: 0 = Disable 1 = Enable			
SYSCFG 6Bh	SCFG 6Bh Resume Source Register Default =									
DRAM Suspend mode refresh type: 0 = Slow refresh (normal) 1 = Self-refresh	PREQ# caused Resume (RO): 0 = No 1 = Yes	CLKRUN# caused Resume (RO): 0 = No 1 = Yes	Reserved: Write as read.	CISA SEL#/ATB# low caused Resume (RO): 0 = No 1 = Yes	SUSP/RSM caused Resume (RO): 0 = No 1 = Yes	RSMGRP caused Resume (RO): 0 = No 1 = Yes	RI caused Resume (RO): 0 = No 1 = Yes			
SYSCFG 6Ch			Scratchpa	d Register 3			Default = 00h			
1	SYSCFG 6Ch Scratchpad Register 3 Default = 00h General purpose storage byte - For CISA Configuration Cycles: Address phase 1 information, low byte									
SYSCFG 6Dh			Scratchpa	d Register 4			Default = 00h			
General purpose storage byte - For CISA Configuration Cycles: Address phase 1 information, high byte										
SYSCFG 6Eh Scratchpad Register 5 Default = 00h General purpose storage byte - For CISA Configuration Cycles: Address phase 2 information, low byte										
1	ose storage byte		•	d Register 6			Default = 00h			
- For CISA C	onfiguration Cycle	s: Address phase	2 information, hig	h byte						
SYSCFG 70h GNR1_ACCE	ESS base address:	A[13:6] for memo		dress Register 1 15:10] for I/O (righ	nt-aligned).		Default = 00h			
SYSCFG 71h GNR1_ACCE	SS mask bits: Ma	sk for A[13:6] for n		rol Register 1 or mask for A[15:	10] for I/O (right-a	ligned).	Default = FFh			
SYSCFG 72h			GNR1 Cont	rol Register 2			Default = 00h			
	GNR1_ACCES: 2] for memory watc	S base address: hdog or ignored fo			GNR1_ACCE 2] for memory wat	SS mask bits: chdog or mask for				
SYSCFG 73h GNR2_ACCE	SS base address:	A[13:6] for memo		dress Register 1 15:10] for I/O (righ	nt-aligned).		Default = 00h			
GNR2_ACCESS base address: A[13:6] for memory watchdog or A[15:10] for I/O (right-aligned). SYSCFG 74h GNR2_ACCESS mask bits: Mask for A[13:6] for memory watchdog or mask for A[15:10] for I/O (right-aligned).							Default = FFh			

Table 5-6	Table 5-6 SYSCFG 30h-FFh (Power Management) (cont.)									
7	6	5	4	3	2	1	0			
SYSCFG 75h			GNR2 Conti	rol Register 2			Default = 00h			
A[5:2	GNR2_ACCES: for memory watc	S base address: hdog or ignored fo	or I/O.	Mask for A[5:2	GNR2_ACCE 2] for memory wat	SS mask bits: chdog or mask for	r A[9:6] for I/O.			
SYSCFG 76h <u>if</u>	<u> AEh[7] = 0</u>		Doze Reload S	elect Register 1			Default = 0Fh			
LCD_ ACCESS:	KBD_ ACCESS:	DSK_ ACCESS:	HDU_ ACCESS:	COM1&2_ ACCESS:	LPT_ ACCESS:	GNR1_ ACCESS:	GNR2_ ACCESS:			
0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1			
SYSCFG 76h if	SYSCFG 76h if AEh[7] = 1 Doze Reload Select Register 1A Default = 03h									
Rese	erved	PREQ#: 0 = DOZE_0 1 = DOZE_1	<u>CLKRUN#:</u> 0 = DOZE_0 1 = DOZE_1	Rese	erved	<u>GNR5:</u> 0 = DOZE_0 1 = DOZE_1	<u>GNR6:</u> 0 = DOZE_0 1 = DOZE_1			
		_				_	_			
SYSCFG 77h		T		elect Register 2	.		Default = 00h			
IRQ8: 0 = DOZE_0 1 = DOZE_1	IRQ7: 0 = DOZE_0 1 = DOZE_1	IRQ6: 0 = DOZE_0 1 = DOZE_1	IRQ5: 0 = DOZE_0 1 = DOZE_1	IRQ4: 0 = DOZE_0 1 = DOZE_1	IRQ3: 0 = DOZE_0 1 = DOZE_1	IRQ1: 0 = DOZE_0 1 = DOZE_1	IRQ0: 0 = DOZE_0 1 = DOZE_1			
SYSCFG 78h			Done Belood S	alast Basistas 2			Default = 00h			
	IDO15:	IDO14:		IRQ12:	IBO11:	IBO10:				
PCI: 0 = DOZE_0 1 = DOZE_1	IRQ15: 0 = DOZE_0 1 = DOZE_1	IRQ14: 0 = DOZE_0 1 = DOZE_1	IRQ13: 0 = DOZE_0 1 = DOZE_1	0 = DOZE_0 1 = DOZE_1	IRQ11: 0 = DOZE_0 1 = DOZE_1	IRQ10: 0 = DOZE_0 1 = DOZE_1	IRQ9: 0 = DOZE_0 1 = DOZE_1			
	'	1 - 5021	- 002L_1	1 = 002E_1	= DOZE_1	= DOZE_	- DOZL_1			
	1 = 5 5 2 2 _ 1	1 1 2 0 2 2 _ 1			T = DOZE_T	T = DOZE_T				
SYSCFG 79h			PMU Contro	ol Register 8	_		Default = 00h			
SYSCFG 79h	ZE_1 time-out sel ay (Default) 1 1				PREQ# wake up Suspend: 0 = Disable 1 = Enable	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable				
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms	ZE_1 time-out sel ay (Default) 1 1 1	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No	ol Register 8 Reserved	PREQ# wake up Suspend; 0 = Disable 1 = Enable	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6])			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1.	ZE_1 time-out sel ay (Default) 1 1 1	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes ewithout generating	ol Register 8 Reserved	PREQ# wake up Suspend; 0 = Disable 1 = Enable	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6]			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah	ZE_1 time-out sel ay (Default) 1 1 1 1	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes ewithout generating	ol Register 8 Reserved g SMI to the CPU	PREQ# wake up Suspend: 0 = Disable 1 = Enable	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6])			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah	ZE_1 time-out sel ay (Default) 1 1 1 1	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes ewithout generating	ol Register 8 Reserved g SMI to the CPU	PREQ# wake up Suspend: 0 = Disable 1 = Enable	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6]			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah GNR3_ACCE SYSCFG 7Bh	ZE_1 time-out sel ay (Default) 1 1 1 1 , to let PMI#11 res	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes without generating	g SMI to the CPU dress Register 1 15:10] for I/O (righter)	PREQ# wake up Suspend: 0 = Disable 1 = Enable SYSCFG 5Ah[7:0]	CLKRUN# wake up. Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6]			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah GNR3_ACCE SYSCFG 7Bh	ZE_1 time-out sel ay (Default) 1 1 1 1 , to let PMI#11 res	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes ewithout generating GNR3 Base Ad ony watchdog or A[g SMI to the CPU dress Register 1 15:10] for I/O (righter)	PREQ# wake up Suspend: 0 = Disable 1 = Enable SYSCFG 5Ah[7:0]	CLKRUN# wake up. Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6] Default = 00h			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah GNR3_ACCE SYSCFG 7Bh	ZE_1 time-out sel ay (Default) 1 1 1 1 , to let PMI#11 res	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes without generating GNR3 Base Ad bry watchdog or A[GNR3 Control memory watchdog	g SMI to the CPU dress Register 1 15:10] for I/O (righter)	PREQ# wake up Suspend: 0 = Disable 1 = Enable sysce 5Ah[7:fat-aligned).	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6] Default = 00h			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah GNR3_ACCE SYSCFG 7Bh GNR3_ACCE SYSCFG 7Ch	ZE_1 time-out sel ay (Default) 1 1 1 1 , to let PMI#11 res SS base address:	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode A[13:6] for memorals sk for A[13:6] for r	PMU Control PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes without generating GNR3 Base Ad ory watchdog or A[GNR3 Control memory watchdog	g SMI to the CPU dress Register 1 15:10] for I/O (righter) rol Register 1 or mask for A[15:	PREQ# wake up Suspend: 0 = Disable 1 = Enable sysce 5Ah[7:fat-aligned).	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable 6] must = 11 and 3	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6] Default = 00h Default = FFh			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah GNR3_ACCE SYSCFG 7Bh GNR3_ACCE SYSCFG 7Ch	ZE_1 time-out sel ay (Default) 1 1 1 1 1 to let PMI#11 res SS base address: SS mask bits: Mas GNR3_ACCES	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode A[13:6] for memorals sk for A[13:6] for r	PMU Contro PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes ewithout generating GNR3 Base Ad ory watchdog or A[GNR3 Contro memory watchdog GNR3 Contro G	g SMI to the CPU dress Register 1 15:10] for I/O (righter) rol Register 1 or mask for A[15:	PREQ# wake up Suspend: 0 = Disable 1 = Enable sysce 5Ah[7:fat-aligned). for I/O (right-aligned).	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable 6] must = 11 and 3	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6] Default = 00h Default = FFh			
SYSCFG 79h DO 000 = No dela 001 = 1ms 010 = 4ms 011 = 16ms (1) For example, must = 1. SYSCFG 7Ah GNR3_ACCE SYSCFG 7Bh GNR3_ACCE SYSCFG 7Ch A[5:2	ZE_1 time-out sellay (Default) 1 1 1 1 1 1 1 1 1 To let PMI#11 res SS base address: SS mask bits: Mase GNR3_ACCES: I for memory watch	ect: 00 = 64ms 01 = 256ms 10 = 1s 11 = 4s et the Doze mode A[13:6] for memoralsk for A[13:6] for memoralsk for A[13:6] for memoralsk for A[13:6] for respectively.	PMU Contro PMI# event triggers exit from Doze mode if the PMI event is enabled to generate SMI:(1) 0 = No 1 = Yes ewithout generating GNR3 Base Ad ory watchdog or A[GNR3 Contro memory watchdog GNR3 Contro G	g SMI to the CPU dress Register 1 15:10] for I/O (right) rol Register 1 or mask for A[15: rol Register 2 Mask for A[5:2 dress Register 1	PREQ# wake up Suspend: 0 = Disable 1 = Enable SYSCFG 5Ah[7:0 at-aligned). GNR3_ACCE of the memory wat	CLKRUN# wake up Suspend: 0 = Disable 1 = Enable 6] must = 11 and 3	Default = 00h ATCLK during Suspend: 0 = Run 1 = Stopped (overrides SYSCFG 66h[6]) SYSCFG 5Bh[6] Default = 00h Default = FFh Default = 00h			

Page 284 912-2000-015

Table 5-6	SYSCFG 30h-FFh (Power Management) (cont.)								
7	6	5	4	3	2	1	0		
SYSCFG 7Eh				rol Register 1			Default = FFh		
GNR4_ACC	ESS mask bits: Ma	sk for A[13:6] for	memory watchdog	or mask for A[15:	:10] for I/O (right-a	ıligned).			
SYSCFG 7Fh			GNR4 Cont	rol Register 2			Default = 00h		
A[5:	GNR4_ACCES 2] for memory wate	S base address:	or I/O	Mask for AI5:	_	ESS mask bits: tchdog or mask for	r A[9:6] for I/O		
SYSCFG 80h	-1			Register for INTC			Default = 00h		
SYSCFG 81h		ICW2 Shadow Register for INTC1 Default = 00							
SYSCFG 82h		ICW2 Snadow Register for INTC1 Default ICW3 Shadow Register for INTC1 Default							
SYSCFG 83h		ICW4 Shadow Register for INTC1							
0.00.00.				gioto: ioi iii i	•		Default = 00h		
SYSCFG 84h	T	T		ess Register (RO)			Default = 00h		
Ch. 7 DMA in progress: 0 = No 1 = Possibly	Ch. 6 DMA in progress: 0 = No 1 = Possibly	Ch. 5 DMA in progress: 0 = No 1 = Possibly	DMAC2 byte pointer flip-flop. 0 = Cleared 1 = Set	Ch. 3 DMA in progress: 0 = No 1 = Possibly	Ch. 2 DMA in progress: 0 = No 1 = Possibly	Ch. 1 DMA in progress: 0 = No 1 = Possibly	Ch. 0 DMA in progress: 0 = No 1 = Possibly		
SYSCFG 85h	OCW2 Shadow Register for INTC1 Default = 00h								
SYSCFG 86h	OCW3 Shadow Register for INTC1 Default = 00h								
SYSCFG 87h	Reserved Default = 001								
0.00.00							2012411 - 0011		
SYSCFG 88h			ICW1 Shadow F	Register for INTC	2		Default = 00h		
SYSCFG 89h			ICW2 Shadow F	Register for INTC	2		Default = 00h		
SYSCFG 8Ah			ICW3 Shadow F	Register for INTC	2		Default = 00h		
SYSCFG 8Bh			ICW4 Shadow F	Register for INCT	2		Default = 00h		
SYSCFG 8Ch			Res	erved			Default = 00h		
SYSCFG 8Dh			OCW2 Shadow	Register for INTC	;2		Default = 00h		
SYSCFG 8Eh			OCW3 Shadow	Register for INTC	2		Default = 00h		
SYSCFG 8Fh			Res	erved			Default = 00h		
SYSCFG 90h		Tim	er Channel 0 Lov	v Byte Register:	A[7:0]		Default = 00h		
SYSCFG 91h			er Channel 0 High				Default = 00h		
EVECTO ANI		T	on Chancel 4 Les	u Duko Desiste	A [7.0]		Defend Ast		
SYSCFG 92h SYSCFG 93h			er Channel 1 Lover er Channel 1 High				Default = 00h Default = 00h		
01001 0 3011			- Silvinioi i ingi	, to 1.0 giote11.7	-[0.0]		20.241(= 0011		
SYSCFG 94h			er Channel 2 Lov				Default = 00h		
SYSCFG 95h		Time	er Channel 2 High	n Byte Register: /	A[15:8]		Default = 00h		

Table 5-6 SYSCFG 30h-FFh (Power Management) (co	Table 5-6	ıaqement) (cont.)	(cont.	Management'	(Power	30h-FFh	SYSCFG	Table 5-6
---	-----------	-------------------	--------	-------------	--------	---------	--------	-----------

7	6	5	4	3	2	1	0			
SYSCFG 96h		Wr	ite Counter High	Low Byte Latch	(RO)		Default = xxh			
Unused	Unused	Timer Ch. 2 read LSB toggle bit	Timer Ch. 1 read LSB toggle bit	Timer Ch. 0 read LSB toggle bit	Timer Ch. 2 write LSB toggle bit	Timer Ch. 1 write LSB toggle bit	Timer Ch. 0 write LSB toggle bit			
SYSCFG 97h	Reserved Default = 00h									
SYSCFG 98h	RTC Index Shadow Register (RO) Default = xx									
NMI enable setting	CMOS RAM Index last written									
SYSCFG 99h		Inte	errupt Request Re	egister for INCT1	(RO)		Default = xxh			
IRQ7 pending: 0 = No 1 = Yes	IRQ6 pending: 0 = No 1 = Yes	IRQ5 pending: 0 = No 1 = Yes	IRQ4 pending: 0 = No 1 = Yes	IRQ3 pending: 0 = No 1 = Yes	IRQ2 pending: 0 = No 1 = Yes	IRQ1 pending: 0 = No 1 = Yes	IRQ0 pending: 0 = No 1 = Yes			
SYSCFG 9Ah		Inte	errupt Request Re	egister for INCT2	(RO)		Default = xxh			
IRQ15 pending: 0 = No 1 = Yes	IRQ14 pending: 0 = No 1 = Yes	IRQ13 pending: 0 = No 1 = Yes	IRQ12 pending: 0 = No 1 = Yes	IRQ11 pending: 0 = No 1 = Yes	IRQ10 pending: 0 = No 1 = Yes	IRQ9 pending: 0 = No 1 = Yes	IRQ8 pending: 0 = No 1 = Yes			
SYSCFG 9Bh	3F2h + 3F7h Shadow Register Default = 00h									
Shadows 3F2h[7] "Mode Select" bit	Shadows 3F7h[1] "Disk Type" bit 1	Shadows 3F2h[5] "Drive 2 Motor" bit	Shadows 3F2h[4] "Drive 1 Motor" bit	Shadows 3F2h[3] "DMA Enable" bit	Shadows 3F2h[2] "Soft Reset" bit	Shadows 3F7h[0] "Disk Type" bit 0	Shadows 3F2h[0] "Drive Select" bit			
SYSCFG 9Ch			372h + 377h S	hadow Register			Default = 00h			
Shadows 372h[7] "Mode Select" bit	Shadows 377h[1] "Disk Type" bit 1	Shadows 372h[5] "Drive 2 Motor" bit	Shadows 372h[4] "Drive 1 Motor" bit	Shadows 372h[3] "DMA Enable" bit	Shadows 372h[2] "Soft Reset" bit	Shadows 377h[0] "Disk Type" bit 0	Shadows 372h[0] "Drive Select" bit			
SYSCFG 9Dh-91	Eh		Res	erved			Default = 00h			
SYSCFG 9Fh Port 064h Shadow Register Default = 00h Shadows I/O writes to Port 064h bits [7:0] (regardless of whether KBDCS# is inhibited). In this way, when an SMI occurs between a Port 064h write and the subsequent write to Port 060h, SMM code can access the keyboard controller as needed and then simply restore the Port 064h value just before leaving SMM.										
SYSCFG A0h			Feature Con	trol Register 1			Default = 80h			
16-bit I/O decoding: 0 = Disable 1 = Enable	Reserved Reserved									
SYSCFG A1h			Feature Con	trol Register 2			Default = 00h			
		Reserved			Emerg. over- temp sense: 0 = Disable 1 = Enable	Reserved	EPMI[1:0]# status latch: 0 = Dynamic 1 = Latched			

Page 286 912-2000-015

Table 5-6	STSCFG 30N	FFN (Power I	/lanagement)	(cont.)			
7	6	5	4	3	2	1	0
SYSCFG A2h <u>if</u>	AEh[7] = 0		IRQ Doze	Register 2			Default = 00h
PCI bus I/O access Doze reset: 0 = Disable 1 = Enable	PCI memory access Doze reset: 0 = Disable 1 = Enable	IRQ15 Doze reset: 0 = Disable 1 = Enable	IRQ14 Doze reset: 0 = Disable 1 = Enable	IRQ11 Doze reset: 0 = Disable 1 = Enable	IRQ10 Doze reset: 0 = Disable 1 = Enable	IRQ9 Doze reset: 0 = Disable 1 = Enable	IRQ6 Doze reset: 0 = Disable 1 = Enable
SYSCFG A2h if	<u>AEh[7] = 1</u>		IRQ Doze	Register 2A			Default = 00h
PREQ# Doze reset: 0 = Disable 1 = Enable	CLKRUN# Doze reset: 0 = Disable 1 = Enable			Rese	erved		
SYSCFG A3h		ļ	dle Time-Out Sel	ect Register 2 (W	(O)		Default = 00h
IRQ15: 0 = Disable 1 = Enable	IRQ14: 0 = Disable 1 = Enable	IRQ12: 0 = Disable 1 = Enable	IRQ11: 0 = Disable 1 = Enable	IRQ10: 0 = Disable 1 = Enable	IRQ9: 0 = Disable 1 = Enable	IRQ6: 0 = Disable 1 = Enable	IRQ1: 0 = Disable 1 = Enable
SYSCFG A4h			INTRGRP IRQ	Select Register 2			Default = 00h
Test Bit: Write as 0	IRQ15: 0 = Disable 1 = Enable	IRQ13: 0 = Disable 1 = Enable	IRQ12: 0 = Disable 1 = Enable	IRQ11: 0 = Disable 1 = Enable	IRQ10: 0 = Disable 1 = Enable	IRQ9: 0 = Disable 1 = Enable	IRQ0: 0 = Disable 1 = Enable
SYSCFG A5h			Thermal Manag	ement Register 1			Default = 00h
Thermal Mgmt.: 0 = Disable 1 = Enable	TEMPDET Variation - As temperature increases, frequency: 0 = Decreases 1 = Increases	clock throttlin sec 000 = No mod 001 = STPCL 010 = STPCL 110 = STPCL 101 = STPCL 101 = STPCL 110 = STPCL	K# modulation rate g rate when temper ond (overtemp) raidulation (STPCLK# $t_{hi} = 0.75 * 16$ K# $t_{hi} = 0.25 * 16$ K# $t_{hi} = 0.125 * 16$ K# $t_{hi} = 0.0625 * 16$ K# $t_{hi} = 0.0625 * 16$ K# $t_{hi} = 0.03125 * 16$ K# $t_{hi} = $	erature enters inge: # = 1) BCLKs CLKs BCLKs BCLKs 6 BCLKs 32 BCLKs	clock throttling first	K# modulation rate g rate when tempe st (high temp) rang lulation (STPCLK; K# t_{hi} = 0.75 * 16 K# t_{hi} = 0.25 * 16 K# t_{hi} = 0.125 * 16 K# t_{hi} = 0.0625 * 1 K# t_{hi} = 0.03125 * K# t_{hi} = 0.03125 * K# t_{hi} = 0.015625	erature enters of ge: # = 1) BCLKs CLKs BCLKs BCLKs BCLKs BCLKs BCLKS
Note: Once then	mal management	has been enabled	d (bit 7 = 1), none	of the thermal ma	nagement register	s can be overwritt	en.
SYSCFG A6h LOFREQ[7:0]	: Low frequency lin	nit low byte	Thermal Manag	ement Register 2	2		Default = 00h
SYSCFG A7h LOFREQ[15:8	3]: Low frequency	limit high byte	Thermal Manag	ement Register 3	3		Default = 00h
SYSCFG A8h HIFREQ[7:0]:	High frequency lir	nit low byte	Thermal Manag	ement Register 4	ļ		Default = 00h
SYSCFG A9h]: High frequency I		Thermal Manag	ement Register 5	5		Default = 00h

Table 5-6 SYSCFG 30h-FFh (Power Management) (cont.)

7	6	5	4	3	2	1	0	
SYSCFG AAh			Thermal Manag	ement Register 6	5		Default = 00h	
Emergency Overtemp Sensor STPCLK# Modulation Rate: $000 = \text{No modulation (STPCLK# = 1)}$ $001 = \text{STPCLK# } t_{hi} = 0.75 * 16 \text{ BCLKs}$ $010 = \text{STPCLK# } t_{hi} = 0.5 * 16 \text{ BCLKs}$ $011 = \text{STPCLK# } t_{hi} = 0.25 * 16 \text{ BCLKs}$ $100 = \text{STPCLK# } t_{hi} = 0.125 * 16 \text{ BCLKs}$ $101 = \text{STPCLK# } t_{hi} = 0.125 * 16 \text{ BCLKs}$ $101 = \text{STPCLK# } t_{hi} = 0.0625 * 16 \text{ BCLKs}$ $110 = \text{STPCLK# } t_{hi} = 0.03125 * 32 \text{ BCLKs}$ $111 = \text{STPCLK# } t_{hi} = 0.015625 * 64 \text{ BCLKs}$		THMIN pin polarity: 0 = High 1 = Low	00 = EPMI0# 0		THMIN input: 0 = THMIN 1 = EPMI indicated in bits [3:2]	HDI input: 0 = HDI 1 = EPMI indi- cated by SYSCFG F0h[1:0]		
SYSCFG ABh			Power Control	Latch Register 3			Default = 00h	
Ena		itch lines PPWR[1 Disable Enable	1:8]:			ts for PPWR[11:8] output low output high]:	
SYSCFG ACh Reserved Default = 00h								
SYSCFG ADh			Feature Con	trol Register 3			Default = 00h	
state in Suspend: 0 = Powered 1 = 0 Volt			responds as: 0 = Device 14h, Function 0 1 = Device 01h, Function 1	operation: 0 = Normal 1 = Toggle on Resume	Device ID: 0 = D568h 1 = D721h			
SYSCFG AEh			GNR ACCESS F	Feature Register	1		Default = 03h	
GNR set select: 0 = GNR1-4 1 = GNR5-8	Reserved	GNR2 cycle decode type: 0 = I/O 1 = Memory	GNR1 cycle decode type: 0 = I/O 1 = Memory	GNR2 base address: A0 (I/O) A14 (Memory)	GNR1 base address: A0 (I/O) A14 (Memory)	GNR2 mask bit: A0 (I/O) A14 (Memory)	GNR1 mask bit: A0 (I/O) A14 (Memory)	
SYSCFG AFh-B	0h		Res	erved			Default = 00h	
SYSCFG B1h			RSMGRP IF	RQ Register 2			Default = 00h	
EPMI3# Resume: 0 = Disable 1 = Enable	EPMI2# Resume: 0 = Disable 1 = Enable	IRQ15 Resume: 0 = Disable 1 = Enable	IRQ14 Resume: 0 = Disable 1 = Enable	IRQ12 Resume: 0 = Disable 1 = Enable	IRQ11 Resume: 0 = Disable 1 = Enable	IRQ10 Resume: 0 = Disable 1 = Enable	IRQ9 Resume: 0 = Disable 1 = Enable	
SYSCFG B2h <u>if</u>	AEh[7] = 0		Clock Sour	ce Register 3			Default = 00h	
			ource for _TIMER		ource for _TIMER		ource for _TIMER	
SYSCFG B2h if			Clock Source	Clock Source Register 3A			Default = 00h	
		Res	erved				ource for _TIMER	

Page 288 912-2000-015

Table 5-6	SYSCFG	30h-FFh (Power	Management)	(cont.)
-----------	--------	----------------	-------------	---------

7	6	5	4	3	2	1	0
SYSCFG B3h			Chip Select Cyc	cle Type Register	1		Default = 00h
GPCS3# ROM width: 0 = 8-bit 1 = 16-bit	GPCS2# ROM width: 0 = 8-bit 1 = 16-bit	GPCS1# ROM width: 0 = 8-bit 1 = 16-bit	GPCS0# ROM width: 0 = 8-bit 1 = 16-bit	GPCS3# cycle type: 0 = I/O 1 = ROMCS	GPCS2# cycle type: 0 = I/O 1 = ROMCS	GPCS1# cycle type: 0 = I/O 1 = ROMCS	GPCS0# cycle type: 0 = I/O 1 = ROMCS
SYSCFG B4h			HDU TIMI	ER Register			Default = 00h
Time count by	te for HDU_TIMEI	R: Monitors HDU_	_	ut generates PMI#	ŧ19.		
SYSCFG B5h			COM1 TIM	IER Register			Default = 00h
Time count by	te for COM1_TIM	ER: Monitors COM	-	e-out generates P	MI#17.		
SYSCFG B6h			COM2 TIM	IER Register			Default = 00h
Time count by	te for COM2_TIM	ER: Monitors CON	_	e-out generates P	MI#18.		
SYSCFG B7h if	AEh[7] = 0		GNR2 TIM	IER Register			Default = 00h
		ER: Monitors GNF	_	e-out generates PN	MI#16.		
SYSCFG B7h if	AEh[7] = 1		GNR6_TIM	ER Register			Default = 00h
Time count by	te for GNR6_TIME	ER: Monitors GNF	R6_ACCESS. Time	e-out generates PN	<u>/II#16.</u>		
SYSCFG B8h if AEh[7] = 0 GNR2 Base Address Register							Default = 00h
GNR2_ACCE	SS base address:	A[8:1] (I/O) or A[2	22:15] (Memory)				
SYSCFG B8h if		:11 (1/0)	GNR6 Base A	<u>ddress Register</u>			Default = 00h
GIVR6_IIIIer	base address: A[8	.1] (1/O)					
SYSCFG B9h if	<u> AEh[7] = 0</u>		GNR2 Con	trol Register			Default = 00h
GNR2 base address:	Write decode:	Read decode:		R2 mask bits for a ular bit means that			-
A9 (I/O)	0 = Disable	0 = Disable		is is used to deter	•	•	, 1101
A23 (Memory) SYSCFG B9h if	1 = Enable AEh[7] = 1	1 = Enable	GNR6 Con	trol Register			Default = 00h
GNR6 base	<u>Write</u>	Read		<u>- </u>	k bits for address	A[5:1] (I/O)	
address: A9 (I/O)	<u>decode:</u> 0 = Disable	<u>decode:</u> 0 = Disable					
10 (110)	<u>1 = Enable</u>	1 = Enable					
SYSCFG BAh		C	Chip Select 2 Bas	e Address Regis	ter		Default = 00h
GPCS2# base	address: A[8:1] (I/O) or A[22:15] (N	Memory)				
SYSCFG BBh			Chip Select 2 (Control Register			Default = 00h
GPCS2# base	Write	Read	Chip select		k bits for address		
address: A9 (I/O) A23 (Memory)	decode: 0 = Disable 1 = Enable	decode: 0 = Disable 1 = Enable	active: 0 = w/Cmd 1 = before ALE		ular bit means tha [3:0] is not compa size.		
SYSCFG BCh		C	Chip Select 3 Bas	e Address Regis	ter		Default = 00h
	address: A[8:1] (•	3			

I

Table 5-6 SYSCFG 30h-FFh (Power Management)

7	6	5	4	3	2	1	0	
SYSCFG BDh			Chip Select 3	Control Register			Default = 00h	
GPCS3# base address: A9 (I/O) A23 (Memory)	Write decode: 0 = Disable 1 = Enable	Read decode: 0 = Disable 1 = Enable	Chip select active: 0 = w/Cmd 1 = before ALE	A 1 in a partic	GPCS3# mask bits for address A[4:1] (I/O) or A 1 in a particular bit means that the corresponding SYSCFG BCh[3:0] is not compared. This is use address block size.			
SYSCFG BEh if	<u>AEh[7] = 0</u>	l	dle Reload Even	t Enable Registe	r 2		Default = 00h	
GPCS3#_ ACCESS: 0 = Disable 1 = Enable	GPCS2#_ ACCESS: 0 = Disable 1 = Enable	COM2_ ACCESS: 0 = Disable 1 = Enable	COM1_ ACCESS: 0 = Disable 1 = Enable	GNR2_ ACCESS: 0 = Disable 1 = Enable	HDU_ ACCESS: 0 = Disable 1 = Enable	GNR4_ ACCESS: 0 = Disable 1 = Enable	Override SYSCFG 68h[3:2]: 0 = No 1 = Recover time 1s	
SYSCFG BEh if	AEh[7] = 1	lo	dle Reload Event	Enable Register	2A		Default = 00h	
	Rese	erved		GNR6_ ACCESS: 0 = Disable 1 = Enable	Reserved	GNR8_ ACCESS: 0 = Disable 1 = Enable	Reserved	
SYSCFG BFh			Chip Select Gra	nularity Registe	r		Default = 0Fh	
GPCS3# base address: A0 (I/O) A14 (Memory)	GPCS2# base address: A0 (I/O) A14 (Memory)	GPCS1# base address: A0 (I/O) A14 (Memory)	GPCS0# base address: A0 (I/O) A14 (Mem.)	GPCS3# mask bit: A0 (I/O) A14 (Memory)	GPCS2# mask bit: A0 (I/O) A14 (Memory)	GPCS1# mask bit: A0 (I/O) A14 (Memory)	GPCS0# mask bit: A0 (I/O) A14 (Memory)	
SYSCFG C0h-D	4h		Res	erved			Default = 00h	
SYSCFG D5h			X Rus Positive	Decode Register			Default = 00h	
PC		R#, RTCAS 70h-71h: <u>ved</u> ve decode ved	KBDCS# I/O Ports 60, 64, 62, 66, 92h: 00 = Reserved 01 = Positive decode 10 = Reserved 11 = Reserved		ROMCS# memory segments C000h-F000h: 00 = Reserved 01 = Positive decode 10 = Reserved 11 = Reserved			
` '		· -		registers, 22, 24,	,			
SYSCFG D6h				ol Register 9			Default = 00h	
DSK_ACCESS: 0 = 3F5h only 1 = All FDC Ports (3F2,4,5,7& 372,4,5,7h)	DMA trap PMI#28 SMI: 0 = Disable 1 = Enable	DMAC1 byte pointer flip-flop (RO): 0 = Cleared 1 = Set	APM doze exit PMI#35: 0 = Disable 1 = Enable	SBHE# status trap (RO)	I/O port access trapped (RO): 0 = I/O read 1 = I/O write	Access trap bit A9 (RO)	Access trap bit A8 (RO)	
SYSCFG D7h			Access Port Ac	ldress Register 1			Default = 00h	

Access trap address bits A[7:0]:

- These bits, along with SYSCFG D6h[1:0] and SYSCFG EBh[7:0] provide the 16-bit address of the port access that caused the SMI trap.
- SYSCFG D6h[2] indicates whether an I/O read or an I/O write access was trapped.
- SYSCFG D6h[3] gives the status of the SBHE# signal for the I/O instruction that was trapped.

Page 290 912-2000-015

Table 5-6	SYSCFG	30h-FFh (Power	Management)	(cont.)
-----------	--------	----------------	-------------	---------

7	6	5	4	3	2	1	0
SYSCFG D8h <u>if</u>	AEh[7] = 0		PMU Even	it Register 5		•	Default = 00h
HDU_TIMER PMI#19 HDU_ACCESS PMI#23: 00 = Disable 01 = Reserved 01 = Reserved 11 = SMI		COM2_TIMER PMI#18 COM2_ACCESS PMI#22: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		COM1_TIMER PMI#17 COM1_ACCESS PMI#21: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI		GNR2_TIMER PMI#16 GNR2_ACCESS PMI#20: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 11 = SMI	
SYSCFG D8h if			PMU Event	Register 5A			Default = 00h
			Reserved			GNR6_TIMER PMI#16 GNR6_ACCESS PMI#20: 00 = Disable 01 = Positive decode 10 = Positive decode. SMI 11 = SMI	
SYSCFG D9h				it Register 6			Default = 00h
DOZE_TIMER PMI#27 SMI: 00 = Disable 01 = Enable DOZE_0 10 = Enable DOZE_1 11 = Enable both		RINGI PMI#26 SMI: 00 = Disable 11 = Enable		EPMI3# cool-down clocking PMI#25 SMI: 00 = Disable 11 = Enable		EPMI2# PMI#24 SMI: 00 = Disable 11 = Enable	
SYSCFG DAh		Powe	r Management Ev	ent Status Regis	ter (RO)		Default = 00h
Reserved		LOWBAT state: 0 = Low 1 = High	LLOWBAT state: 0 = Low 1 = High	EPMI3# state: 0 = Low 1 = High	EPMI2# state: 0 = Low 1 = High	EPMI1# state: 0 = Low 1 = High	EPMI0# state: 0 = Low 1 = High
SYSCFG DBh <u>if</u>	AEh[7] = 0	Ne	xt Access Event	Generation Regis	ter 1		Default = 00h
I/O blocking control: 0 = Block I/O on Next Access trap 1 = Unblock	SMI on cooldown clocking entry/exit: 0 = Disable 1 = Enable	EPMI3# pin polarity: 0 = Active high 1 = Active low	EPMI2# pin polarity: 0 = Active high 1 = Active low	HDU_ ACCESS PMI#23 on Next Access: 0 = No 1 = Yes	COM2_ ACCESS PMI#22 on Next Access: 0 = No 1 = Yes	COM1_ ACCESS PMI#21 on Next Access: 0 = No 1 = Yes	GNR2_ ACCESS PMI#20 on Next Access: 0 = No 1 = Yes
SYSCFG DBh if AEh[7] = 1 Next Access Event Generation Register 1A							Default = 00h
			Reserved				GNR6_ ACCESS PMI#20 on Next Access: 0 = No 1 = Yes

I

Table 5-6 SYSCFG 30h-FFh (Power Management) (cont.)

Table 5-6 SYSCEG SUIT-FFIT (Fower Management) (COIII.)							
7	6	5	4	3	2	1	0
SYSCFG DCh if	AEh[7] = 0	PMU	SMI Source Regi	ster 1 (Write 1 to	Clear)		Default = 00h
PMI#23, HDU_ ACCESS: 0 = Inactive 1 = Active	PMI#22, COM2_ ACCESS: 0 = Inactive 1 = Active	PMI#21, COM1_ ACCESS: 0 = Inactive 1 = Active	PMI#20, GNR2_ ACCESS: 0 = Inactive 1 = Active	PMI#19, HDU_ TIMER: 0 = Inactive 1 = Active	PMI#18, COM2_ TIMER: 0 = Inactive 1 = Active	PMI#17, COM1_ TIMER: 0 = Inactive 1 = Active	PMI#16, GNR2_ TIMER: 0 = Inactive 1 = Active
SYSCFG DCh if	AEh[7] = 1	PMUS	SMI Source Regis	ster 1A (Write 1 to	o Clear)	L	Default = 00h
	Reserved		PMI#20, GNR6_ ACCESS: 0 = Clear 1 = Active		Reserved		PMI#16. GNR6_ TIMER: 0 = Clear 1 = Active
SYSCFG DDh		PMU	SMI Source Regi	ster 2 (Write 1 to	Clear)		Default = 00h
PMI#39, PCI retry limit: 0 = Inactive 1 = Active	PMI#38, CISA/PCI IRQ driveback trap: 0 = Inactive 1 = Active	PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMI#28, DMA Request: 0 = Inactive 1 = Active	PMI#27, DOZE_ TIMER: 0 = Inactive 1 = Active	PMI#26, RINGI: 0 = Inactive 1 = Active	PMI#25, EPMI3# pin/ cool-down clocking: 0 = Inactive 1 = Active	PMI#24, EPMI2# pin: 0 = Inactive 1 = Active
SYSCFG DDh -	FS ACPI Version	PMU	SMI Source Regi	ster 2 (Write 1 to	Clear)		Default = 00h
PMI#39, ACPI SMI: 0 = Inactive 1 = Active	PMI#38, CISA/PCI IRQ driveback trap: 0 = Inactive 1 = Active	PMI#37, DMA_ ACCESS: 0 = Inactive 1 = Active	PMI#28, DMA Request: 0 = Inactive 1 = Active	PMI#27, DOZE_ TIMER: 0 = Inactive 1 = Active	PMI#26, RINGI: 0 = Inactive 1 = Active	PMI#25, EPMI3# pin/ cool-down clocking: 0 = Inactive 1 = Active	PMI#24, EPMI2# pin: 0 = Inactive 1 = Active
SYSCFG DEh if	ΔFh[7] = 0	Curr	ent Access Even	Generation Rec	ister 1		Default = 00h
HDU_ ACCESS PMI#23 on Current Access: 0 = No 1 = Yes	COM2_ ACCESS PMI#22 on	COM1_ ACCESS PMI#21 on Current Access: 0 = No 1 = Yes	GNR2_ ACCESS PMI#20 on Current Access: 0 = No 1 = Yes	GNR1_ ACCESS PMI#15 on Current Access: 0 = No 1 = Yes	KBD_ ACCESS PMI#14 on Current Access: 0 = No 1 = Yes	DSK_ ACCESS PMI#13 on Current Access: 0 = No 1 = Yes	LCD_ ACCESS PMI#12 on
SYSCFG DEh if AEh[7] = 1 Current Access Event Generation Register 1A De							Default = 00h
	<u>Reserved</u>		GNR6_ ACCESS PMI#20 on Current Access: 0 = No 1 = Yes		Rese	erved	

Page 292 912-2000-015

7	6	5	4	3	2	1	0
SYSCFG DFh if /	AEh[7] = 0		Activity Trac	king Register 1			Default = 00
HDU_ ACCESS activity:	COM2_ ACCESS activity:	COM1_ ACCESS activity:	GNR2_ ACCESS activity:	GNR1_ ACCESS activity:	KBD_ ACCESS activity:	DSK_ ACCESS activity:	LCD_ ACCESS activity:
0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes
SYSCFG DFh if				ing Register 1A			Default = 00
	Reserved		GNR6_ ACCESS activity: 0 = No 1 = Yes	GNR5_ ACCESS activity: 0 = No 1 = Yes		Reserved	
SYSCFG E0h if A	<u> </u>		Activity Traci	king Register 2			Default = 00
		Rese	erved			GNR4_ ACCESS activity: 0 = No 1 = Yes	GNR3_ ACCESS activity: 0 = No 1 = Yes
SYSCFG E0h if AEh[7] = 1 Activity Tracking Register 2A							Default = 00
		Rese	erved			GNR8_ ACCESS activity: 0 = No 1 = Yes	GNR7_ ACCESS activity: 0 = No 1 = Yes
SYSCFG E1h if A	\Fh(7) - 0		GNR3 Rase A	ddress Register			Default = 00
	SS base address:	A[8:1] (I/O) or A[2		duices riegister			Delaan = 00
SYSCFG E1h if A	AEh[7] = 1 SS base address:	A[8:1] (I/O)	GNR7 Base A	ddress Register			Default = 00
SYSCFG E2h <u>if /</u>	<u> </u>		GNR3 Con	trol Register			Default = 00
GNR3 base address: A9 (I/O) A23 (Memory)	Write decode: 0 = Disable 1 = Enable	Read decode: 0 = Disable 1 = Enable	A 1 in a partic	R3 mask bits for a ular bit means tha is is used to deten	t the correspondir	g bit at SYSCFG	•
SYSCFG E2h if A	<u> </u>		GNR7 Con	trol Register			Default = 00
GNR7 base address: A9 (I/O)	Write decode: 0 = Disable 1 = Enable	Read_ decode: 0 = Disable 1 = Enable		GNR7 mas	k bits for address	A[5:1] (I/O)	
SYSCFG E3h <u>if /</u>				ddress Register			Default = 00
GNR4_ACCES	SS base address:	A[8:1] (I/O) or A[2	22:15] (Memory)				
SYSCFG E3h if A	<mark>AEh[7] = 1</mark> SS base address:	A[8:1] (I/O)	GNR8 Base A	ddress Register			<u>Default = 00</u>

Table 5-6	SYSCFG 30h	·FFh (Power I	<i>(</i> lanagement)	(cont.)

The state of the s							
7	6	5	4	3	2	1	0
SYSCFG E4h if AEh[7] = 0 GNR4 Control Register Default = 00h							
GNR4 base address: A9 (I/O) A23 (Memory)	Write de∞de: 0 = Disable 1 = Enable	Read decode: 0 = Disable 1 = Enable	decode: A 1 in a particular bit means that the corresponding bit at SYSCFG E3h[4:0] is not compared. This is used to determine address block size.				-
SYSCFG E4h if	AEh[7] = 1		GNR8 Con	trol Register			Default = 00h
GNR8 base address: A9 (I/O)	Write decode: 0 = Disable 1 = Enable	Read_ decode: 0 = Disable 1 = Enable	=				
SYSCFG E5h			GNR_ACCESS F	eature Register	2		Default = 03h
Reserved	Reserved	GNR4 cycle decode type: 0 = I/O 1 = Memory	GNR3 cycle decode Type: 0 = I/O 1 = Memory	GNR4 base address: A0 (I/O) A14 (Memory)	GNR3 base address: A0 (I/O) A14 (Memory)	GNR4 mask bit: A0 (I/O) A14 (Memory)	GNR3 mask bit: A0 (I/O) A14 (Memory)
SYSCFG E6h <u>if</u>	<u> AEh[7] = 0</u>		Clock Sour	ce Register 4			Default = 70h
BCLK source for STPCLK# modulation (For normal mode, Doze mode, thermal mgmt): GNR4_ ACCESS: GNR3_ ACCESS: Clock source for GNR4_TIMER Clock source for GNR4_TIMER 00 = 4KHz 01 = 32KHz (Default) 10 = 450KHz 11 = 900KHz 1 = DOZE_1 1 = DOZE_1 1 = DOZE_1 1 = DOZE_1 1 = DOZE_1 1 = DOZE_1							
SYSCFG E6h if	<u> AEh[7] = 1</u>		Clock Source	e Register 4A			Default = 70h
Rese	erved	GNR8_ ACCESS: 0 = DOZE_0 1 = DOZE_1	GNR7_ ACCESS: 0 = DOZE_0 1 = DOZE_1		ource for TIMER		ource for TIMER
SYSCFG E7h if a	AEh[7] = 0 te for GNR3_TIMI	ER: Monitors GNF	_	I ER Register e-out generates Pl	MI#29.		Default = 00h
SYSCFG E7h if A	AEh[7] = 1 te for GNR7_TIMI	ER: Monitors GNF	_	ER Register e-out generates P	MI#29.		Default = 00h
SYSCFG E8h if	AEh[7] = 0 te for GNR4_TIMI	ER: Monitors GNF	_	ER Register e-out generates Pl	MI#30.		Default = 00h
SYSCFG E8h if A	AEh[7] = 1 te for GNR8_TIMI	ER: Monitors GNF		IER Register e-out generates P	MI#30.		<u>Default = 00h</u>

Page 294 912-2000-015

Table 5-6 SYSCFG 30h-FFh (Power Manageme
--

7	6	5	4	3	2	1	0
SYSCFG E9h if	AEh[7] = 0		PMU Ever	nt Register 7			Default = 00h
GNR4_ACCI 00 = Disable 01 = Positive	GNR4_TIMER PMI#30 GNR3_TIMER PMI#29 GNR4_ACCESS PMI#32: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI GNR3_TIMER PMI#29 GNR3_ACCESS PMI#31: 00 = Disable 01 = Positive decode 10 = Positive decode, SMI 10 = Positive decode, SMI		GNR4_ ACCESS PMI#32 on Current Access: 0 = No 1 = Yes	GNR4_ ACCESS PMI#32 on Next Access: 0 = No 1 = Yes	GNR3_ ACCESS PMI#31 on Current Access: 0 = No 1 = Yes	GNR3_ ACCESS PMI#31 on Next Access: 0 = No 1 = Yes	
	11 = SMI				1 = 163	1 = 163	Default = 00h
	ER PMI#30 ESS PMI#32:		ER PMI#29 ESS PMI#31:	GNR8_ACCESS PMI#32 on Current Access: 0 = No 1 = Yes	GNR8_ ACCESS PMI#32 on Next Access: 0 = No 1 = Yes	GNR7_ ACCESS PMI#31 on Current Access: 0 = No 1 = Yes	GNR7_ ACCESS PMI#31 on Next Access: 0 = No 1 = Yes
SYSCFG EAh if	Δ E h[7] = 0	PMII	SMI Source Red	ister 3 (Write 1 to	Clear)		Default = 00h
Serial IRQ trap: APM Doze exit: Hot docking time-out SMI: TIMER reload (on Doze exit): 0 = Inactive 1 = Active 1 = Active				PMI#30, GNR4_ TIMER 0 = Inactive 1 = Active PMI#30_ GNR8_ TIMER 0 = Inactive 1 = Active	PMI#29, GNR3_ TIMER 0 = Inactive 1 = Active Default = 00h PMI#29. GNR7_ TIMER 0 = Inactive 1 = Active		
	erved	that caused th	ne SMI trap. D6h[2 the status of the S	D6h[1:0] and D7h 2] indicates whethe BHE# signal for th	er an I/O read or a	l6-bit address of th n I/O write access	was trapped.
SYSCFG ECh I/O write data - Along with S		, this register prov	·	legister 1 (RO)	d I/O write instruct	tions.	Default = 00h
SYSCFG EDh I/O write data - Along with S		, this register prov	·	Register 2 (RO)	d I/O write instruct	tions	Default = 00h
SYSCFG EEh			Power Control	Latch Register 4			Default = 0Fh
SYSCFG EEh Power Control Latch Register 4 Enable [3:0] to write latch lines PPWR[15:12]: 0 = Disable 0 = Latch output low 1 = Enable 0 = Latch output high				t = 1111):			

Table 5-6 SY	SCFG 30h-FFh	(Power Mana	agement)	(cont.)
--------------	--------------	-------------	----------	---------

Table 5-6	SYSCEG 30n-FFR (Power Management) (Cont.)							
7	6	5	4	3	2	1	0	
SYSCFG EFh	Hot Docking Control Register 1 Default						Default = 00h	
Hot docking enable: 0 = Disable 1 = Enable (Default) SYSCFG F0h	00 = 100μs 01 = 512μs 1 = Active high 1 = Active low 101 = 512μs 10 = 1ms Also see (Default) 11 = 2ms 2 SYSCFG 1 = Generate AAh[0] 2 SMI on time-out 11 = 256ms 11 =					101 = 2 s 110 = 8 ns 111 = 1	100 = 512ms 101 = 2s 110 = 8s 111 = 16s Default = 00h	
EPMI3# reload IDLE_TIMER: 0 = Disable 1 = Enable	EPMI2# reload IDLE_TIMER: 0 = Disable 1 = Enable	EPMI1# reload IDLE_TIMER: 0 = Disable 1 = Enable	ROM window feature: 0 = Disable 1 = Enable	HOM wir 00 = 64KB 01 = 128KI 10 = 256KI 11 = 512KI	В В	EPMI trigg 00 = EF 01 = EF 10 = EF 11 = EF Also see SYSCF	PMI1# PMI2# PMI3#	
SYSCFG F1h		Low	/ Order Start Add	ress for ROM Wi	indow		Default = 00h	
128KB, 256KB window sizes) window sizes) lgnored for lgnored for 512KB window size bize 512KB window sizes) sizes window sizes) lgnored for 128KB, 256KB and size 512KB window sizes						Ignored for 128KB, 256KB, and 512KB win-		
- THFREQ[15] in kHz and o	correlate the value	from 0 to 65535. to the actual CPU	This value is upda J temperature at th		and so that softwar	re can read the inp	Default = 00h out pin frequency Default = 00h	
THEREQ[15:8	3] - Current freque	ncy nign byte						
SYSCFG F5h			PMU Even	t Register 8			Default = 00h	
Reserved Seria PMI;			#36: sable	6: PMI#38 SMI: 00 = Disable		DMA_ACCESS PMI#37 SMI: 00 = Disable 11 = Enable		
SYSCFG F5h - F	S ACPI Version		PMU Even	t Register 8			Default = 00h	
<u>PMI</u> 00 = Dis	ACPLSMI Seria PMI#39: PMI 00 = Disable 00 = Disable 11 = Enable 11 = En				•		· ·	

Page 296 912-2000-015

Table 5-6 SYSCFG 30h-FFh (Power Management) (cont.)

7	6	5	4	3	2	1	0
SYSCFG F6h			DMA Doze Re	load Register 1			Default = 00h
DRQ7 reloads DOZE_0: 0 = No 1 = Yes	DRQ6 reloads DOZE_0: 0 = No 1 = Yes	DRQ5 reloads DOZE_0: 0 = No 1 = Yes	IDE DDRQ reloads DOZE_0: ⁽¹⁾ 0 = No 1 = Yes	DRQ3 reloads DOZE_0: 0 = No 1 = Yes	DRQ2 reloads DOZE_0: 0 = No 1 = Yes	DRQ1 reloads DOZE_0: 0 = No 1 = Yes	DRQ0 reloads DOZE_0: 0 = No 1 = Yes

(1) Bit 4 controls whether the DDRQ line from bus mastering IDE drives can reload the timers. The bit controls DDRQ from both cables, so enabling the reload feature on any one bus mastering drive enables it for all present.

SYSCFG F7h	SCFG F7h DMA Doze Reload Register 2 Defaul						Default = 00h
DRQ7 reloads DOZE_1: 0 = No 1 = Yes	DRQ6 reloads DOZE_1: 0 = No 1 = Yes	DRQ5 reloads DOZE_1: 0 = No 1 = Yes	IDE DDRQ reloads DOZE_1: ⁽¹⁾	DRQ3 reloads DOZE_1: 0 = No 1 = Yes	DRQ2 reloads DOZE_1: 0 = No 1 = Yes	DRQ1 reloads DOZE_1: 0 = No 1 = Yes	DRQ0 reloads DOZE_1: 0 = No 1 = Yes
T = Tes	1 = 165	i = res	0 = No 1 = Yes	r = res	T = Tes	T = Tes	1 = 165

(1) Bit 4 controls whether the DDRQ line from bus mastering IDE drives can reload the timers. The bit controls DDRQ from both cables, so enabling the reload feature on any one bus mastering drive enables it for all present.

Inhibit MRD# and MWR# if and MWR# if SEL# asserted on I/O cycle: O = No	SYSCFG F8h	Compact ISA Control Register 1						
	and MWR# if SEL# asserted on memory cycle: 0 = No	and MWR# if SEL# asserted on DMA cycle: 0 = No	IOW# if SEL# asserted on I/O cycle: 0 = No	assignment: 0 = IRQ15	Reserved	memory cycle: 0 = Disable (ISA# = 0) 1 = Enable	Reserved	interface: 0 = Disable 1 = Enable If disabled, can use pins as

SYSCFG F9h		Compact ISA Control Register 2	Default = 00h
SPKD signal driving: 0 = Always, per	End-of-Interrupt Hold - Delays 8259 recognition of EOI command to prevent false interrupts):	Stop Clock Count bits - Stop clock cycle indication to CISA devices of how many ATCLKs to expect before the clock will stop:	Generate CISA stop clock cycle (if not already stopped): 00 = Never
AT spec	00 = None	000 = Reserved	01 = On STPCLK# cycles to the CPU (hardware)
1 = Sync, per	01 = 1 ATCLK	001 = 1 ATCLK (Default)	
CISA spec	10 = 2 ATCLKs		10 = Immediately (software)
	11 = 3 ATCLKs	111 = 7 ATCLKs	11 = Reserved

SYSCFG FAh	Compact ISA Control Register 3					
CDIR response	CDIR response	Reserved	Resume from	Reserved	Configuration	
to IDE cable 1	to IDE cable 0		Suspend on		cycle	
<u>read</u>	<u>read</u>		SEL#/ATB#		generation:	
<u>0 = Disable</u>	<u>0 = Disable</u>		low:		0 = No action	
<u>1 = Enable</u>	<u>1 = Enable</u>		0 = Disable		1 = Run cycle	
			1 = Enable		using	
					scratchpad	

Table 5-6 SY	SCFG 30h-FFh	(Power Mana	agement)	(cont.)
--------------	--------------	-------------	----------	---------

Table 5-6	SYSCEG 30n-FFN (Power Management) (cont.)							
7	6	5	4	3	2	1	0	
SYSCFG FBh			DMA Idle Re	load Register			Default = 00h	
DRQ7 reloads IDLE_TIMER:	DRQ6 reloads IDLE_TIMER:	DRQ5 reloads IDLE_TIMER:	IDE DDRQ reloads	DRQ3 reloads IDLE_TIMER:	DRQ2 reloads IDLE_TIMER:	DRQ1 reloads IDLE_TIMER:	DRQ0 reloads IDLE_TIMER:	
0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	IDLE_TIMER: ⁽¹⁾ 0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	
' '	(1) Bit 4 controls whether the DDRQ line from bus mastering IDE drives can reload the timers. The bit controls DDRQ from both cables, so enabling the reload feature on any one bus mastering drive enables it for all present.							
SYSCFG FCh		IDE Po	wer Managemen	ıt Assignment Re	gister 1		Default = 33h	
IDE Drive 1 I/O access reloads GNR4_TIMER: 0 = No 1 = Yes	IDE Drive 1 I/O access reloads GNR3_TIMER: 0 = No 1 = Yes	IDE Drive 1 I/O access reloads HDU_TIMER: 0 = No 1 = Yes	IDE Drive 1 I/O access reloads DSK_TIMER: 0 = No 1 = Yes	IDE Drive 0 I/O access reloads GNR4_TIMER: 0 = No 1 = Yes	IDE Drive 0 I/O access reloads GNR3_TIMER: 0 = No 1 = Yes	IDE Drive 0 I/O access reloads HDU_TIMER: 0 = No 1 = Yes	IDE Drive 0 I/O access reloads DSK_TIMER: 0 = No 1 = Yes	
Note: If a bus m	astering drive is u	sed, DDRQ will al	so reload the enal	oled timer(s).				
SYSCFG FDh		IDE Po	wer Managemen	it Assignment Re	gister 2		Default = 33h	
IDE Drive 3 I/O access reloads GNR4_TIMER: 0 = No 1 = Yes	IDE Drive 3 I/O access reloads GNR3_TIMER: 0 = No 1 = Yes	IDE Drive 3 I/O access reloads HDU_TIMER: 0 = No 1 = Yes	IDE Drive 3 I/O access reloads DSK_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads GNR4_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads GNR3_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads HDU_TIMER: 0 = No 1 = Yes	IDE Drive 2 I/O access reloads DSK_TIMER: 0 = No 1 = Yes	
Note: If a bus m	ı astering drive is u	sed, DDRQ will al	so reload the enal	oled timer(s).				
SYSCFG FEh			CDCS# Clabal	Control Besister			Default = 00h	
	00000#	00001"	·	Control Register		00001"		
GPCS3# decode: 0 = Enable	GPCS2# decode: 0 = Enable	GPCS1# decode: 0 = Enable	GPCS0# decode: 0 = Enable	GPCS3# read cycles drive XDIR low:	GPCS2# read cycles drive XDIR low:	GPCS1# read cycles drive XDIR low:	GPCS0# read cycles drive XDIR low:	
1 = Disable	1 = Disable	1 = Disable	1 = Disable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	
SYSCFG FFh			Res	erved			Default = 00h	

Page 298 912-2000-015

5.2 PCIDV0 Register Space

The PCI Configuration Register Space designated as PCIDV0 is accessed through Configuration Mechanism #1 as Bus #0, Device #0, and Function #0.

PCIDV0 00h-3Fh are PCI-specific registers while PCIDV0 40h-FFh are system control related registers. Table 5-7 gives the bit formats for these registers.

Table 5-7	PCIDV0 00h-F	Fh						
7	6	5	4	3	2	1	0	
PCIDV0 00h			Default = 45h					
PCIDV0 01h			Default = 10h					
PCIDV0 02h			ice Identification	Register (RO) - I	Byte 0		Default = 01h	
PCIDV0 03h Device Identification Register (RO) - Byte 1 Default =								
PCIDV0 04h			Command Re	egister - Byte 0			Default = 07h	
Address/data stepping (RO): 0 = Disable (always)	PERR# output pin: 0 = Disable (always)	Reserved	Memory write and invalidate cycle generation (RO): Must = 0 (always) No memory write and invalidate cycles will be generated by the 82C700.	Special cycles (RO): Must = 0 (always) The 82C700 does not respond to the PCI special cycle.	Bus master operations (RO): Must = 1 (always) This allows the 82C700 to perform bus master operations at any time. (Default = 1)	Memory access (RO): Must = 1 (always) The 82C700 allows a PCI bus master access to memory at anytime. (Default = 1)	I/O access (RO): Must = 1 (always) The 82C700 allows a PCI bus master I/O access at any time. (Default = 1)	
PCIDV0 05h			Command Ro	egister - Byte 1			Default = 00h	
		Rese	erved			Fast back-to- back to differ- ent slaves: 0 = Disable 1 = Enable	SERR# output pin (RO): 0 = Disable (always)	
PCIDV0 06h			Status Reg	ister - Byte 0			Default = 80h	
Fast back-to- back capability (RO): 0 = Not Capable 1 = Capable (Default = 1) Also see PCIDV0 46h[2].				Reserved				
PCIDV0 07h			Status Reg	ister - Byte 1			Default = 00h	
Detected parity error: Must = 0 (always)	SERR# status: Must = 0 (always)	Master abort status: Must = 0 (always)	Received target abort status: 0 = No target abort 1 = Target abort occurred	Signaled target abort status: Must = 0 (always)		asserts the	Data parity detected: Must = 0 (always)	

912-2000-015 Revision: 1.0

ı

Table 5-7 PC	DV0 00h	-FFh	(cont.)
--------------	---------	------	---------

Table 5-7	PCIDV0 00h-I	-Fii (Cont.)		1	I		
7	6	5	4	3	2	1	0
8-bit registe programme	vision number in the or is interpreted as ors must take care versions of the chi	e PCI configuratio x.yh, where for ex in using the minor	n space consists ample revision 2.	1 of the chip would	or revision numbe d be read as two E	3CD digits, 0010 00	001b. Software
PCIDV0 09h			Class Code Reg	ister (RO) - Byte	0		Default = 00h
PCIDV0 0Ah			Class Code Reg	ister (RO) - Byte	1		Default = 00h
PCIDV0 0Bh			Class Code Reg	ister (RO) - Byte	2		Default = 06h
PCIDV0 0Ch Reserved							
PCIDV0 0Dh Master Latency Timer Register (RO) Det							
PCIDV0 0Eh Header Type Register (RO) Def							
PCIDV0 0Fh Built-In Self-Test (BIST) Register (RO) Default = 00							
PCIDV0 10h-2B	h		Res	erved			Default = 00h
PCIDV0 2Ch-2D	<u>'h</u>		<u>-</u>	m Vendor ID e time only)			<u>Default = 00h</u>
PCIDV0 2Eh-2F	'h		•	/stem ID e time only)			Default = 00h
PCIDV0 30h-3Fi	h		Res	erved			Default = 00h
PCIDV0 40h			Memory Contro	l Register - Byte	0		Default = 00h
write pos These bits map of A[31:30]. Togeth	fine the 4MB win-	Debug bit. works in conjunction with PCIDV0 42h[7:2]. Intended for use on tester. Not for applications use.	Reserved	0 = Control of writes being posted on PCI bus is determined by SYSCFG 15h[5:4]. 1 = No writes will be posted on	Write posting to the video frame buffer control: If bit 3 = 0: 0 = Enable 1 = Disable If bit 3 = 1: 0 = Disable 1 = Enable	Write posting to the video memory (A0000h-BFFFFh) control: If bit 3 = 0: 0 = Enable 1 = Disable If bit 3 = 1: 0 = Disable 1 = Enable	I/O cycle write post control: 0 = Disable 1 = Enable

Page 300 912-2000-015

7	6	5	4	3	2	1	0	
PCIDV0 41h	•		Memory Contro	Register - Byte	1		Default = 00	
PCI video fra	me buffer write pos	sting hole:						
	map onto address	• •	4MP window who	ro write poeting co	n he maakad			
- rogemer wi	th PCIDV0 40h[7:6	oj iney deline ine	4MB WINDOW WHE	e write posting ca	n be masked.			
PCIDV0 42h			Memory Contro	l Register - Byte	<u>2</u>		Default = 00	
			tion with PCIDV0			This bit must	Allow HA drive	
	Intended for	or use on tester. N	lot for applications	suse.		be set to 1 to	<u>back during</u> <u>CPU memory</u>	
						improper opera-	accesses:	
						tion while switching	<u>0 = Disable</u> <u>1 = Enable</u>	
		<u>between</u>						
						DRAM banks.		
PCIDV0 43h			nternal Project R	levision - Reserv	ed		Default = 00	
CIB VO VOII		-	memar reject r	evision neserv	<u> </u>		Boladit = 00	
PCIDV0 44h			Data Path	Register 1			Default = 00	
6DW FIFO for	16QW FIFO for	16QW FIFO for	6QW FIFO for	Memory read	DBC ping-pong	DBC ping-pong	Memory read	
CPU write to PCI:	PCI read from DRAM	PCI write to DRAM:	CPU write to DRAM:	accesses in DBC if PCIDV0	buffer used for PCI master	buffer used for PCI master	accesses in the	
0 = Disable	0 = Disable	0 = Disable	0 = Disable	44h[0] = 1 and	write	read	0 = FP Mode	
1 = Enable	1 = Enable	1 = Enable	1 = Enable	47h[7] = 1:	X-1-1-1:	X-1-1-1:	1 = EDO/	
				0 = SDRAM 1 = Reserved	0 = Disable 1 = Enable	0 = Disable 1 = Enable	SDRAM	
PCIDV0 45h			1	ntrol Register 2	Г	T	Default = 00	
Res	erved	Ping-pong buffer reset of	<u>When IADV# =</u> 0. BE[7:0]# are	Reserved	Byte merge for CPU write to	Byte merge for CPU write to	<u>Reserved</u>	
		CPU read EDO	forced to 00h		PCI:	DRAM:		
		is qualified with HDOE#.	for write (CPU- to-DRAM and		0 = Disable	0 = Disable		
		0 = Disable	CPU-to-PCI)		1 = Enable Not supported.	1 = Enable		
		1 = Enable	cycle control.		Not supported.			
			<u>0 = Disable</u> 1 = Enable					
				l	l	I .		
PCIDV0 46h				ntrol Register 3			Default = 00	
			Reserved	: Write to 0				
PCIDV0 47h			Data Path Co	ntrol Register 4			Default = 00	
SDRAM	CPU-to-PCI	PCI-to-DRAM	CPU-to-DRAM	82C700 regis-		Reserved		
memory read	FIFO clearing	FIFO clearing	FIFO clearing	ter is writable:				
accesses in DBC:	when combina- tion changed:	when combina-	when combina- tion changed:	<u>0 = Enable</u>				
0 = Disable	0 = Do not clear	tion changed: ⁽¹⁾ 0 = Do not clear	0 = Do not clear	1 = Disable (cnfg-				
1 = Enable	1 = Clear	1 = Clear	1 = Clear	writes				
				<u>blocked</u> within DBC)				
(1) Bit 5 must b	e set to 1 whenev	er the PCI-to-DRA	M FIFO is turned	<u> </u>				
			C ic tamou					
PCIDV0 48h			Data Path Co	ntrol Register 5			Default = 00	

7	6	5	4	3	2	1	0
Rese	erved	During refresh cycles if this bit = 1. the RAS# corresponding to the bank with size 0 will not be generated for SDRAM.	Rese	erved	SDRAM mode select 000 = Normal SDRAM mode 001 = NOP command enable 010 = All banks precharge 011 = Mode register command enable 100 = CBR cycle enable All other combinations = Reserve		d enable
PCIDV0 49h-4Bl	1		Res	erved			Default = 00h
PCIDV0 4Ch			MCACHE Co	ontrol Register			Default = 00h
MCACHE: 0 = Disable 1 = Enable Not supported.	<u>Reserved</u>	MCACHE detection (RO): 0 = No MCACHE 1 = MCACHE present Not supported.			Reserved		
PCIDV0 4Dh			<u>Delay Adjus</u>	tment Register			Default = 00h
		Reserved			Internal DLE0# of for DRA 00 = I/O buffer de 01 = 6ns 10 = 3ns 11 = No delay		Reserved
PCIDV0 4Eh			SDRAM Co	ntrol Register			Default = 00h
SDRAM + L2 + pipelining:(1) 0 = Disable 1 = Enable	SDRAM + L2 + pipelining:(1) 0 = Disable 1 = Enable	6 CLK SDRAM leadoff: 0 = Disable 1 = Enable			Reserved		
(1) Bits 7 and 6 h	nave been implem	ented to solve two	problems with th	e DIRTY signal in	systems that have	SDRAM + L2 + p	ipelining.
PCIDV0 4Fh-FFI	1		Res	erved			Default = 00h

Page 302 912-2000-015

5.3 PCIDV1 Register Space

The PCI Configuration Register Space designated as PCIDV1 is accessed through Configuration Mechanism #1 as Bus #0, Device #1, and Function #0.

PCIDV1 00h-3Fh are PCI-specific related registers while PCIDV1 40h-FFh are system control related registers. Table 5-8 gives the bit formats for these registers.

Table 5-8	PCIDV1 00h-F	Fh					
7	6	5	4	3	2	1	0
PCIDV1 00h		Ven	dor Identification	Register (RO) -	Byte 0		Default = 45h
PCIDV1 01h		Ven	dor Identification	Register (RO) -	Byte 1		Default = 10h
PCIDV1 02h		Dev	ice Identification	Register (RO) - I	Byte 0		Default = 00h
PCIDV1 03h		Dev	ice Identification	Register (RO) - I	Byte 1		Default = C7h
PCIDV1 04h			Command Re	egister - Byte 0			Default = 07h
Address/data stepping (RO): 0 = Disable (always)	PERR# output pin: 0 = Disable 1 = Enable	Reserved	Memory write and invalidate cycle generation (RO): Must = 0 (always) No memory write and invalidate cycles will be generated by the 82C700.	Special cycles (R/W): The 82C700 does not respond to the PCI special cycle.	Bus master operations (R/W): This allows the 82C700 to perform bus master operations at any time. (Default = 1)	Memory access (RO): Must = 1 (always) The 82C700 allows a PCI bus master access to memory at anytime. (Default = 1)	I/O access (RO): Must = 1 (always) The 82C700 allows a PCI bus master I/O access at any time. (Default = 1)
PCIDV1 05h			Command Re	egister - Byte 1	•		Default = 00h
		Rese	erved			Fast back-to- back to differ- ent slaves (RO): 0 = Disable 1 = Enable	SERR# output pin: 0 = Disable 1 = Enable
PCIDV1 06h			Status Reg	ister - Byte 0			Default = 80h
Fast back-to- back capability (RO): 0 = Not Capable 1 = Capable (Default = 1) Also see PCIDV1 46h[2].				Reserved			
PCIDV1 07h			Status Reg	ister - Byte 1			Default = 02h
Parity error detected: 0 = No 1 = Yes	SERR# status (RO): Must = 0 (always)	Master abort status (RO): Must = 0 (always)	Received target abort status (RO): 0 = No target abort 1 = Target abort occurred	Signaled target abort status (RO): Must = 0 (always)	Must = 0 Indicates mediur tion; the 82C700 DEVSEL# based timing. (Default = 01)	asserts the	Data parity error detected: 0 = No 1 = Yes

Table 5-8	PCIDV1 (00h-FFh ((cont.)
-----------	----------	-----------	---------

7	6	5	4	3	2	1	0
8-bit register programmers	is interpreted as s must take care i ersions of the chip	e PCI configuratio x.yh, where for ex in using the minor o.	n space consists of ample revision 2.	ation Register (R of two parts: a majo 1 of the chip would because the numb	or revision numbe I be read as two E	BCD digits, 0010 0	001b. Software
PCIDV1 09h			Class Code Reg	ister (RO) - Byte)		Default = 00h
PCIDV1 0Ah			Class Code Reg	ister (RO) - Byte	1		Default = 00h
PCIDV1 0Bh		Class Code Register (RO) - Byte 2					
PCIDV1 0Ch Reserved							Default = 00h
PCIDV1 0Dh Master Latency Timer Register (RO)							Default = 00h
PCIDV1 0Eh Header Type Register (RO)							Default = 00h
PCIDV1 0Fh Built-In Self-Test (BIST) Register (RO)							Default = 00h
PCIDV1 10h-2Bh Reserved							Default = 00h
PCIDV1 2Ch-2Dh			<u>Subsyster</u> (Write one	n Vendor ID time only)			<u>Default = 00h</u>
PCIDV1 2Eh-2Fh			Subsy (Write one	stem ID time only)			<u>Default = 00h</u>
PCIDV1 30h-40h			Res	erved			Default = 00h
PCIDV1 41h		ŀ	Keyboard Contro	ller Select Regist	er		Default = 00h
troller has received Com- mand D0h and has not received the fol- lowing 060h	WRKBDPRT (RO): Keyboard con- troller has received Com- mand D1h and has not received the fol- lowing 060h write.	IMMINIT: Generate INIT immediately on FEh Command. 0 = Generate INIT immediately on FEh Command 1 = Wait for halt before INIT for key- board reset	KBDEMU: Keyboard emulation 0 = Enable 1 = Disable	KBDCS# includes Port 062h and 066h 0 = Disable 1 = Enable		Reserved	

Page 304 912-2000-015

7	6	5	4	3	2	1	0		
PCIDV1 43h Feature Control Register Default = 00h									
,	A with PCI ability	Enable DMA or ISA master to preempt PCI master: 0 = Disable 1 = Enable	Fixed/rotating priority between PCI masters: 0 = Rotating 1 = Fixed		ATCLKs	PCI master access to ISA: 0 = Enable 1 = Disable	ISA bus control signals for memory accesses greater than 16M: 0 = Enable 1 = Disable		

(1) When bits [3:2] take on the combination of 11, all back-to-back cycles are delayed by 12 AT clocks. This is different from the combinations of 00 and 01 because in the latter case, the delay will be inserted only when an I/O access is followed by a second I/O access with no other type of access occurring in between (e.g., a memory access).

PCIDV1 44h-45h Reserved Default = 00h

PCIDV1 46h			PCI Control Re	gister B - Byte 0	Default = 06h		
DMA/ISA access to PCI slave: 0 = Never 1 = When inter- nal LMEM# is not asserted Master retry always unmasked after 16 PCICLKs.	XDIR control: 0 = XDIR is controlled for accesses to/from ROM, Kybd controller, RTC 1 = XDIR is controlled only during access to/ from ROM	Conversion of PERR# to SERR#: 0 = Disable 1 = Enable	Address parity checking: 0 = Disable 1 = Enable	Generation of SERR# for target abort: 0 = Disable 1 = Enable	Fast back-to-back capability: 0 = Disable 1 = Enable Note: The change on this bit will reflect in PCIDV1 06h[7].	Subtractive decoding sample point: 0 = Typical sample point 1 = Slow sample point	Reserved
PCIDV1 47h			PCI Control Re	egister B - Byte 1			Default = 00h
Write protect ISA bus ROM: 0 = Disable ROMCS# for writes 1 = Enable ROMCS# for writes	Hidden refresh: 0 = Normal refresh 1 = Hidden refresh Hidden refresh is not sup- ported - never set this bit to 1.	ATCLK frequency: 00 = PCICLK ÷4 01 = PCICLK ÷3 10 = PCICLK ÷2 11 = PCICLK		CPU master to PCI slave write: (turnaround between address and data phases) 0 = 1 PCICLK 1 = 0 PCICLK	PCI master to PCI master preemption timer: (preempt after unserviced request pending		

7	6	5	4	3	2	1	0
PCIDV1 48h	<u> </u>	Str	ap Option Readb	ack Register - B	Default = 00h		
Reserved	IGERR# strap option selects: 0 = 5.0V ISA 1 = 3.3V ISA	NMI strap option selects: 0 = 5.0V DRAM 1 = 3.3V DRAM	INTR strap option selects: 0 = 5.0V PCI 1 = 3.3V PCI		ATCLK, BALE PCICLK4, BALE	RTCWR# strap option selects: 0 = GNT2# 1 = PCICLK2	RTCRD# strap option selects: 0 = GNT1# 1 = PCICLK1
PCIDV1 49h		Str	⊥ ap Option Readb	ack Register - B	yte 1		Default = 00h
(1) Bits 3 and	Reserved	00 = NEC mode 01 = ISA mode 10 = ISA mode	PCICLKO strap option selects: 0 = No MCACHE 1 = MCACHE enabled Not supported. 2 & No ISA mode without XD bus with XD bus	RTCAS Strap selects (1) Solution selects: 0 = PPWRL 1 = PPWR0#		DBEW# strap option selects: 0 = SA[23:18] pins are SA[23:8] signals 1 = SA[23:18] pins are remapped: SA[23:20] = PPWR[3:0] and SA[19:18] = PPWR[9:8]	A20M# strap selects ⁽¹⁾
		11 = No ISA mo					
PCIDV1 4Ah			ROM Chip Se	lect Register 1			Default = 00h
ROMCS# for F8000h- FFFFFh: 0 = Enable	ROMCS# for F0000h- F7FFFh: 0 = Enable	ROMCS# for E8000h- EFFFFh: 0 = Disable	ROMCS# for E0000h- E7FFFh 0 = Disable	ROMCS# for D8000h- DFFFFh: 0 = Disable	ROMCS# for D0000h- D7FFFh: 0 = Disable	ROMCS# for C8000h- CFFFFh: 0 = Disable	ROMCS# for C0000h- C7FFFh: 0 = Disable
1 = Disable	1 = Disable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
PCIDV1 4Bh	T ======			elect Register 2			Default = 00h
ROMCS# for FFFF8000h- FFFFFFFh:	ROMCS# for FFFF0000h- FFFF7FFFh:	ROMCS# for FFFE8000h- FFFEFFFFh:	ROMCS# for FFFE0000h- FFFE7FFFh:	ROMCS# for FFFD8000h- FFFDFFFFh:	ROMCS# for FFFD0000h- FFFFD7FFFh:	ROMCS# for FFFC8000h- FFFCFFFFh:	ROMCS# for FFFC0000h- FFFC7FFFh:
0 = Enable 1 = Disable	0 = Enable 1 = Disable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable

Page 306 912-2000-015

7	6	5	4	3	2	1	0	
PCIDV1 4Ch-4D	4Ch-4Dh Reserved							
PCIDV1 4Eh Miscellaneous Control Register 1 D								
0 = Test 4 Disable 1 = Test 4 Enable Intended for use on tester. Not for applications use.	This bit must be set to 1 to correct improper opera- tion on TC.	Reserved		Pipelined byte merge function: 0 = Disable 1 = Enable	EOP: 0 = Output 1 = Input	Byte merge: 0 = Disable 1 = Enable	ISA master data swap: 0 = Enable 1 = Disable	
PCIDV1 4Eh - F	S ACPI Version		Miscellaneous (Control Register	1		Default = 00h	
0 = Test 4 Disable 1 = Test 4 Enable Intended for use on tester. Not for applications use.	This bit must be set to 1 to correct improper opera- tion on TC.	Always assert MCS16# during buffer DMA ISA master mode: 0 = Disable 1 = Enable Intended for use on tester. Not for applications use.	Allow AD data path when CPU reads ISA slave: 0 = Disable 1 = Enable Intended for use on tester. Not for applications use.	Pipelined byte merge function: 0 = Disable 1 = Enable	EOP: 0 = Output 1 = Input	Byte merge: 0 = Disable 1 = Enable	ISA master data swap: 0 = Enable 1 = Disable	

PCIDV1 00h-FFh (cont.) Table 5-8

7	6	5	4	3	2	1	0		
PCIDV1 4Fh		Miscellaneous Control Register 2							
Reserved	IDE interface: 0 = Disable 1 = Enable	Primary IDE interface (1F0h): 0 = Disable 1 = Enable (Default)	AT clock wait state control: 0 = Extra WS for ISA cycles 1 = No extra WS	Context Save mode: 0 = Disable 1 = Enable	Timer positive decode in PC98 mode (I/O 77h, 75h, 73h, 71h): 0 = Disable, decode 1 CLK after subtractive decode 1 = Enable, medium decode and remap to 43h, 42h, 41h, and 40h	ROMCS#, KBDCS#, and DBEW# pin. selections: ⁽¹⁾	BIOS access after soft reset: 0 = ROM 1 = DRAM		

(1)0 =ROMCS# pin can be ROMCS# or PIO23 if PCIDV1 52h[2] = 0 ROMCS# pin can be ROMCS# and KBDCS# if PCIDV1 52h[2] = 1

KBDCS# pin can be KBDCS# or PIO24

DBEW# pin is DBEW#

1 =ROMCS# pin is ROMCS# and KBDCS# if PCIDV1 52h[2] = 0 or 1

KBDCS# pin is DRD# DBEW# is DWR# Note: Also see PCIDV1 52h[2].

PCIDV1	4Fh -	FS	A CPI	Version

PCIDV1 4Fh - FS	ACPI Version		Miscellaneous C	Control Register	2		Default = 20h		
Allow IRQA. BH PCI IRQs (when programed as level IRQs) to be shareable with PIO PCI IRQ pins: 0 = Disable 1 = Enable	IDE interface: 0 = Disable 1 = Enable	Primary IDE interface (1F0h): 0 = Disable 1 = Enable (Default)	AT clock wait state control: 0 = Extra WS for ISA cycles 1 = No extra WS	Context Save mode: 0 = Disable 1 = Enable	Timer positive decode in PC98 mode (I/O 77h, 75h, 73h, 71h): 0 = Disable, decode 1 CLK after subtractive decode 1 = Enable, medium decode and remap to 43h, 42h, 41h, and 40h	ROMCS#, KBDCS#, and DBEW# pin selections: ⁽¹⁾	BIOS access after soft reset: 0 = ROM 1 = DRAM		

(1)0 =ROMCS# pin can be ROMCS# or PIO23 if PCIDV1 52h[2] = 0

ROMCS# pin can be ROMCS# and KBDCS# if PCIDV1 52h[2] = 1

KBDCS# pin can be KBDCS# or PIO24

DBEW# pin is DBEW#

1 =ROMCS# pin is ROMCS# and KBDCS# if PCIDV1 52h[2] = 0 or 1

KBDCS# pin is DRD#

DBEW# is DWR#

Note: Also see PCIDV1 52h[2].

Page 308 912-2000-015

Table 5-8	PCIDV1 00h-	·FFh (cont.)						
7	6	5	4	3	2	1	0	
PCIDV1 50h-5	1h		Reserved					
PCIDV1 52h	Miscellaneous Controller Register 3							
PCIDVI 52II			wiscellaneous C	ontroller Registe		1	Default = 00	
		Reserved			ROMCS# pin selection: 0 = Controlled by PCIDV1 4Fh[1] 1 = ROMCS# pin is always ROMCS# and KBDCS# Note: Also see PCIDV1 4Fh[1]	Priority scheme: 0 = Disable 1 = Enable A setting of 1 will employ a priority scheme that guarantees higher priority for PCI masters during arbitra- tion over DMA and ISA mas- ters for the first 7µs interval after every refresh cycle.	Concurrent refresh and IDE cycle: 0 = Disable 1 = Enable ISA devices that rely on accurate refresh addresses for proper operation should disable this bit.	
PCIDV1 52h -	FS ACPI Version		Miscellaneous C	ontroller Registe	r 3		Default = 00	
	Reserved		Abort DDMA remap cycle if claimed by Firestar: 0 = Disable 1 = Enable	Rsvd pin (A7) function: 0 = Rsvd 1 = SDCKE	ROMCS# pin selection: 0 = Controlled by PCIDV1 4Fh[1] 1 = ROMCS# pin is always ROMCS# and KBDCS# Note: Also see PCIDV1 4Fh[1]	Priority scheme: 0 = Disable 1 = Enable A setting of 1 will employ a priority scheme that guarantees higher priority for PCI masters during arbitra- tion over DMA and ISA mas- ters for the first 7µs interval after every refresh cycle.	Concurrent refresh and IDE cycle: 0 = Disable 1 = Enable ISA devices that rely on accurate refresh addresses for proper operation should disable this bit.	

7	6	5	4	3	2	1	0
PCIDV1 53h		I	Miscellaneous Co	ontroller Registe	r 4		Default = 00h
SDRAM control on TAG[7:4]:	RAS3# or	on on either RAS4# pin:	SDCKE on IRQSER:	SDCKE on SEL/ATB#:	MicroChannel support:	Lock flash ROM:	Reserved
0 = TAG[7:4] controlled by SYSCFG 00h[5] and SYSCFG 11h[3] 1 = TAG[7:4] become SDRAS#, SDCAS#, DWE#, and SDCKE, respectively	00 = Disable 01 = MA12 or 10 = MA12 or 11 = Reserved	RAS4# pin	<u>0 = Disable</u> <u>1 = Enable</u>	0 = Disable 1 = Enable	0 = Disable, and allows GNT0# pre- emption 1 = Enable (disables Port 000h accesses, tristates AEN), and masks GNT0# pre- emption	0 = Disable (generates ROMCS# during ROM writing) 1 = Enable (no ROMCS# on ROM writes)	
Note: Setting to 1 will override SYSCFG 11h[3]							

PCIDV1 54h

IRQ Driveback Address Register - Byte 0: Address Bits [7:0]

Default = 00h

IRQ driveback protocol address bits [7:0]:

- When an external device logic, such as the 82C824 PC Card Controller or the 82C814 Docking Controller, must generate an interrupt from any source, it follows the IRQ Driveback Protocol and toggles the REQ# line to the 82C700. Once it has the bus, it writes the changed IRQ information to the 32-bit I/O address specified in this register. The 82C700 interrupt controller claims this cycle and latches the new IRQ values.
- This register defaults to a value of 00h, which disables the IRQ driveback scheme.

PCIDV1 55h	IRQ Driveback Address Register - Byte 1: Address Bits [15:8]	Default = 00h
PCIDV1 56h	IRQ Driveback Address Register - Byte 2: Address Bits [23:16]	Default = 00h
PCIDV1 57h	IRQ Driveback Address Register - Byte 3: Address Bits [31:24]	Default = 00h
PCIDV1 58h	DRQ Remap Base Address Register - Byte 0: Address Bits [7:0]	Default = 00h

DRQ remap base address bits [7:0]:

- The distributed DMA protocol requires DMA controller registers for each DMA channel to be individually mapped into I/O space outside the range claimed by ISA devices. Bits A[31:0] of this register specify that base; bits 6:0 are reserved (write 0) because the base address can fall only on 128 byte boundaries. The 82C700 logic uses this base address two ways:
 - 1) to claim accesses to a PCMCIA DMA controller channel;
 - 2) to forward accesses across the bridge to remote devices specified in the DMA Channel Selector Register.

-										
PCIDV1 59h		DRQ Remap Base Address Register - Byte 1: Address Bits [15:8]								
PCIDV1 5Ah	5Ah DRQ Remap Base Address Register - Byte 2: Address Bits [23:16]									
PCIDV1 5Bh	DRQ Remap Base Address Register - Byte 3: Address Bits [31:24]							Default = 00h		
PCIDV1 5Ch DMA Channel Selector Register								Default = 00h		
01.7	01.0	01 -		<u> </u>	01.0	01.0	0.4	01.0		

PCIDV1 5Ch			DMA Channel S	Selector Register			Default = 00h			
Ch 7	Ch 6	Ch 5	Hardware Dis-	Ch 3	Ch 2	Ch 1	Ch 0			
(DMAC2):	(DMAC2):	(DMAC2):	tributed DMA:	(DMAC1):	(DMAC1):	(DMAC1):	(DMAC1):			
0 = Local	0 = Local	0 = Local	0 = Disable	0 = Local	0 = Local	0 = Local	0 = Local			
1 = On PCI	1 = On PCI	1 = On PCI	1 = Enable	1 = On PCI	1 = On PCI	1 = On PCI	1 = On PCI			

Page 310 912-2000-015

Table 5-8 PCIDV1 00h-FFh	(cont.)
--------------------------	---------

7 6		5	4	3	2	1	0
PCIDV1 5Dh			Res	erved			Default = 00h
PCIDV1 5Eh End-of-Interrupt Holdoff bits The value of these bits selec number of retries that will be forced on the PCI bus every an attempt is made to write I Port 020h or 0A0h, where O of the interrupt controller is s Multiple retries ensure that a device trying to generate an driveback will succeed befor EOI command takes effect. feature eliminates the possit that an EOI could be registe before a change in IRQ statu	time /O CW2 et. IRQ e an This illity	IRQ driveback data readback selection at PCIDV1 60h-63h: 0 = 1st data phase 1 = 2nd data phase		nagement Regist	Reserved		Default = 00h

Configuration Register Index/Data Port Address bits A[15:8]:

- This byte provides the upper address bits of the 16-bit address for the system configuration registers index/data port. Bits A[7:0] always point to 22h/24h. At reset, this register defaults to 0, so the full I/O address for the index/data ports is 0022h/0024h.

SYSCFG Base Select Register

PCIDV1 60h IRQ Driveback Data Register - Byte 0: Data Bits [7:0]

Default = 00h

Default = 00h

IRQ Driveback Data Bits [7:0]:

PCIDV1 5Fh

- Whenever the 82C700 receives an IRQ driveback cycle, it latches the entire 32-bit data value in this register. If any of the IRQs set active in this driveback are also programmed to generate an SMI (through the standard PMU register settings), SMM code can read this register to determine the exact driveback value written.

PCIDV1 61h	IRQ Driveback Data Register - Byte 1: Data Bits [15:8]	Default = 00h
PCIDV1 62h	IRQ Driveback Data Register - Byte 2: Data Bits [23:16]	Default = 00h
PCIDV1 63h	IRQ Driveback Data Register - Byte 3: Data Bits [31:24]	Default = 00h

PCI master write X-1-1-1: read X-1-1-1: re	7	6	5	4	3	2	1	0
write X-1-1-1: 0 = Disable 1 = Enable 2 = Enable 3 = Enable 3 = Enable 4 = Enable 5 = Enable 6 = En	PCIDV1 64h			PCI Master Co	ntrol Register 1			Default = 10h
PCI master write X-1-1-1: 0 = Disable 1 = Enable 1 = Enable	write X-1-1-1: 0 = Disable	read X-1-1-1: 0 = Disable	concurrence: 0 = Disable 1 = Enable Also see	protocol: 0 = Disable 1 = Enable (Default = 1) (Use HREQ to	ous byte enables for PCI masters: 0 = Disable	Reserved		0 = Enable 1 = Disable, to increase PCI master
write X-1-1-1: 0 = Disable 1 = Enable 1 = Disable 1 = Enable 1 = Disable 1 = Enable 1 = Disable 1 = Enable 1 = Disable 1 = Disable 1 = Disable 1 = Enable 1 = Disable 1 = Disable 1 = Disable 1 = Enable 1 = Disable 1 = Enable 1 = Disable 1 = Disable 1 = Enable 1 = Enable 1 = Disable 1 = Enable 1 = Enable 1 = Disable 1 = Enable 1 = Disable 1 = Enable 1 = Enable 1 = Disable 1 = Enable 1	PCIDV1 64h - F	S ACPI Version		PCI Master Co	ontrol Register 1			Default = 10h
Reserved CPU priority control - When accessing PCI: 00 = CPU is lowest priority 01 = Highest priority after 4 PCI master grants 10 = Highest priority after 2 PCI master grants 11 = Highest priority after 3 PCI master grants 11 = Highest priority after 3 PCI master grants 11 = Highest priority after 3 PCI master grants 11 = Highest priority after 3 PCI master grants PCIDV1 65h - FS ACPI Version Reserved CPU priority control - When accessing PCI: DE cycles if buffered DMA occupies the ISA bus: 0 = Enable 1 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 10 = Highest priority after 4 PCI master grants 11 = Highest priority after 4 PCI master grants 11 = Highest priority after 4 PCI master grants 11 = Highest priority after 4 PCI master grants 11 = Highest priority after 3 PCI master gran	write X-1-1-1: 0 = Disable	read X-1-1-1: 0 = Disable	concurrence: 0 = Disable 1 = Enable Also see	protocol: 0 = Disable 1 = Enable (Default = 1) (Use HREQ to	ous byte enables for PCI masters: 0 = Disable	Reserved	reset for refresh logic (for improved timing): 0 = Enable	0 = Enable 1 = Disable, to increase PCI master
CPU priority control - When accessing PCI: O0 = CPU is lowest priority	PCIDV1 65h			PCI Master Co	ontrol Register 2			Default = 01h
PCIDV1 65h - FS ACPI Version Reserved Reserv	Reserved		accessing PCI: 00 = CPU is lowest priority 01 = Highest priority after 4 PCI master grants 10 = Highest priority after 2 PCI master grants 11 = Highest priority after 3 PCI		request register recover: ⁽¹⁾ 0 = Disable	current or base address and counter to be read: 0 = Current	CPU/PCI mas- ter access ISA cycle: 0 = Disable	signal during CPU-to-PCI cycles: ⁽²⁾ 0 = Disable 1 = Enable
Reserved Retry all PC IDE cycles if buffered DMA occupies the ISA bus: 0 = Enable 1 = Disable 1 = Disable 1 = Highest priority after 3 PCl master grants 11 = Highest priority after 3 PCl master grants 11 = Highest priority after 3 PCl master grants 11 = Highest priority after 3 PCl master grants 11 = Highest priority after 3 PCl master grants 11 = Highest priority after 3 PCl master grants 11 = Highest priority after 3 PCl master grants 12 = Master grants 13 = Master grants 14 = Master grants 15	' '			CFG 99h for PIC1	and 9Ah for PIC2			
IDE cycles if buffered DMA occupies the ISA bus: 0 = Enable 1 = Disable 1 = Highest priority after 2 PCI master grants 10 = Highest priority after 2 PCI master grants 11 = Highest priority after 3 PCI master grants 11 = Highest priority after 3 PCI master grants 11 = Highest priority after 3 PCI master grants 12 = Highest priority after 3 PCI master grants 13 = Highest priority after 3 PCI master grants 14 = Highest priority after 3 PCI master grants 15 = Highest priority after 3 PCI master grants 16 = Highest priority after 3 PCI master grants 17 = Highest priority after 3 PCI master grants 18 = Highest priority after 3 PCI master grants 19 = CPU/PCI master address and counter to be read: 10 = Disable 10 = CPU is lowest priority 0 = Disable 10 = CPU is lowest priority 0 = Disable 10 = CPU is lowest priority 0 = Disable 10 = CPU is lowest priority 11 = Enable 12 = Enable 13 = Enable 14 = Enable 15 = Enable 16 = CPU/PCI master access ISA cycle: 16 = CPU/PCI master access ISA 17 = CPU/PCI master access ISA 18 = CPU/PCI master access ISA 19 = Disable 10 = Disable 10 = Enable 10 = Disable 10 = Enable 10 = Enable 10 = Disable 10 = Enable 10 = Disable 10 = CPU is lowest priority 10 = Disable 10 = Disable 10 = CPU is lowest priority 10 = Disable 10 = Disable 10 = Current 11 = Enable 10 = Enable 10 = Disable 10 = Enable 10 = Enable 10 = Disable 10 = Enable 10 = Enable 10 = Disable 10 = CPU is lowest priority 10 = Disable 10 = CPU is lowest priority 10 = Disable 10 = Disable 10 = CPU is lowest priority 10 = Disable 10 = Disable 10 = Disable 10 = Enable 10 = Enable 10 = Enable 10 = Enable 10 = Disable 10 = Enable 10 = Enable 10 = Enable 10 = Disable 10 = Enable 10 = Disable 10 = Enable 10 =	PCIDV1 65h - F	S ACPI Version		PCI Master Co	ntrol Register 2			Default = 01h
· /	Reserved	IDE cycles if buffered DMA occupies the ISA bus: 0 = Enable	accessi 00 = CPU is lowe 01 = Highest prio master gran 10 = Highest prio master gran 11 = Highest prio	ng PCI: est priority rity after 4 PCI ts rity after 2 PCI ts rity after 3 PCI	request register recover: ⁽¹⁾ 0 = Disable	current or base address and counter to be read: 0 = Current	CPU/PCI mas- ter access ISA cycle: 0 = Disable	signal during CPU-to-PCI cycles: ⁽²⁾ 0 = Disable 1 = Enable
(2) Bit 0 is used only if PCIDV1 64h[4] = 1.	` '			CFG 99h for PIC1	and 9Ah for PIC2			

Page 312 912-2000-015

7	6	5	4	3	2	1	0
PCIDV1 66h			Rese	erved			Default = 00h
DOIDIU CZŁ			Missaullana and G	antes I Denistan	-		D-4U 001
PCIDV1 67h	<u> </u>		Miscellaneous C	-	1		Default = 00h
PCI arbitration time-out mode:	Zero wait state CPU R/W for	Reserved	CPU request for PCI control:	Reserved	Refresh preemption:	AHOLD delay:	AD31 in Type 1 configuration
0 = Disable	I/O accesses:		0 = Normal		0 = Enable	<u>0 = No delay</u> <u>1 = Delay</u>	cycle:
1 = Enable	0 = Disable		1 = Reserved		1 = Disable	AHOLD by	0: AD31 = 0
See PCIDV1	1 = Enable					3 PCI CLKs	1: AD31 = 1
65h[5:4])							
PCIDV1 68h			PCICLK Cont	rol Register 1			Default = FF
Rese	erved	PCICLK5:	PCICLK4:	PCICLK3:	PCICLK2:	PCICLK1:	PCICLK0:
		0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable	0 = Disable
		1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable	1 = Enable
PCIDV1 69h			PCICLK Cont	rol Register 2			Default = 00h
Rese	erved	PCICLK5	PCICLK4	PCICLK3	PCICLK2	PCICLK1	PCICLK0
		affected by	affected by	affected by	affected by	affected by	affected by
		CLKRUN#:	CLKRUN#:	CLKRUN#:	CLKRUN#:	CLKRUN#:	CLKRUN#:
		0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes	0 = No 1 = Yes
		1 = 105	T = Tes	I = TeS	1 = 165	I = res	1 = 165
PCIDV1 6Ah		PCICL	K Skew Adjust Re	egister for PCICL	.K 0, 1, 2		Default = 00h
Reserved:		Coarse adjustmen	t:	Reserved		Fine adjustment:	
For PCICLK	000 = No dela	,			000 = No delay		
debug purposes.	,	K period ÷2) + ~4 K period ÷2) + ~8			001 = Add ~1ns 010 = Add ~2ns		
purposos.	,		period ÷2) + ~12ns		010 = Add ~211s		
		K period ÷2) + ~1				= Add ~4ns	
		K period ÷2) + ~2				= Add ~5ns = Add ~6ns	
	,	K period ÷2) + ~2 K period ÷2) + ~28				= Add ~6ns = Add ~7ns	
Note: If both coation.	,	· /	t are set to 0 (no d	elay), PCICLKIN	will be routed to F	CICLK output with	no compensa-
PCIDV1 6Bh		PCICI	K Skew Adjust Re	egister for PCICI	K345		Default = 00h
Reserved:		Coarse adjustmen	'	Reserved	I	Fine adjustment:	
For PCICLK	000 = No dela	-		110501104	000		
debug		, K period ÷2) + ~4	ns		000 = No delay 001 = Add ~1ns		
purposes.	010 = (PCICLK period ÷2) + ~8ns			010 = Add ~2ns			
	011 = (PCICLK period ÷2) + ~12ns 100 = (PCICLK period ÷2) + ~16ns			011 = Add ~3ns			
		K period ÷2) + ~1 K period ÷2) + ~2			100 = Add ~4ns 101 = Add ~5ns		
	110 = (PCICLK period ÷2) + ~24ns						
		<pre><pre><pre><pre><pre><pre><pre></pre></pre></pre><pre><pre><pre><pre></pre></pre></pre><pre><pre><pre></pre></pre></pre><pre></pre></pre><pre></pre></pre><pre></pre></pre><pre></pre></pre></pre>				= Add ~7ns	

7	6	5	4	3	2	1	0	
PCIDV1 6Ch-6F	h		Res	erved			Default = 00h	
PCIDV1 70h			Leakage Control	I Register - Byte	0		Default = 00h	
W/R#, HITM#, FERR#, SMIACT# Suspend state: 00 = No pull-downs 01 = Pull-down 10 = Reserved 11 = Reserved		1		HD[63:0] Suspend and Idle state: 00 = Tristate 01 = Tristate, pull-down 10 = Reserved 11 = Reserved			31:3] Id state: pull-down d	
PCIDV1 71h		Suspend	Laskana Osmina	Register - Byte	4		Default = 00h	
IGERR# Susper 00 = Drive ac 01 = Drive ina 10 = Tristate, 11 = Reserve	ctive pull-down	NMI, ÎNTR	JINIT, AHOLD, , STPCLK# and state:	BRDY#. NA#. KEN#. EADS#. BOFF#. SMI# Suspend state: 0 = Drive 1 = Tristate	MD[63:0] Suspend state: XX1 = Pull-down at Idle			
PCIDV1 72h			Leakage Contro	I Register - Byte	2		Default = 00h	
	_	STOP#. AD[3 FRAME#, PAR, I DEVSEL#, GI GNTO#. RE	•	DY#TAG[7:0] state: K#X1 = Tristate pull-down in STPCLK# 1X = Tristate pull-down in Suspend		BWE#, GWE# Suspend state: 0 = Drive 1 = Tristate	CACS# Suspend state: 0 = Drive 1 = Tristate, pull-down	
PCIDV1 73h			Leakage Contro	l Register - Byte	3		Default = 00h	
Susper 00 = Drive 01 = Tristate 10 = Tristate,	<u> </u>		nd state: Idown in Active Ite in Suspend Ictive mode. Iuspend mode Idown in Active Idown in Suspend Ictive mode. pull-	DBE Suspen 00 = Drive 01 = Tristate 10 = Tristate, 11 = Reserved	pull-down	IRQSER Suspend state: 00 = Drive 01 = Tristate 10 = Tristate, pull-down 11 = Reserved		

Page 314 912-2000-015

Table 5-8	PCIDV1	00h-FFh ((cont.)
-----------	--------	-----------	---------

Table 3-0	CIDVI OUIFI	· , ,					
7	6	5	4	3	2	1	0
PCIDV1 74h			Leakage Contro	l Register - Byte	4		Default = 00h
01 = Tristate			•	mode 01 = Pull-up in Adtristate in Su 10 = No pull-up/d	d state: own in Active te in Suspend ctive mode, uspend mode own in Active lown in Suspend		pull-down
PCIDV1 75h		1	Leakage Contro	Register - Byte	5		Default = 00h
Secondary IDE interface in ISA-less mode: 0 = Tristated 1 = Driven	XD bus (primary IDE interface) in no XD bus mode: 0 = Tristated 1 = Driven This bit must be set if the RTCAS:A20M# strap option = 10 to allow IDE control signals to be driven on the XD bus.	MD[63:0] engage pull-down: 0 = Controlled by PCIDV1 71[2:0]h 1 = Pull-down always (overrides PCIDV1 71h[2:0])	TAG[7:0] engage pull-down: 0 = Controlled by PCIDV1 72h[3:2] 1 = Pull-down always (overrides PCIDV1 72h[3:2])	DACK Suspen 00 = Drive 01 = Tristate 10 = Tristate 11 = Reserved		RTCAS, RTCF Suspen 00 = Drive 01 = Tristate 10 = RTCAS: Tris RTCRD# an Tristate, pull 11 = Reserved	d state: state, pull-up, id RTCWR#:
PCIDV1 75h - F9	S ACPI Version		Leakage Contro	l Register - Byte	5		Default = 00h
Secondary IDE interface in ISA-less mode: 0 = Tristated 1 = Driven	XD bus (primary IDE interface) in no XD bus mode: 0 = Tristated 1 = Driven This bit must be set if the RTCAS:A20M# strap option = 10 to allow IDE control signals to be driven on the XD bus.	MD[63:0] engage pull-down: 0 = Controlled by PCIDV1 71[2:0]h 1 = Pull-down always (overrides PCIDV1 71h[2:0])	TAG[7:0] engage pull-down: 0 = Controlled by PCIDV1 72h[3:2] 1 = Pull-down always (overrides PCIDV1 72h[3:2])	DACK Suspen 00 = Drive 01 = Tristate 10 = Drive low 11 = Reserved	d state:	RTCAS, RTCRD#, RTCW Suspend state: 00 = Drive 01 = Tristate 10 = RTCAS: Tristate, pull-u RTCRD# and RTCWRi Tristate, pull-down 11 = Reserved	
PCIDV1 76h		Н	ot Docking Leak	age Control Regis	ster		Default = 00h
			erved			Hot-docking tristate PCI bus/control: 0 = Disable 1 = Enable	Hot-docking tristate ISA bus/control: 0 = Disable 1 = Enable
PCIDV1 77h-7Fh	1		Res	erved			Default = 00h

I

				T	ı	T T			
7	6	5	4	3	2	1	0		
PCIDV1 80h		Ī	PIO0 Pin (CDOE#) Function Regist	ter		Default = 00h		
Tristate, pull- down PIO0 dur- ing Suspend: 0 = No 1 = Yes	001 = Group 2 010 = Group 2 011 = Group 3 100 = Group 4 101 = Group 5	O (Power Manager I (Power Control of C (Miscellaneous I B (Miscellaneous of I (IDE Controller of G (Gate Logic Input G (Logic Outputs) (Reserved)	Outputs) nputs) Outputs) Outputs)	0000 = Group 0001 = Group 0010 = Group 0011 = Group 0100 = Group 0101 = Group 0110 = Group 0111 = Group	ub-function 8 ub-function 9 ub-function 10 ub-function 11 ub-function 12 ub-function 13 ub-function 14 b-function 15				
Note: Refer to S	ection 3.3, Progra		for further informat	ion.					
PCIDV1 81h			IO1 Pin (TAGWE	#) Function Regis	ster		Default = 00h		
Tristate, pull- down PIO1 dur- ing Suspend: 0 = No 1 = Yes	Group X selection: Refer to PCIDV1 80h[6:4] for decode.			F	•	tion X selection: :0h[3:0] for decode	-		
PCIDV1 82h		PIO2 Pin (ADSC#) Function Register							
Tristate, pull- down PIO2 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	· ·	tion X selection: :0h[3:0] for decode			
PCIDV1 83h			PIO3 Pin (ADV#)	Function Registe	er		Default = 00h		
Tristate, pull- down PIO3 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: :0h[3:0] for decode			
PCIDV1 84h		l	PIO4 Pin (RAS2#) Function Regist	er		Default = 00h		
Tristate, pull- down PIO4 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: 0h[3:0] for decode			
PCIDV1 85h		I	PIO5 Pin (RAS1#) Function Regist	er		Default = 00h		
Tristate, pull- down PIO5 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: :0h[3:0] for decode			

Page 316 912-2000-015

7	6	5	4	3	2	1	0		
PCIDV1 86h		Р	106 Pin (CLKRUN	#) Function Regi	ster		Default = 00h		
Tristate, pull- down PIO6 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] t		F					
PCIDV1 87h			PIO7 Pin (REQ1#) Function Regis	ter		Default = 00h		
Tristate, pull- down PIO7 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4]	n:		Group sub-func	tion X selection: 0h[3:0] for decode.			
PCIDV1 88h		PIO8 Pin (REQ2#) Function Register							
Tristate, pull- down PIO8 dur- ing Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] t		F	•	tion X selection: 0h[3:0] for decode.			
PCIDV1 89h			PIO9 Pin (DDRQ0) Function Regis	ter		Default = 00h		
Tristate, pull-down PIO9 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] f		F	•	tion X selection: 0h[3:0] for decode.			
PCIDV1 8Ah			PIO10 Pin (IRQ1)	Function Regist	er		Default = 00h		
Tristate, pull- down PIO10 during Suspend: 0 = No 1 = Yes		Group X selection		F	•	tion X selection: 0h[3:0] for decode.			
PCIDV1 8Bh	PCIDV1 8Bh PIO11 Pin (IRQ8#) Function Register								
Tristate, pull- down PIO11 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] f		F					

Table 5-8	PCIDV1 00h-I	-Fii (Cont.)					
7	6	5	4	3	2	1	0
PCIDV1 8Ch				2) Function Regis	ter		Default = 00h
Tristate, pull- down PIO12 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F		tion X selection: :0h[3:0] for decode.	
PCIDV1 8Dh		ı	PIO13 Pin (IRQ1	4) Function Regis	ter		Default = 00h
Tristate, pull- down PIO13 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F			
PCIDV1 8Eh		DIC.	14 Dip /SEL #/A	ГВ#) Function Reg	riotor		Default = 00h
Tristate, pull-down PIO14 during Suspend: 0 = No 1 = Yes	1	Group X selection PCIDV1 80h[6:4] fo	· :		Group sub-func	tion X selection: 0h[3:0] for decode.	
PCIDV1 8Fh		P	O15 Pin (RSTD	RV) Function Regi	ster		Default = 00h
Tristate, pull- down PIO15 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: :0h[3:0] for decode.	
PCIDV1 90h			PIO16 Pin (SA1)	6) Function Regist	er		Default = 00h
Tristate, pull- down PIO16 during Suspend: 0 = No 1 = Yes	1	Group X selection PCIDV1 80h[6:4] fo	· · · · · · · · · · · · · · · · · · ·		Group sub-func	tion X selection: 0h[3:0] for decode.	
PCIDV1 91h			PIO17 Pin (SA1	7) Function Regist	er		Default = 00h
Tristate, pull-down PIO17 during Suspend:		Group X selection PCIDV1 80h[6:4] fo	:		Group sub-func	tion X selection: 0h[3:0] for decode.	22.22.4 = 2911

Page 318 912-2000-015

Table 5-0	1 015 1 1 0011-1	T II (COIIC.)					
7	6	5	4	3	2	1	0
PCIDV1 92h			PIO18 Pin (IO16#	f) Function Regis	ter		Default = 00h
Tristate, pull- down PIO18 during Suspend: 0 = No 1 = Yes		Group X selectior PCIDV1 80h[6:4] f		I		tion X selection: t0h[3:0] for decode.	
PCIDV1 93h			PIO19 Pin (M16#) Function Regist	ler		Default = 00h
Tristate, pull- down PIO19 during Suspend: 0 = No 1 = Yes		Group X selectior PCIDV1 80h[6:4] f		ſ	•	tion X selection: t0h[3:0] for decode.	
PCIDV1 94h			PIO20 Pin (SRHE	#) Function Regis	etor.		Default = 00h
Tristate, pull- down PIO20 during Suspend: 0 = No 1 = Yes		Group X selectior PCIDV1 80h[6:4] f	า:		Group sub-func	ction X selection: i0h[3:0] for decode.	
PCIDV1 95h		F	PIO21 Pin (SMRD	#) Function Regis	ster		Default = 00h
Tristate, pull- down PIO21 during Suspend: 0 = No 1 = Yes	1	Group X selectior PCIDV1 80h[6:4] f		I		tion X selection: t0h[3:0] for decode.	
PCIDV1 96h		F	PIO22 Pin (SMWR	#) Function Regi	ster		Default = 00h
Tristate, pull- down PIO22 during Suspend: 0 = No 1 = Yes		Group X selectior PCIDV1 80h[6:4] f		ſ	<u>=</u>	tion X selection: t0h[3:0] for decode.	
PCIDV1 97h		Р	IO23 Pin (ROMCS	S#) Function Regi	ister		Default = 00h
Tristate, pull- down PIO23 during Suspend: 0 = No		Group X selectior PCIDV1 80h[6:4] f		Group sub-function X selection:			

Table 5-8	PCIDV1 00h-I	-rii (cont.)					
7	6	5	4	3	2	1	0
PCIDV1 98h		Pl	O24 Pin (KBDC	S#) Function Regi	ster		Default = 00h
Tristate, pull- down PIO24 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		Group sub-function X selection: Refer to PCIDV1 80h[3:0] for decode			
PCIDV1 99h		F	21025 Pin (DRQ/	A) Function Regis	ter		Default = 00h
Tristate, pull- down PIO25 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: 0h[3:0] for decode.	
PCIDV1 9Ah		F	PIO26 Pin (DROI	3) Function Regis	ter		Default = 00h
Tristate, pull- down PIO26 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: 0h[3:0] for decode.	
PCIDV1 9Bh		F	21027 Pin (DRQ0	C) Function Regis	ter		Default = 00h
Tristate, pull- down PIO27 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo		F	•	tion X selection: 0h[3:0] for decode.	
PCIDV1 9Ch		F	PIO28 Pin (DRQI	D) Function Regis	ter		Default = 00h
Tristate, pull- down PIO28 during Suspend: 0 = No 1 = Yes		Group X selection PCIDV1 80h[6:4] fo	:		Group sub-func	tion X selection: 0h[3:0] for decode.	
PCIDV1 9Dh		F	PIO29 Pin (DRQI	E) Function Regis	ter		Default = 00h
Tristate, pull-down PIO29 during Suspend:		Group X selection PCIDV1 80h[6:4] fo	:		Group sub-func	tion X selection: 0h[3:0] for decode.	

Page 320 912-2000-015

7	6	5	4	3	2	1	0		
PCIDV1 9Eh			PIO30 Pin (DRQF) Function Regis	ter		Default = 00h		
Tristate, pull- down PIO30 during Suspend: 0 = No 1 = Yes		Group X selection CCIDV1 80h[6:4] f		F	€.				
PCIDV1 9Fh		I	PIO31 Pin (DRQG) Function Regis	ter		Default = 00h		
Tristate, pull- down PIO31 during Suspend: 0 = No 1 = Yes		Group X selectior PCIDV1 80h[6:4] fi		Group sub-function X selection: Refer to PCIDV1 80h[3:0] for decode.					
DOIDM AND			l - vi- Mass	in Decision 4			D-4U 00b		
PCIDV1 A0h				ix Register 1	T		Default = 00h		
Invert input 01h (whether from PIO pin or from logic matrix output)? 0 = No 1 = Yes	000 = P 001 = L 010 = C 011 = C 100 = C 101 = C	•	ut) put)) ut) putput)	Invert input 00h (whether from PIO pin or from logic matrix output)? 0 = No 1 = Yes	Refer to PCIDV1 A0h[6:4] for decode.				
PCIDV1 A1h			Logic Matr	atrix Register 2 Default = 00h					
Invert input 03h? 0 = No 1 = Yes		logic input 03h (N CIDV1 A0h[6:4] f	•	Invert input 02h? 0 = No 1 = Yes	Connect logic input 02h (AND3) to: Refer to PCIDV1 A0h[6:4] for decode.				
PCIDV1 A2h			Logic Matr	ix Register 3			Default = 00h		
Invert input 05h? 0 = No 1 = Yes		t logic input 05h (PCIDV1 A0h[6:4] f	,	Invert input 04h? 0 = No 1 = Yes		rt logic input 04h (0 PCIDV1 A0h[6:4] fo	•		
PCIDV1 A3h			Logic Matr	ix Register 4		Default = 00h			
Invert input 07h? 0 = No 1 = Yes		logic input 07h (> CIDV1 A0h[6:4] f		Invert input 06h? 0 = No 1 = Yes	6h (OR3) to: 4] for decode.				

7	6	5	4	3	2	1	0
PCIDV1 A4h			Logic Matı	rix Register 5			Default = 00h
Invert input 09h? 0 = No 1 = Yes		logic input 09h (X PCIDV1 A0h[6:4] र्ग	•	Invert input 08h? 0 = No 1 = Yes		(OR2) to: or decode.	
PCIDV1 A5h			Logic Mate	rix Register 6			Default = 00h
Invert input		nnect logic input (Invertinput		nnect logic input	
0Bh?		p-flop 1, -D input)		0Ah?		flop 1, PRE# inpu	
0 = No 1 = Yes	Refer to P	PCIDV1 A0h[6:4] fo	or decode.	0 = No 1 = Yes	Refer to F	PCIDV1 A0h[6:4] f	or decode.
PCIDV1 A6h			Logic Matı	rix Register 7			Default = 00h
Invert input 0Dh?		nnect logic input (flop 1, CLR# inpu		Invert input 0Ch?		nnect logic input (p 1, CPUCLKIN in	
0 = No 1 = Yes	Refer to P	PCIDV1 A0h[6:4] f	or decode.	0 = No 1 = Yes	Refer to F	PCIDV1 A0h[6:4] f	or decode.
PCIDV1 A7h			Logic Mate	rix Register 8			Default = 00h
Invert input	Co	nnect logic input (Invert input		nnect logic input	
0Fh?	(flip-flo	p 2, CPUCLKIN ir	iput) to:	0Eh?	(fl	to:	
0 = No 1 = Yes	Refer to P	PCIDV1 A0h[6:4] f	or decode.	0 = No 1 = Yes	Refer to F	PCIDV1 A0h[6:4] f	or decode.
PCIDV1 A8h			PIO Pin Curron	t State Register 1	1		Default = 00h
Value on	Value on	Value on	Value on	Value on	Value on	Value on	Value on
PIO7 pin:	PIO6 pin:	PIO5 pin:	PIO4 pin:	PIO3 pin:	PIO2 pin:	PIO1 pin:	PIO0 pin:
0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low
1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high
PCIDV1 A9h			PIO Pin Curren	t State Register 2)		Default = 00h
Value on	Value on	Value on	Value on	Value on	Value on	Value on	Value on
PIO15 pin: 0 = Logic low	PIO14 pin: 0 = Logic low	PIO13 pin: 0 = Logic low	PIO12 pin: 0 = Logic low	PIO11 pin: 0 = Logic low	PIO10 pin: 0 = Logic low	PIO9 pin: 0 = Logic low	PIO8 pin: 0 = Logic low
1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high
PCIDV1 AAh			PIO Pin Curren	t State Register 3	3		Default = 00h
Value on PIO23 pin:	Value on PIO22 pin:	Value on PIO21 pin:	Value on PIO20 pin:	Value on PIO19 pin:	Value on PIO18 pin:	Value on PIO17 pin:	Value on PIO16 pin:
0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low	0 = Logic low
1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high	1 = Logic high
PCIDV1 ABh			PIO Pin Curren	t State Register 4	l		Default = 00h
Value on	Value on	Value on	Value on	Value on	Value on	Value on	Value on
PIO31 pin: 0 = Logic low	PIO30 pin: 0 = Logic low	PIO29 pin: 0 = Logic low	PIO28 pin: 0 = Logic low	PIO27 pin: 0 = Logic low	PIO26 pin: 0 = Logic low	PIO25 pin: 0 = Logic low	PIO24 pin: 0 = Logic low
1 = Logic low	1 = Logic low	1 = Logic high	1 = Logic low	1 = Logic low	1 = Logic high	1 = Logic low	1 = Logic high
PCIDV1 ACh-AD)h		Res	served			Default = 00h

Page 322 912-2000-015

Table 5-8 PCIDV1 00h-FF

7	6	5	4	3	2	1	0
PCIDV1 AEh			DBE# Sele	ct Register 1			Default = 01h
Reserved	000 = Disable 001 = DBE0#: 010 = DBE0-0 011 = DBE0-1 100 = Decode 101 = DBE1#: 110 = DBE1-0	DBEX# selection: (Default) Cable 0, Drives 0 #: Cable 0, Drive #: Cable 0, Drive all IDE accesses Cable 1, Drives 0 #: Cable 1, Drive #: Cable 1, Drive	0 and 1 0 1 0 and 1 0	Reserved	DBEW# selection: 000 = Disable 001 = DBE0#: Cable 0, Drives 0 and 1(Defi 010 = DBE0-0#: Cable 0, Drive 0 011 = DBE0-1#: Cable 0, Drive 1 100 = Decode all DE accesses 101 = DBE1#: Cable 1, Drives 0 and 1 110 = DBE1-0#: Cable 1, Drive 0 111 = DBE1-1#: Cable 1, Drive 1		0 and 1(Default) 0 1 0 and 1
PCIDV1 AFh			DBE# Sele	ct Register 2			Default = 00h
Reserved	000 = Disable 001 = DBE0#: 010 = DBE0-0 011 = DBE0-1 100 = Decode 101 = DBE1#: 110 = DBE1-0	DBEZ# selection: 000 = Disable (Default) 001 = DBE0#: Cable 0, Drives 0 and 1 010 = DBE0-0#: Cable 0, Drive 0 011 = DBE0-1#: Cable 0, Drive 1 100 = Decode all IDE accesses 101 = DBE1#: Cable 1, Drives 0 and 1 110 = DBE1-0#: Cable 1, Drive 0 111 = DBE1-1#: Cable 1, Drive 1		Reserved	000 = Disable 001 = DBE0# 010 = DBE0-0 011 = DBE0-1 100 = Decode 101 = DBE1# 110 = DBE1-0	0 1 0 and 1 0	
PCIDV1 B0h			IPOA Interrupt 6	Selection Registe	er		Default = 03h
	Rese		<u>-</u>			QA pin (Default =	
Engage pull- down on IRQA? 0 = No 1 = Yes	Hese	iveu	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	0000 = Disabl 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	•	Q6 1011 = Q7 1100 = Q8# 1101 = Q9 1110 =	: IRQ11 : IRQ12
PCIDV1 B1h			IRQB Interrupt S	Selection Registe	r		Default = 04h
Engage pull- down on IRQB? 0 = No 1 = Yes	Rese	rved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	-	pt selection on IR	Q7 1100 = Q8# 1101 = Q9 1110 =	: IRQ11 : IRQ12
PCIDV1 B2h			IRQC Interrupt S	Selection Registe	r		Default = 05h
Engage pull- down on IRQC? 0 = No 1 = Yes	Rese	rved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interru 0000 = Disabl 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	•	Q7 1100 = Q8# 1101 = Q9 1110 =	: IRQ11 : IRQ12

7	6	5	4	3	2	1	0
PCIDV1 B3h			IRQD Interrupt S	Selection Registe	r		Default = 06h
Engage pull- down on IRQD? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interru 0000 = Disabl 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	pt selection on IR0 e 0110 = IR0 0111 = IR0 1000 = IR0 1001 = IR0 1010 = IR0	Q6 1011 = Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12
PCIDV1 B4h			IRQE Interrupt S	Selection Registe	r		Default = 07h
Engage pull- down on IRQE? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interru 0000 = Disabl 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	pt selection on IR0 e 0110 = IR0 0111 = IR0 1000 = IR0 1001 = IR0 1010 = IR0	Q6 1011 = Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12
PCIDV1 B5h			IPOE Interment 6	Salastian Basista			Default = 09h
Engage pull- down on IRQF? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interru 0000 = Disable 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	pt selection on IR	Q6 1011 = Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ9): IRQ11 IRQ12
PCIDV1 B6h			IRQG Interrupt S	Selection Registe	r		Default = 0Ah
Engage pull- down on IRQG? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interrup 0000 = Disable 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	ot selection on IRC e 0110 = IRC 0111 = IRC 1000 = IRC 1001 = IRC 1010 = IRC	Q6 1011 = Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12
PCIDV1 B7h			IRQH Interrupt S	Selection Registe	r		Default = 0Bh
Engage pull- down on IRQH? 0 = No 1 = Yes	Rese	erved	Interrupt source: 0 = ISA (edge) 1 = PCI (level)	Interrup 0000 = Disable 0001 = IRQ1 0010 = Rsvd 0011 = IRQ3 0100 = IRQ4 0101 = IRQ5	ot selection on IRC e 0110 = IRC 0111 = IRC 1000 = IRC 1001 = IRC	Q6 1011 = Q7 1100 = Q8# 1101 = Q9 1110 =	IRQ11 IRQ12

Page 324 912-2000-015

Table 5-8 PCIDV1 00h-F

7	6	5	4	3	2	1	0
PCIDV1 B8h			PCI Interrupt Se	lection Register 1			Default = 00h
Interrupt sele	ction on PIO PCI	RQ1# input (Defau	ılt = Disable):	Interrupt sele	ction on PIO PCIF	RQ0# input (Defau	ılt = Disable):
0000 = Disab	le 0110 = IR0		IRQ11	0000 = Disable	e 0110 = IR0	06 1011 =	IRQ11
0001 = IRQ1	0111 = IR0		IRQ12	0001 = IRQ1	0111 = IRC	•	IRQ12
0010 = Rsvd	1000 = IR	•	•	0010 = Rsvd	1000 = IR0	•	
0011 = IRQ3	1001 = IR	* **	IRQ14	0011 = IRQ3	1001 = IR0		IRQ14
0100 = IRQ4	1010 = IR	Q10 1111 =	IRQ15	0100 = IRQ4	1010 = IR0	Q10 1111 =	IRQ15
0101 = IRQ5				0101 = IRQ5			·
PCIDV1 B9h			PCI Interrupt Se	lection Register 2	!		Default = 00h
Interrupt sele	ction on PIO PCIF	RQ3# input (Defau	ılt = Disable):	Interrupt sele	ction on PIO PCIF	RQ2# input (Defau	ılt = Disable):
0000 = Disab	le 0110 = IR0	Q6 1011 =	IRQ11	0000 = Disable	e 0110 = IRO	Q6 1011 =	IRQ11
0001 = IRQ1	0111 = IR0	7 1100 =	IRQ12	0001 = IRQ1	0111 = IRC		IRQ12
0010 = Rsvd	1000 = IR	Q8# 1101 =	Rsvd	0010 = Rsvd	1000 = IR0	Q8# 1101 =	Rsvd
0011 = IRQ3	1001 = IR	Q9 1110 =	IRQ14	0011 = IRQ3	1001 = IR0	Q9 1110 =	IRQ14
0100 = IRQ4	1010 = IR	Q10 1111 =	IRQ15	0100 = IRQ4	1010 = IR0	Q10 1111 =	IRQ15
0101 = IRQ5				0101 = IRQ5			
PCIDV1 BAh			Serial IRQ Co	ntrol Register 1			Default = 00h
Compaq SIRQ	Compaq SIRQ	SIRQ delays	Compaq SIRQ	Compaq SIRQ - S	Start frame width	SIRQ delays	Compaq SIRQ
HALT mode	QUIET mode	ISR accesses:	data frame	in PCI clocks. Ch	ange this setting	EOI accesses:	(Compaq serial
request:	request:	0 = No	slots. Change	only when serial	IRQ is disabled	0 = No	IRQ scheme):
0 = Active	0 = Continuous	1 = Yes	only when the	or in HAL	T state:	1 = Yes	0 = Disable
1 = Halt	1 = Quiet		serial IRQ logic				
1				00 = 4 PCI	CLKs		1 = Enable
			is disabled or in				1 = Enable
				00 = 4 PCI0 01 = 6 PCI0 10 = 8 PCI0	CLKs		1 = Enable
			is disabled or in	01 = 6 PCI	CLKs CLKs		1 = Enable
			is disabled or in HALT state:	01 = 6 PCI0 10 = 8 PCI0	CLKs CLKs		1 = Enable
			is disabled or in HALT state: 0 = 17 slots	01 = 6 PCI0 10 = 8 PCI0	CLKs CLKs		1 = Enable
PCIDV1 BBh			is disabled or in HALT state: 0 = 17 slots 1 = 21 slots	01 = 6 PCI0 10 = 8 PCI0	CLKs CLKs		1 = Enable Default = 00h
PCIDV1 BBh Compaq SIRQ	Compaq SIRQ		is disabled or in HALT state: 0 = 17 slots 1 = 21 slots Serial IRQ Co	01 = 6 PCI0 10 = 8 PCI0 11 = Resen	CLKs CLKs	SIRQ delays	
	Compaq SIRQ in QUIET state		is disabled or in HALT state: 0 = 17 slots 1 = 21 slots Serial IRQ Co	01 = 6 PCI0 10 = 8 PCI0 11 = Resen	CLKs CLKs	SIRQ delays IRR accesses:	Default = 00h
Compaq SIRQ			is disabled or in HALT state: 0 = 17 slots 1 = 21 slots Serial IRQ Co	01 = 6 PCI0 10 = 8 PCI0 11 = Resen	CLKs CLKs	•	Default = 00h
Compaq SIRQ in HALT state	in QUIET state		is disabled or in HALT state: 0 = 17 slots 1 = 21 slots Serial IRQ Co	01 = 6 PCI0 10 = 8 PCI0 11 = Resen	CLKs CLKs	IRR accesses:	Default = 00h Intel SIRQ (Intel serial IRQ scheme):
Compaq SIRQ in HALT state (RO):	in QUIET state (RO):		is disabled or in HALT state: 0 = 17 slots 1 = 21 slots Serial IRQ Co	01 = 6 PCI0 10 = 8 PCI0 11 = Resen	CLKs CLKs	IRR accesses: 0 = No	Default = 00h Intel SIRQ (Intel serial IRQ
Compaq SIRQ in HALT state (RO): 0 = No	in QUIET state (RO): 0 = No		is disabled or in HALT state: 0 = 17 slots 1 = 21 slots Serial IRQ Co	01 = 6 PCI0 10 = 8 PCI0 11 = Resen	CLKs CLKs	IRR accesses: 0 = No	Default = 00h Intel SIRQ (Intel serial IRQ scheme): 0 = Disable

7	6	5	4	3	2	1	0
PCIDV1 C0h		DM	A Channels A an	d B Selection Re	gister		Default = 10h
Reserved		el 1 101 = 0 el 2 110 = 0		Reserved		el 1 101 = 0 el 2 110 = 0	
PCIDV1 C1h		DM	A Channels C and	d D Selection Re	nieter		Default = 32h
Reserved		A channel selection DACKD# pins (Challo 100 = Fel 1 101 = 0 110 =	n on	Reserved	DM	el 1 101 = 0 el 2 110 = 0	non
DOIDIU COL			DMA 61				D (50)
Reserved		el 1 101 = 0 el 2 110 = 0		Reserved	Function selection on TC pin: 0 = TC 1 = PPWR10	Function selection on AEN pin: 0 = AEN 1 = PPWR11	Pefault = 50h Function selection on RFSH# pin: 0 = RFSH# 1 = PPWR12
PCIDV1 C3h		DM	A Channels F and	d G Selection Re	gister		Default = 76h
Reserved	=	A channel selection (G# pins (Default el 0 100 = F el 1 101 = 0 el 2 110 = 0	n on	Reserved	DMA channel selection on DRQF/DACKF# pins (Default = Channel 000 = Channel 0		
PCIDV1 C4h-CFI	า		Res	erved			Default = 00h

Page 326 912-2000-015

7	6	5	4	3	2	1	0		
Note: PCIDV1 D0h through EEh pertain only to FS ACPI Version. Otherwise they are reserved.									
PCIDV1 D0h - FS ACPI Version PM1 BLK Base Address Register - Byte 0: Address Bits [7:0]									
PM1 Block Base Address Bits - Address value A[15:0] defines the 16-bit starting address for PM1_BLK Register Set in system I/O space. The address is required to be paragraph-aligned (on a 16-byte boundary), so bits [3:0] are always 0.									
	S ACPI Version		se Address Regi				Default = 001		
	S ACPI Version		se Address Regi				Default = 00h		
PM2 Block Base Address Bits - Address value A[15:0] defines the 16-bit starting address for PM2_BLK Register Set in system I/O space. The address is required to be qword-aligned (on an 8-byte boundary), so bits [2:0] are always 0.							PM2_BLK Register Set: 0 = Disable 1 = Enable		
PCIDV1 D3h - F	S ACPI Version	PM2_BLK Ba	se Address Regi	ster -Byte 1: Add	ress Bits [15:8]		Default = 00h		
PCIDV1 D4h - F	S ACPI Version	P BLK Bas	e Address Regis	ter - Byte 0: Addı	ress Bits [7:0]		Default = 00h		
- Address va	ock Base Address lue A[15:0] defines be qword-aligned	s the 16-bit starting	-	•	ı system I/O space	e. The address is	P_BLK Register Set: 0 = Disable 1 = Enable		
PCIDV1 D5h - F	S ACPI Version	P_BLK Base	Address Regist	er - Byte 1: Addr	ess Bits [15:8]		Default = 00l		
PCIDV1 D6h		GPE0_BLK Ba	ase Address Reg	ister - Byte 0: Ad	Idress Bits [7:0]		Default = 001		
- Address va	ose Event Block B lue A[15:0] defines required to be qwo	s the 16-bit starting	•		•	space. The	GPE0_BLK Register Set: 0 = Disable 1 = Enable		
PCIDV1 D7h - F	S ACPI Version	GPE0_BLK Ba	se Address Regi	ister - Byte 0: Ad	dress Bits [15:8]		Default = 00h		
PCIDV1 D8h - F	S ACPI Version	A	CPI Source Cont	rol Register - By	te 0		Default = 00h		
ACPI7 LID:	ACPI6 EC#:	ACPI5 USB#:	ACPI4 RI#:	ACPI3 FRI#:	ACPI2 STSCHG#:	ACPI1 DOCK#:	ACPI0 UNDOCK#:		
0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback	0 = IRQ Driveback		
1 = Discrete	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input	1 = Discrete ACPI input		
ACPI input	PCIDV1 D9h - FS ACPI Version ACPI Source Control Register - Byte 1 Default = 0								
ACPI input	S ACPI version	ACPI11: ACPI10: ACPI9:							

7	6	5	4	3	2	1	0
PCIDV1 DAh - FS ACPI Version ACPI Source Status Register - Byte 0 Default = 00							
ACPI7 LID:	ACPI6 EC#:	ACPI5 USB#:	ACPI4 RI#:	ACPI3 FRI#:	ACPI2 STSCHG#:	ACPI1 DOCK#:	ACPI0 UNDOCK#:
0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High	0 = Low 1 = High
PCIDV1 DBh - F	S ACPI Version	A	CPI Source State	us Register - Byte	e 1		Default = 00h
	Rese	erved		ACPI11:	ACPI10:	ACPI9:	ACPI8:
				0 = Low 1 = High			
Note: The bits in	the ACPLSource	Status Begister (f	Rytes 0 and 1) ind	icate the current s	tate of the ACPL li	nes either the dis	crete pins or the

Note: The bits in the ACPI Source Status Register (Bytes 0 and 1) indicate the current state of the ACPI lines, either the discrete pins or the last IRQ Driveback value depending on the ACPI Source Control Register setting. This information may also be available elsewhere, since the IRQ Driveback values and PIO pin values can be read from other registers. However, this register provides a central means of reading signal state and is especially useful for signals such as LID (which generates an SCI, System Controller Interrupt, on both opening and closing events).

PCIDV1 DCh - FS ACPI Version ACPI Event Resume Control Register - Byte 0					Default = 00h		
ACPI7	ACPI6	ACPI5	ACPI4	ACPI3	ACPI2	ACPI1	ACPI0
LID:	EC#:	USB#:	RI#:	FRI#:	STSCHG#:	DOCK#:	UNDOCK#:
0 = Event will	0 = Event will	0 = Event will	0 = Event will	0 = Event will	0 = Event will	0 = Event will	0 = Event will
not cause	not cause	not cause	not cause	not cause	not cause	not cause	not cause
Resume	Resume	Resume	Resume	Resume	Resume	Resume	Resume
1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend	1 = Event will cause Resume operation if system is in Suspend

		· .	·	·	·
PCIDV1 DDh - FS ACPI Version	ACPI Event Resume (Control Register -	Byte 1		Default = 00h
Rese	rved	ACPI11:	ACPI10:	ACPI9:	ACPI8:
		0 = Event will	0 = Event will	0 = Event will	0 = Event will
		not cause	not cause	not cause	not cause
		Resume	Resume	Resume	Resume
		1 = Event will	1 = Event will	1 = Event will	1 = Event will
		cause	cause	cause	cause
		Resume	Resume	Resume	Resume
		operation if	operation if	operation if	operation if
		system is in	system is in	system is in	system is in
		Suspend	Suspend	Suspend	Suspend

Note: The bits in the ACPI Event Resume Control Register (Bytes 0 and 1) select whether the specified ACPI input can wake the system from its Suspend mode. Note that any PCI device that sends its information via the IRQ Driveback cycle will wake the system when it activates its CLKRUN# pin.

PCIDV1 DEh-DFh Reserved Default = 00h

Page 328 912-2000-015

Table 5-8	PCIDV1 00h	-FFh (cont.)
-----------	------------	--------------

7	6	5	4	3	2 1 0			
1	8	<u> </u>	4	3	2	<u>'</u>	U	
PCIDV1 E0h - FS	S ACPI Version		SLP_TYP Contro	ol Register - Byte	0		Default = 00h	
PLVL17:		SCTL_PPWR17:		PLVL16:		SCTL_PPWR16:		
Selects state PPWR17 line will assume when SCTL_ PPWR17 set- ting is reached.	Refer to bit	s [2:0] for decode		Selects state PPWR16 line will assume when SCTL_ PPWR16 set- ting is reached.	Offset 05h state 001 = PPWRx sv	vitches when SLP_ [4:2) is set for AC vitches when SLP_ [4:2) is set for AC	PI S0 system _TYP (PM1_BLK	
0 = Low 1 = High				0 = Low 1 = High	010 = PPWRx sv	vitches when SLP [4:2) is set for AC ite		
						vitches when SLP [4:2) is set for AC i state		
					Offset 05h	vitches when SLP_ [4:2) is set for AC system state		
PCIDV1 E1h - FS	S ACPI Version		SLP_TYP Contro	ol Register - Byte	1		Default = 00h	
PLVL19:		SCTL_PPWR19:		PLVL18:		SCTL_PPWR18:		
Selects state PPWR19 line will assume when SCTL_ PPWR19 set- ting is reached. 0 = Low 1 = High	Refer to PC	CIDV1 E0h[2:0] fo	r de code .	Selects state PPWR18 line will assume when SCTL_ PPWR18 set- ting is reached. 0 = Low 1 = High	Refer to P0	CIDV1 E0h[2:0] fo	r de code .	
PCIDV1 E2h - FS	S ACPI Version		SLP TYP Contro	ol Register - Byte	2		Default = 00h	
PLVL21:		SCTL_PPWR21:	_	PLVL20:		SCTL_PPWR20:		
Selects state PPWR21 line will assume when SCTL_ PPWR21 set- ting is reached. 0 = Low 1 = High		CIDV1 E0h[2:0] fo	r de code .	Selects state PPWR20 line will assume when SCTL_ PPWR20 set- ting is reached. 0 = Low 1 = High	Refer to Po	CIDV1 E0h[2:0] fo	r de code .	
PCIDV1 E3h - F9	S ACPI Version		SLP_TYP Contro	ol Register - Byte	3		Default = 00h	
PLVL23:		SCTL_PPWR23:		PLVL22:		SCTL_PPWR22:		
Selects state PPWR23 line will assume when SCTL_ PPWR23 set- ting is reached. 0 = Low 1 = High		CIDV1 E0h[2:0] fo		Selects state PPWR22 line will assume when SCTL_ PPWR22 set- ting is reached. 0 = Low 1 = High	Refer to Po	 CIDV1 E0h[2:0] fo	r de code .	

Table 5-8 PCIDV1 00h-FFh (cont.)

7	6	5	4	3	2	1	0
PCIDV1 E4h - FS	S ACPI Version	•	SLP_TYP Contr	ol Register - Byte	4	•	Default = 00h
PLVL25:		SCTL_PPWR25:		PLVL24:		SCTL_PPWR24:	
Selects state PPWR25 line will assume when SCTL_ PPWR25 set- ting is reached.	Refer to Po	CIDV1 E0h[2:0] fo	r de code.	Selects state PPWR24 line will assume when SCTL_ PPWR24 set- ting is reached.	Refer to Po	CIDV1 E0h[2:0] fo	r de code .
0 = Low 1 = High				0 = Low 1 = High			
PCIDV1 E5h - FS	S ACPI Version		SLP_TYP Contr	ol Register - Byte	5		Default = 00h
PLVL27:		SCTL_PPWR27:		PLVL26:		SCTL_PPWR26:	
Selects state PPWR27 line will assume when SCTL_ PPWR27 set- ting is reached. 0 = Low 1 = High PCIDV1 E6h - FS		CIDV1 E0h[2:0] fo		Selects state PPWR26 line will assume when SCTL_ PPWR26 set- ting is reached. 0 = Low 1 = High old Register - Byte		CIDV1 E0h[2:0] fo	r decode. Default = 00h
PLVL29:	7.0				<u> </u>	CCTL DDW/D00.	2012411 - 0011
Selects state PPWR29 line will assume when SCTL_ PPWR29 set- ting is reached. 0 = Low 1 = High	Refer to Po	SCTL_PPWR29: CIDV1 E0h[2:0] fo		PLVL28: Selects state PPWR28 line will assume when SCTL_ PPWR28 set- ting is reached. 0 = Low 1 = High	Refer to Po	SCTL_PPWR28: CIDV1 E0h[2:0] fo	r de code .
PCIDV1 E7h - FS	S ACPI Version		SLP_TYP Contr	ol Register - Byte	7		Default = 00h
PLVL31: Selects state PPWR31 line will assume when SCTL_ PPWR31 set- ting is reached. 0 = Low 1 = High	Refer to Po	SCTL_PPWR31: CIDV1 E0h[2:0] fo		PLVL30: Selects state PPWR30 line will assume when SCTL_ PPWR30 set- ting is reached. 0 = Low 1 = High	Refer to Po	SCTL_PPWR30: CIDV1 E0h[2:0] fo	r de code .

Page 330 912-2000-015

Table 5-8 PCIDV1 00h-FFh (cont.)

7	6	5	4	3	2	1	0
PCIDV1 E8h - F	S ACPI Version		Power Control L	atch Set Registe	r		Default = 00h
Control line	Rese	erved		PPW	R control line to b	e set:	
setting:			00000 = PPWR0				
0 = Low			O	0001 = PPWR1		10 = PPWR30	
1 = High					111	11 = PPWR31	
PCIDV1 E9h - FS	S ACPI Version		Reserved				Default = 00h
			ver Control Read	back Register - B	Syte 0		Default = FFh
PPWR7 state:	PPWR6 state:	PPWR5 state:	PPWR4 state:	PPWR3 state:	PPWR2 state:	PPWR1 state:	PPWR0 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EBh - F	S ACPI Version	Pov	ver Control Read	back Register - B	lyte 1		Default = FFh
PPWR15 state:	PPWR14 state:	PPWR13 state:	PPWR12 state:	PPWR11 state:	PPWR10 state:	PPWR9 state:	PPWR8 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 ECh - F	S ACPI Version	Pov	ver Control Read	back Register - E	lyte 2		Default = F0h
PPWR23 state:	PPWR22 state:	PPWR21 state:	PPWR20 state:	PPWR19 state:	PPWR18 state:	PPWR17 state:	PPWR16 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EDh - F	S ACPI Version	Pov	ver Control Read	back Register - E	lyte 3		Default = F0h
PPWR31 state:	PPWR30 state:	PPWR29 state:	PPWR28 state:	PPWR27 state:	PPWR26 state:	PPWR25 state:	PPWR24 state:
0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low	0 = Low
1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High	1 = High
PCIDV1 EEh - F	S ACPI Version		ACPI Thermal	Control Register			Default = 00h
Rese	erved	PIO nin FA	N control is		Temperature e	vent granularity:	
11030	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		led high:	Selects the bit of	•	ue in SYSCFG F3I	n-F4h that will be
		00 = Never				thermal managem	
		01 = During Leve	el 1 and 2	toggles.	-	_	
		STPCLK# n	nodulation	0000 = Bit 0			1100 = Bit 12
		10 = During Leve		0001 = Bit 1			1101 = Bit 13
		modulation	only	0010 = Bit 2 0011 = Bit 3			1110 = Bit 14 1111 = Bit 15
		11 = Reserved		2.0			

Preliminary **82C700**

Table 5-8 PCIDV1 00h-FFh (cont.)

7	6	5	4	3	2	1	0				
PCIDV1 EFh-FD	h		Res	erved			Default = 00h				
PCIDV1 FEh	PCIDV1 FEh Stop Grant Cycle Generation Register (WO)										
			Reserved for de	ebug purposes.							
PCIDV1 FFh	PCIDV1 FFh Parity Error Cycle Generation Register										
Reserved for debug purposes.											

Page 332 912-2000-015

5.4 IDE Register Space

5.4.1 IDE Configuration Registers

The configuration space is mapped as Device 14h (AD31 = 1,) Function 0 or as Device 01h (AD12 = 1) Function 1, as controlled by SYSCFG ADh[4]. This section describes the

registers implemented in the 256-byte configuration space. All registers not implemented always return zero during read cycles.

Table 5-9	PCIIDE 00h-4	7h								
7	6	5	4	3	2	1	0			
PCIIDE 00h			Vendor ID Regi	ster (RO) - Byte ()		Default = 45h			
PCIIDE 01h			Vendor ID Regi	ster (RO) - Byte 1	I		Default = 10h			
DOIDE 02h	PCIIDE 02h Device ID Register (RO) - Byte 0 (Note) Default = 68h									
					•					
PCIIDE 03h	ADb[0] controls the		evice ID Register	• • •	ote)		Default = D5h			
Note: SYSCEG	ADh[2] controls the	e values returned	by these registers).						
PCIIDE 04h			Command Re	egister - Byte 0			Default = 45h			
Reserved (RO)	Parity checking: 0 = Parity checking ignored 1 = IDE control- ler gener- ates PERR# if a parity error occurs dur- ing I/O write cycles For I/O read cycles, the IDE control- ler always generates parity bit.	Reserved (RO)	Memory write and invalidate: 0 = Memory write com- mand 1 = Memory write and invalidate command	Reserved (RO)	IDE controller becomes a PCI master to gen- erate PCI accesses: 0 = Disable 1 = Enable	Reserved	I/O accesses: IDE controller uses this bit to enable/disable I/O accesses. 0 = Disable 1 = Enable (Default = 1)			
PCIIDE 05h			Command Re	egister - Byte 1			Default = 00h			
			Reserve	ed (RO)						
PCIIDE 06h			Status Reg	ister - Byte 0			Default = 80h			
Fast back-to- back transac- tions (RO): 0 = Disable 1 = Enable (Default = 1)				Reserved (RO)						

Table 5-9 PCIIDE 00h-47h (cont.)

7	6	5	4	3	2	1	0
PCIIDE 07h			Status Reg	ister - Byte 1			Default = 02h
Parity error: This bit is set whenever the IDE controller detects a parity error. It is cleared by writing 80h to this register.	Reserved (RO)	Master abort: As a PCI master, the IDE controller sets this bit to 1 when its transaction is terminated with a master abort.	Target abort: As a PCI master, the IDE controller sets this bit to 1 when its transaction is terminated with a target abort.	Reserved (RO)	Select tin These read-only allowable timing DEVSEL#. (Default = 01)		Data parity: As a PCI master, the IDE controller sets this bit to 1 when it detects a data parity error.
PCIIDE 08h			Revision ID	Register (RO)			Default = 00h
PCIIDE 09h			Class Code B	egister - Byte 0			Default = 80h
Bus mastering IDE signature (RO): This bit is set to 1 to indicate master mode support. (Default = 1)		Reserved (RO)		Writability of the Native/Legacy bit for Secondary IDE (RO): Determines if bit 2 is RO or R/W. 0 = Bit 2 is RO 1 = Bit 2 is R/W This bit is set only when PCIIDE 40h[3:2] = 11.	Native/Legacy Mode for Secondary IDE: 0 = Legacy 1 = Native	Writability of the Native/ Legacy bit for Primary IDE (RO): Determines if bit 0 is RO or R/W. 0 = Bit 0 is RO 1 = Bit 0 is R/W If PCIIDE 40h[2] = 0, this bit is 0. When PCIIDE 40h[2] = 1, this bit is 1.	Native/Legacy Mode for Primary IDE: 0 = Legacy 1 = Native
PCIIDE 0Ah			Class Code Reg	ister (RO) - Byte	1		Default = 01h
PCIIDE 0Bh			Class Code Reg	ister (RO) - Byte	2		Default = 01h
PCIIDE 0Ch-0Dh	1		Res	erved			Default = 00h
Configuration bit for single (default) or multi-function device. - If SYSCFG ADh[4] is set to 1, this register returns 80h denoting a multi-function device.							Default = 00h Default = 00h
PCIIDE 0Fh PCIIDE 10h-13h		Def PCIIDE 09h[2] =	ault = 1F1h with				

This register is the I/O space indicator for the Drive Command Block. The address block has a size of eight bytes.

- Bits [2:0] are read-only and default to 001.
- Bits [31:3] are writable if PCIIDE 40h[2] is set to 1.
- If PCIIDE 40h[2] = 0, bits [31:0] are read-only and return 0.

912-2000-015 Page 334

Table 5-9 PCIIDE 00h-47h (cont.)

							l
7	16	5	1 4	1 3	1 2	1 1	. 0
· ·	-	_	· -	1	_	1	

PCIIDE 14h-17h

Primary IDE Control Block Base Address Register

Default = 3F5h with

PCIIDE 09h[2] = 1 and 40h[2] = 1

This register is the I/O space indicator for the Drive Control Block. The address block has a size of four bytes.

- Bits [1:0] are read-only and default to 01.
- Bits [31:3] are writable if PCIIDE 40h[2] is set to 1.
- If PCIIDE 40h[2] = 0, bits [31:0] are read-only and return 0.

PCIIDE 18h-1Bh

Secondary IDE Command Block Base Address Register

Default = 171h with

PCIIDE 09h[2] =1, 40h[2] = 1, and 40h[3] = 0

This register is the I/O space indicator for the Drive Command Block. The address block has a size of eight bytes.

- Bits [2:0] are read-only and default to 001.
- Bits [31:3] are writable if PCIIDE 40h[2] is set to 1.
- If PCIIDE 40h[2] = 0, bits [31:0] are read-only and return 0.

PCIIDE 1Ch-1Fh

Secondary IDE Control Block Base Address Register

Default = 375h with

PCIIDE 09h[2] = 1, 40h[2] = 1, and 40h[3] = 0

This register is the I/O space indicator for the Drive Control Block. The address block has a size of four bytes.

- Bits [1:0] are read-only and default to 01.
- Bits [31:3] are writable if PCIIDE 40h[2] is set to 1.
- If PCIIDE 40h[2] = 0, bits [31:0] are read-only and return 0.

PCIIDE 20h-23h

PCIIDE 24h-2Bh

Bus Master IDE Base Address Register

Reserved

Default = 00000001h

Default = 00h

This register is the I/O base address indicator for the Bus Master IDE Registers. The address block has a size of 16 bytes.

- Bits [3:0] are read-only and default to 0001.
- Bits [31:4] are writable.

PCIIDE 2Ch-2Dh	Subsystem Vendor ID	<u>Default = 00h</u>
	(Write one time only)	
DOUBLE 051 051		D (11 001
PCIIDE 2Eh-2Fh	<u>Subsystem ID</u>	<u>Default = 00h</u>
	(Write one time only)	
PCIIDE 30h-3Ah	Reserved	Default = 00h
PCIIDE 3Ch	Interrupt Line Register	<u>Default = 00h</u>
This register indicates which input o	f the system interrupt controller the IDE interrupt pin is routed to.	
PCIIDE 3Dh	Interrupt Pin Register (RO)	Default = FFh
The content of this register is FFh.		
PCIIDE 3Eh-3Fh	Reserved	Default = 00h

Preliminary **82C700**

Table 5-9 PCIIDE 00h-47h (cont.)

7	6	5	4	3	2	1	0
PCIIDE 40h			IDE Initialization	Control Registe	r		Default = 00h
Rese	erved	Enhanced Slave: 0 = 82C621A- compatible mode, uses a 16-byte FIFO in PIO Mode 1 = Enhanced mode, uses a 32-byte FIFO in PIO Mode	Reserved	Secondary IDE: 0 = Enable 1 = Disable This bit is effective only if PCIDV1 4Fh[6] = 1.	Address relocation: Determines if I/O space addresses are relocatable via programming configuration space registers. 0 = Fixed I/O addresses (1F0h- 1F7h, 3F6h for primary; 170h-177h, 376h for secondary) 1 = Relocat- able I/O addresses	These bits cor 16-bit cycle tir devices and can programmin	g the IDE I/O sters. cle time (PIO cle time
PCIIDE 41h			Res	erved			Default = 00h

Page 336 912-2000-015

Table 5-9 PCIIDE 00h-47h (cont.)

7	6	5	4	3	2	1	0	
PCIIDE 42h			IDE Enhanced	IDE Enhanced Feature Register				
FIFO to IS. preempt 0 = Enable 1 = Disable 82C70 waits to generate ISA cyuntil all data in IDE FI		Slave IDE FIFO to ISA bus preemption: 0 = Enable 1 = Disable, 82C700 waits to generate ISA cycles until all data in the IDE FIFO is flushed out	IDE arbiter support for PCI/IDE concurrency: 0 = Disable 1 = Enable	PCI memory read line/write and invalidate commands: 0 = Disable 1 = Enable	Concurrent PCI master IDE and IDE cycle: 0 = Disable 1 = Enable (a	X-1-1-1 MIDE PCI master read/write transfers: 0 = Disable 1 = Enable	Reserved	
PCIIDE 42h FS	ACPI Version		IDE Enhanced	IDE Enhanced Feature Register				
Reserved	Write concurrency for IDE master cycles: 0 = Disable 1 = Enable	Slave IDE FIFO to ISA bus preemption: 0 = Enable 1 = Disable, 82C700 waits to generate ISA cycles until all data in the IDE FIFO is flushed out	IDE arbiter support for PCI/IDE concurrency: 0 = Disable 1 = Enable	PCI memory read line/write and invalidate commands: 0 = Disable 1 = Enable	Concurrent PCI master IDE and IDE cycle: 0 = Disable 1 = Enable (a	X-1-1-1 MIDE PCI master read/write transfers: 0 = Disable 1 = Enable	Reserved	

Table 5-9 PCIIDE 00h-47h (cont.)

7	6	5	4	3	2	1	0			
PCIIDE 43h			IDE Enhanced	l Mode Register			Default = 00h			
Enhanced Mode Secondary		-	e for Drive 0 on y Channel:	· ·	e for Drive 1 on Channel:	Enhanced Mode for Drive 0 on Primary Channel				
Sets 16-bit cycle PIO Modes 4 and DMA Modes 1 an	l 5 or Multi-Word	Sets 16-bit cycle PIO Modes 4 and DMA Modes 1 ar	d 5 or Multi-Word	Sets 16-bit cycle PIO Modes 4 and DMA Modes 1 ar	d 5 or Multi-Word	Sets 16-bit cycle times for IDE PIO Modes 4 and 5 or Multi-Word DMA mode 1 and 2.				
	00 = Disabled, control by corre- sponding Timing Registers Set 00 = Disabled, control by corre- sponding Timing Registers Set			00 = Disabled, co sponding Ti Set	ontrol by corre- ming Registers	00 = Disabled, co sponding Ti Set	ontrol by corre- ming Registers			
01 = PIO Mode 4 DMA Mode inactive for 2	1, command	01 = PIO Mode 4 DMA Mode inactive for	1, command	01 = PIO Mode 4 DMA Mode inactive for 3	1, command	01 = PIO Mode 4 DMA Mode inactive for	1, command			
10 = PIO Mode 5 DMA Mode 3 inactive for	2, command	10 = PIO Mode 5 DMA Mode inactive for	2, command	10 = PIO Mode 5 DMA Mode inactive for	2, command	10 = PIO Mode 5 DMA Mode inactive for	2, command			
11 = Reserved		11 = Reserved		11 = Reserved		11 = Reserved				
Corresponding 17 must be set to 0 bits are set to 01	efore these two	Corresponding 1 must be set to 0 bits are set to 01	before these two	Corresponding 1 must be set to 0 bits are set to 01	before these two	Corresponding 1 must be set to 0 bits are set to 01	before these two			
PCIIDE 44h	PCIIDE 44h Emulated Bus Master Register Default = 00h									
Reserved			Emulated bus mastering for Cable 1, Drive 1:	Emulated bus mastering for Cable 1, Drive 0:	Emulated bus mastering for Cable 0, Drive 1:	Emulated bus mastering for Cable 0, Drive 0:				
				0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable			
PCIIDE 44h - FS	ACPI Version		Ultra DMA Confi	iguration Registe	r		Default = 00h			
Ultra DMA for P mode select	t, Drive 1 ⁽¹⁾ :		Primary channel et, Drive 0 ⁽¹⁾ :	Ultra DMA for Secondary channel,	Ultra DMA for Secondary channel,	Ultra DMA for Primary channel,	Ultra DMA for Primary channel,			
00 = M0		00 = M0 01 = M0		Drive 1:	Drive 0:	Drive 1:	Drive 0:			
10 = Mo 11 = Res	de 2	10 = Mo 11 = Re	ode 2	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable			
(1) The select bit	s only effective fo	r CRC setup time		<u> </u>	<u> </u>	l	L			
PCIIDE 45h			IDE Interrupt S	election Register	ı		Default = 00h			
	e 1 interrupt pin: 0+PCIRQ0#		e 0 interrupt pin: 0+PCIRQ0#		1 interrupt pin: 0+PCIRQ0#		0 interrupt pin: 0+PCIRQ0#			
01 = IRQ11	+PCIRQ1#		1+PCIRQ1#	1	1+PCIRQ1#	1	1+PCIRQ1#			
	I+PCIRQ2#		4+PCIRQ2#		4+PCIRQ2#		4+PCIRQ2#			
	5+PCIRQ3#	·	5+PCIRQ3#	i i	5+PCIRQ3#	11 = IRQ1	5+PCIRQ3#			
		icy Mode and PCI	IRQ is selected for	•	<u> </u>					
PCIIDE 45h - FS			Ultra DMA Confi	guration Registe		I	Default = 00h			
	Rese	erved		Ultra DMA for Se	-	Ultra DMA for Se	- 1			
					t, Drive 1 ⁽¹⁾ :		t, Drive 0 ⁽¹⁾ :			
					ode 0 ode 1	00 = Mode 0				
					ode 2	01 = Mode 1 10 = Mode 2				
				11 = Re		11 = Re				
(1) The select bit	s only effective fo	r CRC setup time								

Page 338 912-2000-015

Table 5-9 PCIIDE 00h-47h (cont.)

7	6	5	4	3	2	1	0	
PCIIDE 46h - FS	ACPI Version	E	mulated IDE Cor	nfiguration Regis	Default = 00h			
Fix for I/O 32-bit Mode 4 and Mode 5 timing: 0 = Disable 1 = Enable		Reserved		Emulated bus mastering for Cable 1, Drive 1: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 1, Drive 0: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 0, Drive 1: 0 = Disable 1 = Enable	Emulated bus mastering for Cable 0, Drive 0: 0 = Disable 1 = Enable	
PCIIDE 47h - FS	ACPI Version		IDE Interrupt Se	election Register			Default = FAh	
Secondary Drive	e 1 interrupt pin:	Secondary Drive	e 0 interrupt pin:	Primary Drive	1 interrupt pin:	Primary Drive 0 interrupt pin:		
00 = IRQ10+PCIRQ0# 01 = IRQ11+PCIRQ1# 10 = IRQ14+PCIRQ2# 11 = IRQ15+PCIRQ3#		01 = IRQ1 10 = IRQ1	D+PCIRQ0# I+PCIRQ1# 4+PCIRQ2# 5+PCIRQ3#	00 = IRQ10+PCIRQ0# 01 = IRQ11+PCIRQ1# 10 = IRQ14+PCIRQ2# 11 = IRQ15+PCIRQ3#		00 = IRQ10+PCIRQ0# 01 = IRQ11+PCIRQ1# 10 = IRQ14+PCIRQ2# 11 = IRQ15+PCIRQ3#		
Note: ISA IRQ is	selected for Lega	cy Mode and PCI	IRQ is selected for	or Native Mode (se	e PCIIDE 09h).			

5.4.2 IDE I/O Registers

5.4.2.1 Primary IDE I/O Registers

The register addresses are referred to in this section by their power-up default addresses If the power-up default is modified by writing to PCIIDE 13h-10h, then these registers will be relocated accordingly.

The IDE controller contains registers at seven I/O ports accessible after two consecutive 16-bit I/O reads from address 1F1h, followed by a byte write 03h to 1F2h. Any other I/O cycle between these two reads will disable access to the IDE controller registers. Refer to Section 4.11.4, Programming Timing Information, for programming details.

Table 5-10 Primary IDE I/O Registers

7	6	5	4	3	2	1	0	
I/O Address 1F2	2h		Internal	ID Register			Default = xxh	
Configuration disable (WO): 0 = Enable accesses to internal IDE controller registers 1 = Disable accesses to internal IDE controller registers until another 2 consecutive I/O reads from 1F1h. (Default = 1)	Configuration off (WO): 0 = Enable accesses to internal IDE controller registers 1 = Disable all accesses to internal IDE controller registers until powerdown or reset.		Reserved (R (Defaul	Reserved: Mus If not written to 11 IDE I/O Registers	I, all writes to the			
I/O Address 1F0) Db	Po	od Cyala Timina	Pagistar Timina	- O(1)		Default = xxh	
I/O Address Tro		se width:	ad Cycle Tilling	Register - Timing			Delauit = xxii	
pulse width in PC See Table 4-82 ((Default = xxxx)	ammed in this regis CICLKs (for a 16-bi or Table 4-83.	ster plus one deter t read from the ID	E Data Register).					
1 ' '	i be programmed o 1F3h[3:2] and 1F3l	-	n[0] = 0. The timin	g programmed into	this register is ap	plied for IDE acce	sses to drives as	
I/O Address 1F0	Oh	Re	ead Cycle Timing	Register - Timino	g 1 ⁽¹⁾		Default = xxh	
Read pulse width: The value programmed in this register plus one determines the DRD# pulse width in PCICLKs (for a 16-bit read from the IDE Data Register). See Table 4-82 or Table 4-83. (Default = xxxx)								

Note: Both Timing 0 and Timing 1 sets share the same address setup and DRDY delay times as programmed in 1F6h[5:4] and 1F6h[3:2].

selected by 1F3h[3:2] and 1F3h[7].

Page 340 912-2000-015

Table 5-10 Primary IDE I/O Registers (cont.)

7	6	5	4	3	2	1	0		
I/O Address 1F1	lh	Wr	ite Cycle Timing	ng Register - Timing 0 ⁽¹⁾ Default = xxh					
	Write pul	lse width:		Write recovery time:					
	mmed in this regis NCLKs (for a 16-bi or Table 4-83.	•		ery time between the end of DWR# and the next DA[2:0]/DCSx# being presented (after a 16-bit write from the IDE Data Register), measured in PCICLKs. See Table 4-82 or Table 4-83.					
(Default = xxxx) (1) Timing 0 can be programmed only if IDE I/O 1F6h[0] = 0. The timing programmed into this register is applied for IDE accesses to drives as selected by 1F3h[3:2] and 1F3h[7].									

I/O Address 1F1h Write Cycle Timing Register - Timing 1(1) Default = xxh Write pulse width: Write recovery time: The value programmed in this register plus one determines the DWR# The value programmed in this register plus two determines the recovpulse width in PCICLKs (for a 16-bit write from the IDE Data Register). ery time between the end of DWR# and the next DA[2:0]/DCSx# being See Table 4-82 or Table 4-83. presented (after a 16-bit write from the IDE Data Register), measured in PCICLKs. See Table 4-82 or Table 4-83. (Default = xxxx) (Default = xxxx)

(1) Timing 1 can be programmed only if IDE I/O 1F6h[0] = 1. The timing programmed into this register is applied for IDE accesses to drives as selected by 1F3h[3:2] and 1F3h[7].

I/O Address 1F3h		Contro	Register		Default = xxh		
Timing register value select:	Reserved (RO)	Enable one wait state read:	Drive 1 timing select:	Drive 0 timing select:	Reserved	Reserved (RO): Must be	
0 = Basic 1 = Enhanced		0 = 2 WS minimum 1 = 1 WS	Basic (1F3h[7] = 0): 0 = Determined	Basic (1F3h[7] = 0): 0 = Determined		written 1. (Default = 1)	
		minimum for data reads	by PCIIDE 40h[1:0] 1 = Timing 1	by PCIIDE 40h[1:0] 1 = Timing 1			
			Enhanced (1F3h[7] = 1):	Enhanced (1F3h[7] = 1):			
			0 = Timing 1 1 = Timing 0	0 = Timing 1 1 = Timing 0			

Note: Bits 2, 3 and 7 of the Control Register should be enabled after the Cycle Timing Registers and Miscellaneous Register are programmed. See Table 4-81 for programming options.

written 1. set to 11, the contents of REVID Returns the speed as determined by PCIIDE written 1. 1 = 25MHz	I/O Add	dress 1F5	h	Strap	Strap Register				
written 1. set to 11, the contents of REVID Returns the speed as determined by PCIIDE written 1. 1 = 25MHz	Reserv	red (RO):	Revision number (RO):	DINTR status	Mode (RO):	Reserved (RO):	PCICLK speed:		
	Mus		ı	(RO):		Must be	0 = 33MHz		
	writt	tten 1.	set to 11, the contents of REVID	Returns the	speed as determined by PCIIDE	written 1.	1 = 25MHz		
Register (08h) should be used to state of the 40h[1:0]. (Default = 1)			Register (08h) should be used to	state of the	40h[1:0].	(Default = 1)			
find the revision level of the chip. DINTR input.			find the revision level of the chip.	DINTR input.		,			

Note: Both Timing 0 and Timing 1 sets share the same address setup and DRDY delay times as programmed in 1F6h[5:4] and 1F6h[3:2].

912-2000-015 Revision: 1.0

Preliminary **82C700**

Table 5-10 Primary IDE I/O Registers (cont.)

7	6	5	4	3	2	1	0
I/O Address 1F	6h		Miscellane	ous Register	Default = xxh		
Reserved	Read prefetch: 0 = Disable 1 = Enable	Address set The value progra register plus one address setup tin DRD# or DWR# DA[2:0], DCS3#, presented, meas CLKs. See Table 83. (Default = xx)	determines the ne between going active and DCS1# being ured in PCI-	determines the model between DRDY#	Delay: ⁽¹⁾ ammed in this regininimum number o going high and Dee Table 4-82 or T	f PCICLKs RD# or DWR#	Timing register load select: 0 = Timing 0 (1F0-1F1h accept Timing 0 values) 1 = Timing 1 (1F0-1F1h accept Timing 1 values)

Page 342 912-2000-015

5.4.2.2 Secondary IDE I/O Registers

The register addresses are referred to in this section by their power-up default addresses. If the power-up default is modified by writing to PCIIDE 18h-1Bh, then these registers will be relocated accordingly.

The IDE controller contains registers at seven I/O ports accessible after two consecutive 16-bit I/O reads from address 171h, followed by a byte write 03h to 1F2h. Any other I/O cycle between these two reads will disable access to the IDE controller registers. Refer to Section 4.11.4, Programming Timing Information, for more details.

Table 5-11 Secondary IDE I/O Registers

Table 5-11	Secondary ID	E I/O Regist	ers				
7	6	5	4	3	2	1	0
I/O Address 172	2h		Internal I	D Register			Default = xxh
Configuration disable: 0 = Enable accesses to internal IDE controller registers 1 = Disable accesses to internal IDE controller registers until another 2 consecutive I/O reads from 171h. (Default = 1)	Configuration off (WO): 0 = Enable accesses to internal IDE controller registers 1 = Disable all accesses to internal IDE controller registers until powerdown or reset.		•	O): Write to 0. t = xxxx)		Must be written	erved: 11. If not, all Registers will be
(Delduit = 1)							
I/O Address 170)h	R	ead Cycle Timing	Register - Timing	g 0 ⁽¹⁾		Default = xxh
	ammed in this regis CICLKs (for a 16-bi	•		· · · · · · · · · · · · · · · · · · ·			
	be programmed o 173h[3:2] and 173h		6h[0] = 0. The timino	g programmed into	this register is a	applied for IDE acce	sses to drives as
I/O Address 170)h	D	ead Cycle Timing	Pagistar - Timin	n 1 (1)		Default = xxh
		se width:	ead Cycle Illilling	Tiegister - Tilling		covery time:	Delault = XXI
	ammed in this regis CICLKs (for a 16-bi	ster plus one dete		ery time between	mmed in this req the end of DRD a 16-bit read fror	gister plus two dete # and the next DA[n the IDE Data Re	2:0]/DCSx# being
(1) Timing 1 can	be programmed o	nly if IDE I/O 176	Sh[0] = 1. The timing	1	this register is a	applied for IDE acce	sses to drives as

912-2000-015 Revision: 1.0

selected by 173h[3:2] and 173h[7].

Table 5-11 Secondary IDE I/O Registers (cont.)

7	6	5	4	3	2	1	0
I/O Address 171	l h	Wr	ite Cycle Timing	Register - Timin	g 0 ⁽¹⁾	•	Default = xxh
pulse width in PC See Table 4-82 c (Default = xxxx)	ummed in this regis CICLKs (for a 16-bi or Table 4-83.	se width: ter plus one deteri t write from the IDI	mines the DWR# E Data Register).	Write recovery time: # The value programmed in this register plus two determines the recovery			
I/O Address 171			ite Cycle Timing	Register - Timin	g 1 ⁽¹⁾		Default = xxh
	ımmed in this regis DICLKs (for a 16-bi			Write recovery time: The value programmed in this register plus two determines the recov-			
	be programmed o 173h[3:2] and 173h		n[0] = 1. The timino	(Default = xxxx) g programmed into	o this register is ap	oplied for IDE acce	esses to drives as
I/O Address 173	Bh		Control	Register			Default = xxh
Timing register value select: 0 = Basic 1 = Enhanced	Reserved (RO)		Drive 1 timing select: Basic (173h[7] = 0): 0 = Determined by PCIIDE 40h[1:0] 1 = Timing 1 Enhanced (173h[7] = 1): 0 = Timing 1 1 = Timing 0	Drive 0 timing select: Basic (173h[7] = 0): 0 = Determined by PCIIDE 40h[1:0] 1 = Timing 1 Enhanced (173h[7] = 1): 0 = Timing 1 1 = Timing 0	Reserved	Reserved (RO): Must be written 1. (Default = 1)	
	nd 7 of the Contro See Table 4-81 fo	-		ne Cycle Timing R	Registers and Misc	ellaneous Registe	er are pro-
I/O Address 175		. 5 5-		Register			Default = xxh
Reserved: Must be written 1.	Revision nu When the value of set to 11, the con Register (08h) sh find the revision I	tents of REVID ould be used to	SDINTR status (RO): Returns the state of the SDINTR input. (Default = x)	I	erved	Reserved (RO): Must be written 1.	Reserved (RO)

Page 344 912-2000-015

Table 5-11 Secondary IDE I/O Registers (cont.)

7	6	5	4	3	2	1	0
I/O Address 176	h		Miscellane	ous Register	Default = xxh		
Reserved	Read prefetch: 0 = Disable 1 = Enable	Address The value progra register plus one address setup tin DRD# or DWR# DA[2:0], DCS3#, presented, measi See Table 4-82 o (Default = xx)	determines the ne between going active and DCS1# being ured in PCICLKs.	determines the m between DRDY#	DRDY delay: ⁽¹⁾ mmed in this regi: ninimum number o going high and D ee Table 4-82 or T	f PCICLKs RD# or DWR#	Timing register load select: 0 = Timing 0 (170-171h accept Timing 0 values) 1 = Timing 1 (170-171h accept Timing 1 values)
(1) Both Timing C	and Timing 1 set	s have common a	ddress setup and	DRDY delay times	s as programmed	in 1F7h[5:2].	

5.4.3 Bus Master IDE Registers

The bus master IDE function uses 16 bytes of I/O space. The base address of this block of I/O space is pointed to by the Bus Master IDE Base Address Register (PCIIDE 20h-23h).

All bus master IDE I/O space registers can be accessed as byte, word, or dword quantities. The description of the 16 bytes of I/O registers is shown in Table 5-12 and the individual bit formats for each register follow in Table 5-13.

Table 5-12 Bus Master IDE Registers

Offset from Base Address	Register Access	Register Name/Function
00h	R/W	Bus Master IDE Command Register for Primary IDE
01h		Device-specific
02h	RWC	Bus Master IDE Status Register for Primary IDE
03h		Device-specific
04h-07h	R/W	Bus Master IDE PRD Table Address for Primary IDE
08h	R/W	Bus Master IDE Command Register for Secondary IDE
09h		Device-specific
0 A h	RWC	Bus Master IDE status Register for Secondary IDE
0Bh		Device-specific
0Ch-0Fh	R/W	Bus Master IDE PRD Table Address for Secondary IDE

Table 5-13 Bus Master IDE Register Formats

7	6	5	4	3	2	1	0
Base Address +	· 00h	Bus Mas	ster IDE Commar	nd Register for Pr	imary IDE		Default = 00h
	Rese	erved		Read or write control: Sets the direction of the bus master transfer. 0 = PCI bus master reads 1 = PCI bus master writes This bit must not be changed when the bus master function is active.		erved	Start/Stop bus master: Writing a 1 to this bit enables bus master operation of the controller. Bus master operation begins when this bit is detected changing from 0 to 1. The controller will transfer data between the IDE device and memory only when this bit is set.(1)

(1) Master operation can be halted by writing 0 to this bit. All state information is lost when a 0 is written; master mode operation cannot be stopped and then resumed. If this bit is reset while bus master operation is still active (i.e., the Bus Master IDE Active bit of the Bus Master IDE Status Register for that IDE channel is set) and the drive has not yet finished its data transfer (the Interrupt bit in the Bus Master IDE Status Register for that IDE channel is not set), the bus master command is said to be aborted and data transferred from the drive may be discarded before being written to memory. This bit is intended to be reset after the data transfer is completed, as indicated by either the Bus Master IDE Active bit or the Interrupt bit of the Bus Master IDE Status Register for that IDE channel.

Base Address +	02h	Bus Ma	Bus Master IDE Status Register for Primary IDE					
bus master channels (pri- mary and sec- ondary) can be operated at the same time.	Drive 1 DMA capable: This bit is set by device-dependent code (BIOS or device driver) to indicate that Drive 1 for this channel is capable of DMA transfers, and that the controller has been initialized for optimum performance.	Drive 0 DMA capable: This bit is set by device-dependent code (BIOS or device driver) to indicate that Drive 0 for this channel is capable of DMA transfers, and that the controller has been initialized for optimum performance.	Reserved	Interrupt: This bit is set by the rising edge of the IDE inter- rupt line. It is cleared when a 1 is written to it by software. Software can use this bit to determine if an IDE device has asserted its interrupt line. When this bit is read as a 1, all data trans- ferred from the drive is visible in system memory.	Error: This bit is set when the IDE controller encounters an error transfer- ring data to/from memory. The exact error con- dition is bus- specific and can be deter- mined in a bus- specific manner. This bit is cleared when a 1 is written to it by software.	Bus master IDE active: This bit is set when the Start bit is written to the Command Register. It is cleared when the last transfer for a region is performed, where EOT (end of transfer) for that region is set in the region descriptor. It is also cleared when the Start bit is cleared in the Command Register.(1)		

(1) When bit 0 is read as 0, all data transferred from the drive during the previous bus master command is visible in system memory, unless the bus master command was aborted.

Page 346 912-2000-015

Table 5-13 Bus Master IDE Register Formats (cont.)

7	6	5	4	3	2	1	0
Base Address +	04h	Descrip	otor Table Pointe	r Register for Pri	mary IDE		Default = 00h

Descriptor Table Pointer Register for Primary IDE

Default = 00h

- Bits [1:0] Reserved
- Bits [31:2] Base Address of Descriptor Table: Corresponds to A[31:2].

Note: The Descriptor Table must be dword aligned and must not cross a 64K boundary in memory.

Base Address + 08h	Bus Master IDE Command Register for Sec	condary IDE	
Reserved	Read or write control: This bit sets the direction of the bus master transfer. 0 = PCI bus master reads 1 = PCI bus master writes This bit must not be changed when the bus master function is active.		Start/Stop bus master: Writing a 1 to this bit enables bus master operation of the controller. Bus master opera- tion begins when this bit is detected chang- ing from 0 to 1. The controller will transfer data between the IDE device and memory only when this bit is set.(1)

⁽¹⁾ Master operation can be halted by writing 0 to this bit. All state information is lost when a 0 is written; master mode operation cannot be stopped and then resumed. If this bit is reset while bus master operation is still active (i.e., the Bus Master IDE Active bit of the Bus Master IDE Status Register for that IDE channel is set) and the drive has not yet finished its data transfer (the Interrupt bit in the Bus Master IDE Status Register for that IDE channel is not set), the bus master command is said to be aborted and data transferred from the drive may be discarded before being written to memory. This bit is intended to be reset after the data transfer is completed, as indicated by either the Bus Master IDE Active bit or the Interrupt bit of the Bus Master IDE Status Register for that IDE channel.

Table 5-13 Bus Master IDE Register Formats (cont.)

7	6	5	4	3	2	1	0
Base Address +	- 0Ah	Bus Ma	ster IDE Status R	legister for Seco	ndary IDE		Default = 00h
Simplex only (RO): This bit indicates that both bus master channels (primary and secondary) can be operated at the same time.	Drive 1 DMA Capable: This bit is set by device dependent code (BIOS or device driver) to indicate that Drive 1 for this channel is capable of DMA transfers, and that the controller has been initialized for optimum performance.	Drive 0 DMA Capable: This bit is set by device dependent code (BIOS or device driver) to indicate that Drive 0 for this channel is capable of DMA transfers and that the controller has been initialized for optimum performance.	Rese	erved	Interrupt: This bit is set by the rising edge of the IDE inter- rupt line. It is cleared when a 1 is written to it by software. Software can use this bit to determine if an IDE device has asserted its interrupt line. When this bit is read as a 1, all data trans- ferred from the drive is visible in system mem- ory.	Error: This bit is set when the con- troller encoun- ters an error transferring data to/from memory. The exact error condition is bus- specific and can be deter- mined in a bus- specific manner. This bit is cleared when a 1 is written to it by software.	Bus master IDE active: This bit is set when the Start bit is written to the Command Register. It is cleared when the last transfer for a region is performed, where EOT (end of transfer) for that region is set in the region descriptor. It is also cleared when the Start bit is cleared in the Command Register. (1)

⁽¹⁾ When bit 0 is read as 0, all data transferred from the drive during the previous bus master command is visible in system memory, unless the bus master command was aborted.

Base Address + 0Ch

Descriptor Table Pointer Register for Secondary IDE

Default = 00h

- Bits [1:0] - Reserved

- Bits [31:2] - Base Address of Descriptor Table: Corresponds to A[31:2].

Note: The Descriptor Table must be dword aligned and must not cross a 64K boundary in memory.

OPTi

Page 348 912-2000-015

5.5 I/O Register Space

5.5.1 ISA-Compatible I/O Registers

Table 5-14 is a register map that includes system control registers that are present in FireStar. These registers are directly

accessible (CPU direct I/O R/W) in System I/O Register Space.

Table 5-14 ISA-Compatible I/O Register Map

Port	Name	Comment
DMAC1 Contro	ol Registers	
000h	Memory Address Register for DMA Channel 0	
001h	Count Register for DMA Channel 0	
002h	Memory Address Register for DMA Channel 1	
003h	Count Register for DMA Channel 1	
004h	Memory Address Register for DMA Channel 2	
005h	Count Register for DMA Channel 2	
006h	Memory Address Register for DMA Channel 3	
007h	Count Register for DMA Channel 3	
008h (Read)	Status Register	
008h (Write)	Command Register	
009h	Request Register	
00Ah (Read)	Command Register	
00Ah (Write)	Set Single Mask Bits	
00Bh	Mode Register	Read 00Eh, then read 00Bh four times to get the Mode Register values.
00Ch (Read)	Set Byte Pointer Flip-Flop	
00Ch (Write)	Clear Byte Pointer Flip-Flop	
00Dh (Red)	Temporary Register	
00Dh (Write)	Master Clear	
00Eh (Read)	Reset Mode Register Read-Back Counter	
00Eh (Write)	Clear Mask	
00Fh	Mask Register	
010h-01Fh	Reserved	
INTC1 Control	Registers	
020h	Control Register (see text)	
020h	Control Register (see text)	
02111	Control Register (see text)	
Chipset Config	guration Registers	
022h	Integrated 82C206 and Chipset Configuration Index Register (SYSCFG)	
023h	Integrated 82C206 Configuration Data Register	
024h	Chipset Configuration Data Register (SYSCFG)	
025h-03Fh	Reserved	
-		
Timer Register		
040h	Timer Channel 0 Register	
041h	Timer Channel 1 Register	
042h	Timer Channel 2 Register	

Table 5-14 ISA-Compatible I/O Register Map (cont.)

Port	Name	Comment
043h	Timer Control Register	-
045h-05Fh	Reserved	
04311 031 11	Tieselved	
Keyboard Cor	troller Registers	
060h	Reserved for External Keyboard Controller	Access monitored for fast A20M#/RESET
061h	System Control Port B	
062h-063h	Reserved	
064h	Reserved for External Keyboard Controller	Access monitored for fast A20M#/RESET
065h-06Fh	Reserved	
070h	RTC Index Register	Access monitored for RTC control generation and NMI enabling.
071h	RTC Data Register	Access monitored for RTC control generation.
072h-080h	Reserved	
DMA Page Re	gisters	
081h	Page Address Register for DMA Channel 2	
082h	Page Address Register for DMA Channel 3	
083h	Page Address Register for DMA Channel 1	
084h-086h	Reserved	
087h	Page Address Register for DMA Channel 0	
088h	Reserved	
089h	Page Address Register for DMA Channel 6	
08Ah	Page Address Register for DMA Channel 7	
08Bh	Page Address Register for DMA Channel 5	
08Ch-08Eh	Reserved	
08Fh	Page Address Register for DMA Channel 4	
090h-091h	Reserved	
092h	System Control Port A	
093h-09Fh	Reserved	
INTC2 Control	Registers	
0A0h	Control Register (see text)	
0A1h	Control Register (see text)	
0A2h-0BFh	Reserved	
DMAC2 Contro	ol Registers	
0C0h	Memory Address Register for DMA Channel 4	
0C1h	Reserved	
0C2h	Count Register for DMA Channel 4	
0C3h	Reserved	
0C4h	Memory Address Register for DMA Channel 5	
0C5h	Reserved	
0C6h	Count Register for DMA Channel 5	
0C7h	Reserved	
0C8h	Memory Address Register for DMA Channel 6	
0C9h	Reserved	

Page 350 912-2000-015

Table 5-14 ISA-Compatible I/O Register Map (cont.)

Port	Name	Comment
0CAh	Count Register for DMA Channel 6	
0CBh	Reserved	
0CCh	Memory Address Register for DMA Channel 7	
0CDh	Reserved	
0CEh	Count Register for DMA Channel 7	
0CFh	Reserved	
0D0h (Read)	Status Register	
0D0h (Write)	Command Register	
0D1h	Reserved	
0D2h	Request Register	
0D3h	Reserved	
0D4h (Read)	Command Register	
0D4h (Write)	Set Single Mask Bits	
0D5h	Reserved	
0D6h	Mode Register	Read 0DCh, then read 0D6h four times to get the Mode Register values.
0D7h	Reserved	
0D8h (Read)	Set Byte Pointer Flip-Flop	
0D8h (Write)	Clear Byte Pointer Flip-Flop	
0D9h	Reserved	
0DAh (Red)	Temporary Register	
0DAh (Write)	Master Clear	
ODBh	Reserved	
0DCh (Read)	Reset Mode Register Read-back Counter	
0DCh (Write)	Clear Mask	
0DDh	Reserved	
0DEh	Mask Register	
0DFh	Reserved	
0E0h-0FFh	Reserved	
100h-40Ah	Reserved	
40Bh	EISA DMA Extended Mode Register	
40Ch-4D5h	Reserved	
4D6h	EISA DMA Extended Mode Register	
4D7h-CF7h	Reserved	
CF8h-CFBh	PCI Configuration Index Register (PCIDV0-1)	
CFCh-CFFh	PCI Configuration Data Register (PCIDV0-1)	
D00h-FFFh	Reserved	

5.5.2 ACPI I/O Registers

Tables 5-15 through 5-18 are register maps that include ACPI control and status registers that are present in the ACPI logic module. These registers are directly accessible (CPU

direct I/O R/W) in System I/O Register Space, once the corresponding base addresses have been programmed through PCIDV1 D0h-D7h.

Table 5-15 Offset from PM1_BLK Base Address (PCIDV1 D0h-D1h)

7	6	5	4	3	2	1	0
Offset 00h							
Rese	erved	GBL_STS Global service status: Has software written BIOS_RLS = 1? 0 = No 1 = Yes Write 1 to clear	BM_STS Bus master monitor status: Has any REQ# gone active since this bit was last cleared? 0 = No 1 = Yes Write 1 to clear		Reserved		TMR_STS: Timer status: Has TMR_VAL[23] toggled (changed from high-to-low or low-to-high)? 0 = No 1 = Yes Write 1 to clear
Offset 01h		L	l				
WAK_STS Wakeup status: Did system wake from Suspend mode after an enabled Resume event occurred? 0 = No 1 = Yes		Reserved		PWRBTN OR_STS Power button override status: PWRBTN# asserted for > 4 sec? 0 = No 1 = Yes	RTC_STS RTC status: Has IRQ8#from RTC gone active? 0 = No 1 = Yes	Reserved	PWRBTN_STS Power button status: Has user pressed power button? 0 = No 1 = Yes
T = TeS							
Offset 02h							
Rese	erved	GBL_EN Global service enable: Should GBL_STS going to 1 cause SCI? 0 = No 1 = Yes		Rese	erved		TMR_EN Timer enable: Should TMR_STS going to 1 cause SCI? 0 = No 1 = Yes
Offset 03h							
		Reserved			RTC_EN RTC enable: Should RTC_STS going to 1 cause SCI? 0 = No 1 = Yes	Reserved	PWRBTN_EN Power button enable: Should PWRBTN_STS going to 1 cause SCI? 0 = No 1 = Yes

Page 352 912-2000-015

Offset from PM1 BLK Base Address (PCIDV1 D0h-D1h) (cont.) **Table 5-15**

7	6	5	4	3	2	1	0
Offset 04h							
Offset 05h		Reserved			GBL_RLS Global service lock release: Does ACPI soft- ware wish to generate SMI to BIOS? 0 = No 1 = Yes	BM_RLD: Bus master monitor RLD: Should BM_STS going to 1 wake up CPU (state restored to C0 from C3)? 0 = No 1 = Yes	SCI_EN System controller interrupt enable: If SCI occurs, generate: 0 = SMI 1 = IRQ13
	erved	SLP_EN Sleep enable: When written to 1, forces SLP_TYP Suspend mode. Always reads 0.	SLP_TYP Sleep mode type: Defines sleep mode to enter when software sets SLP_EN = 1. ACPI ROM table associates 3-bit binary values with one of the system states S0-S4. 000 = S0: Active mode. Clock throttling, etc. determined by CPU state C0-C3. 001 = S1: Low-power Suspend mode with CPU and L2 cache alive. 010 = S2: Same as S1, but power is removed from CPU, L2 cache, and selected peripheral devices. 011 = S3: Same as S2, but power is removed from more devices. 100 = S4: Same as S3, but power is also removed from DRAM in this mode.			Rese	erved
Offset 06h-07h Reserved							

Offset 08h-0Ah

TMR_VAL - Timer Value Register (RO)

Bits [23:0] correspond to: [7:0] = 08h, [15:8] = 09h, [23:16] = 0Ah

The timer is a free-running "up" counter based on the 14MHz clock divided by 4. It runs whenever the 14MHz input clock to FireStar is present, and is cleared to 0 whenever PCIRST# is asserted. Whenever TMR_VAL[23] changes from 0-to-1 or from 1-to-0, the TMR_STS bit is set to 1; writing 1 back to TMR_STS clears the bit. If TMR_EN = 1 when TMR_STS = 1, an SCI occurs (if globally

- Bits [23:0] = A read-only value that returns the power management timer count. The count is based on 14.31818MHz/4. The count is cleared by a PCI bus reset. Whenever bit 23 toggles, TMR STS is set to indicate the event. Counts only while the system is active.

Offset 0Bh-0Dh Reserved

Table 5-16 Offset from PM2_BLK Base Address (PCIDV1 D2h-D3h)

7	6	5	4	3	2	1	0
Offset 00h							
			Reserved				ARB_DIS Arbitration dis- able:
							Software uses this bit to enable and disable system master devices.
							0 = Enable arbitration
							1 = Disable arbitration
Offset 01h-03h			Res	erved			

Page 354 912-2000-015

Table 5-17 Offset from P_BLK Base Address (PCIDV1 D4h-D5h)

7	6	5	4	3	2	1	0
Offset 00h							
	Reserved		THT_EN Throttle enable:		CLK_VAL Clock throttle duty	r:	Reserved
			Enables clock throttling. 0 = Disable 1 = Enable		hrottling duty cycle ed 100 % 101 5% 110		

Offset 01h-03h Reserved

Offset 04h-05h

Force Power Level 2 or 3 Register

Bits [15:0] correspond to: [7:0] = 04h, [15:8] = 05h

- Bits [7:0] = P_LVL2
 - Force Power Level 2: Reading this register forces clock control logic to C2 state. Writes are ignored. (SYSCFG 50h[3] APM Doze Mode)
- Bits [15:8] = P LVL3
 - Force Power Level 3: Reading this register forces clock control logic to C3 state. Writes are ignored.(SYSCFG 50h[0] 0V CPU Suspend Mode)

Table 5-18 Offset from GPE0_BLK Base Address (PCIDV1 D6h-D7h)

7	6	5	4	3	2	1	0
Offset 00h GP_STS Register - Byte 0							
ACPI7 LID_STS Lid open or close event status: 0 = No activity 1 = Activity Write 1 to clear	ACPI6 EC_STS Embedded controller event status: Set if EC# line goes low. 0 = No activity 1 = Input active Write 1 to clear	ACPI5 USB_STS USB# signal status: Set if USB# line goes low. 0 = No activity 1 = Input active Write 1 to clear	GP_STS Reg ACPI4 RI_STS RI# signal status: Set if RI# goes low (local pin or from IRQ drive- back). 0 = No activity 1 = Input active Write 1 to clear	ACPI3 FRI#_STS FRI# signal status: Set if FRI# goes low (local pin or from IRQ driveback). 0 = No activity 1 = Input active Write 1 to clear	ACPI2 STSCHG_STS STSCHG# signal status: Set if STSCHG# goes low (provided from a PCM- CIA controller). 0 = No activity 1 = Input active Write 1 to clear	ACPI1 DOCK_STS DOCK# signal status: Set if DOCK# goes low (pro- vided from a docking control- ler). 0 = No activity 1 = Input active Write 1 to clear	ACPIO UNDOCK_STS UNDOCK# signal status: Set if UNDOCK# goes low (usually provided from a switch that is either local or on the docking station). 0 = No activity 1 = Input active
							Write 1 to clear
Offset 01h				gister - Byte 1	.	.	T
	Reserved		THRM_STS Has bit of the THFREQ value specified in TEMPGR[3:0] toggled? 0 = No 1 = Yes	ACPI11_STS: 0 = No activity 1 = Input active Write 1 to clear	ACPI10_STS: 0 = No activity 1 = Input active Write 1 to clear	ACPI9_STS: 0 = No activity 1 = Input active Write 1 to clear	ACPI8_STS: 0 = No activity 1 = Input active Write 1 to clear
0// 1001			00 FU D				
Offset 02h	-	Γ		jister - Byte 0	Г	Γ	T
ACPI7 LID_EN Allow SCI on LID_STS event: 0 = No 1 = Yes	ACPI6 EC#_EN Allow SCI from EC#_STS event: 0 = No 1 = Yes	ACPI5 USB#_EN Allow SCI from USB#_STS event: 0 = No 1 = Yes	ACPI4 RI#_EN Allow SCI from RI#_STS event: 0 = No 1 = Yes	ACPI3 FRI#_EN Allow SCI from FRI#_STS event: 0 = No 1 = Yes	ACPI2 STSCHG#_EN Allow SCI from STSCHG#_ STS event: 0 = No 1 = Yes	ACPI1 DOCK#_EN Allow SCI from DOCK#_STS event: 0 = No 1 = Yes	ACPI0 UNDOCK#_EN Allow SCI from UNDOCK#_ STS event: 0 = No 1 = Yes
Offset 03h			GP_EN Reg	jister - Byte 1			
BIOS_RLS: Does BIOS want to make a request to ACPI? 0 = No effect 1 = Yes Write-only bit;	Rese	erved	THRM_EN Allow SCI from THRM_STS event: 0 = No 1 = Yes	ACPI11_EN: Allow SCI from ACPI11_STS event: 0 = No 1 = Yes	ACPI10_EN: Allow SCI from ACPI10_STS event: 0 = No 1 = Yes	ACPI9_EN: Allow SCI from ACPI9_STS event: 0 = No 1 = Yes	ACPI8_EN: Allow SCI from ACPI8_STS event. 0 = No 1 = Yes
reads always return 0.							

Page 356 912-2000-015

5.6 Register Space Summary

This summary includes only System Control and PCI Configuration Register Spaces. For information on ISA-Compatible I/O Registers and ACPI I/O Registers refer to Section 5.5, I/O

Register Space. For information on Primary and Secondary IDE I/O Registers, refer to Section 5.4.2, IDE I/O Registers.

Table 5-19 SYSCFG 00h-FFh Register Summary

Loc.	Register Name	Default
00h	Byte Merge/Prefetch & Sony Cache Module Control Register	00h
01h	DRAM Control Register 1	00h
02h	Cache Control Register 1	00h
03h	Cache Control Register 2	00h
04h	Shadow RAM Control Register 1	00h
05h	Shadow RAM Control Register 2	00h
06h	Shadow RAM Control Register 3	00h
07h	Tag Test Register	00h
08h	CPU Cache Control Register	00h
09h	System Memory Function Register	00h
0Ah	DRAM Hole A Address Decode Register	00h
0Bh	DRAM Hole B Address Decode Register	00h
0Ch	DRAM Hole Higher Address	00h
0Dh	Clock Control Register	00h
0Eh	PCI Master Burst Control Register 1	00h
0Fh	PCI Master Burst Control Register 2	00h
10h	Miscellaneous Control Register 1	00h
11h	Miscellaneous Control Register 2	00h
12h	Refresh Control Register	00h
13h	Memory Decode Control Register 1	00h
14h	Memory Decode Control Register 2	00h
15h	PCI Cycle Control Register 1	00h
16h	Dirty/Tag RAM Control Register	A0h
17h	PCI Cycle Control Register 2	00h
18h	Interface Control Register	00h
19h	Memory Decode Control Register 3	00h
1Ah	Memory Shadow Control Register 1	00h
1Bh	Memory Shadow Control Register 2	00h
1Ch	EDO DRAM Control Register	00h
1Dh	Miscellaneous Control Register 3	00h
1Eh	Control Register	00h
1Fh	EDO Timing Control Register	00h
20h	DRAM Burst Control Register	00h
21h	PCI Concurrency Control Register	01h
22h	Inquire Cycle Control Register	00h
23h	Pre-Snoop Control Register	00h
24h	Asymmetric DRAM Configuration Register	00h
25h	GUI Memory Location Register	00h
26h	UMA Control Register 1	00h

Loc.	Register Name	Default
27h	Miscellaneous Control Register 4	00h
28h	SDRAM Control Register 1	00h
29h	SDRAM Control Register 2	00h
2Ah	PCI-to-DRAM Control Register 1	00h
2Bh	PCI-to-DRAM Control Register 2	00h
2Ch	CPU-to-DRAM Buffer Control Register	00h
2Dh	Miscellaneous Control Register 5	00h
2Eh	UMA Control Register 2	00h
2Fh	UMA Control Register 3	00h
30h- 37h	Reserved	00h
38h	NMI Trap Enable Register 1	00h
39h	NMI Trap Enable Register 2	00h
3Ah	NMI Trap Enable Register 3	00h
3Bh	NMI Trap Enable Register 4	00h
3Ch	NMI Trap Enable Register 5	00h
3Dh- 3Fh	Reserved	00h
40h	PMU Control Register 1	00h
41h	DOZE_TIMER Register	00h
42h	If AEh[7] = 0: Clock Source Register 1	00h
	If AEh[7] = 1: Clock Source Register 1A	00h
43h	PMU Control Register 2	00h
44h	LCD_TIMER Register	00h
45h	DSK_TIMER Register	00h
46h	KBD_TIMER Register	00h
47h	If AEh[7] = 0: GNR1_TIMER Register	00h
	If AEh[7] = 1: GNR5_TIMER Register	00h
48h	If AEh[7] = 0: GNR1 Base Address Register	00h
	If AEh[7] = 1: GNR5_Timer Base Address Register	00h
49h	If AEh[7] = 0: GNR1 Control Register	00h
	If AEh[7] = 1: GNR5_Timer Control Register	00h
4Ah	Chip Select 0 Base Address Register	00h
4Bh	Chip Select 0 Control Register	00h
4Ch	Chip Select 1 Base Address Register	00h
4Dh	Chip Select 1 Control Register	00h
4Eh	If AEh[7] = 0: Idle Reload Event Enable Register 1	00h
	If AEh[7] = 1: Idle Reload Event Enable Register 1A	00h

912-2000-015 Revision: 1.0

Table 5-19 SYSCFG 00h-FFh Register Summary (cont.)

Loc.	Register Name	Default
4Fh	IDLE_TIMER Register	00h
50h	PMU Control Register 3	00h
51h	Beeper Control Register	00h
52h	Scratchpad Register 1	00h
53h	Scratchpad Register 2	00h
54h	Power Control Latch Register 1	00h
55h	Power Control Latch Register 2	0Fh
56h	Reserved	00h
57h	PMU Control Register 4	08h
58h	PMU Event Register 1	00h
59h	PMU Event Register 2	00h
5Ah	If AEh[7] = 0: PMU Event Register 3	00h
	If AEh[7] = 1: PMU Event Register 3A	00h
5Bh	If AEh[7] = 0: PMU Event Register 4	00h
	If AEh[7] = 1: PMU Event Register 4A	00h
5Ch	PMI SMI Source Register 1 (Write 1 to Clear)	00h
5Dh	If AEh[7] = 0: PMI SMI Source Register 2 (Write 1 to Clear)	00h
	If AEh[7] = 1: PMI SMI Source Register 2A (Write 1 to Clear)	00h
5Eh	Reserved	00h
5Fh	PMU Control Register 5	00h
60h	R_Timer Count Register	00h
61h	Debounce Register	00h
62h	IRQ Doze Register 1	00h
63h	Idle Time-Out Select Register 1	00h
64h	INTRGRP IRQ Select Register 1	00h
65h	Doze Register	00h
66h	PMU Control Register 6	00h
67h	PMU Control Register 7	00h
68h	Clock Source Register 2	00h
69h	R_TIMER Register	00h
6Ah	RSMGRP IRQ Register 1	00h
6Bh	Resume Source Register	00h
6Ch	Scratchpad Register 3	00h
6Dh	Scratchpad Register 4	00h
6Eh	Scratchpad Register 5	00h
6Fh	Scratchpad Register 6	00h
70h	GNR1 Base Address Register 1	00h
71h	GNR1 Control Register 1	FFh
72h	GNR1 Control Register 2	00h
73h	GNR2 Base Address Register 1	00h
74h	GNR2 Control Register 1	FFh
75h	GNR2 Control Register 2	00h

Loc.	Register Name	Default
76h	If AEh[7] = 0: Doze Reload Select Register 1	0Fh
	If AEh[7] = 1: Doze Reload Select Register 1A	03h
77h	Doze Reload Select Register 2	00h
78h	Doze Reload Select Register 3	00h
79h	PMU Control Register 8	00h
7Ah	GNR3 Base Address Register 1	00h
7Bh	GNR3 Control Register 1	FFh
7Ch	GNR3 Control Register 2	00h
7Dh	GNR4 Base Address Register 1	00h
7Eh	GNR4 Control Register 1	FFh
7Fh	GNR4 Control Register 2	00h
80h	ICW1 Shadow Register for INTC1	00h
81h	ICW2 Shadow Register for INTC1	00h
82h	ICW3 Shadow Register for INTC1	00h
83h	ICW4 Shadow Register for INTC1	00h
84h	DMA In-Progress Register (RO)	00h
85h	OCW2 Shadow Register for INTC1	00h
86h	OCW3 Shadow Register for INTC1	00h
87h	Reserved	00h
88h	ICW1 Shadow Register for INTC2	00h
89h	ICW2 Shadow Register for INTC2	00h
8Ah	ICW3 Shadow Register for INTC2	00h
8Bh	ICW4 Shadow Register for INCT2	00h
8Ch	Reserved	00h
8Dh	OCW2 Shadow Register for INTC2	00h
8Eh	OCW3 Shadow Register for INTC2	00h
8Fh	Reserved	00h
90h	Timer Channel 0 Low Byte Register: A[7:0]	00h
91h	Timer Channel 0 High Byte Register: A[15:8]	00h
92h	Timer Channel 1 Low Byte Register: A[7:0]	00h
93h	Timer Channel 1 High Byte Register: A[15:8]	00h
94h	Timer Channel 2 Low Byte Register: A[7:0]	00h
95h	Timer Channel 2 High Byte Register: A[15:8]	00h
96h	Write Counter High/Low Byte Latch (RO)	xxh
97h	Reserved	00h
98h	RTC Index Shadow Register (RO)	xxh
99h	Interrupt Request Register for INCT1 (RO)	xxh
9Ah	Interrupt Request Register for INCT2 (RO)	xxh
9Bh	3F2h + 3F7h Shadow Register	00h
9Ch	372h + 377h Shadow Register	00h
9Dh- 9Eh	Reserved	00h
9Fh	Port 064h Shadow Register	00h
A0h	Feature Control Register 1	80h

Page 358 912-2000-015

Table 5-19 SYSCFG 00h-FFh Register Summary (cont.)

Loc.	Register Name	Default
A1h	Feature Control Register 2	00h
A2h	If AEh[7] = 0: IRQ Doze Register 2	00h
	If AEh[7] = 1: IRQ Doze Register 2A	00h
A3h	Idle Time-Out Select Register 2	00h
A4h	INTRGRP IRQ Select Register 2	00h
A5h	Thermal Management Register 1	00h
A6h	Thermal Management Register 2	00h
A7h	Thermal Management Register 3	00h
A8h	Thermal Management Register 4	00h
A9h	Thermal Management Register 5	00h
AAh	Thermal Management Register 6	00h
ABh	Power Control Latch Register 3	00h
ACh	Reserved	00h
ADh	Feature Control Register 3	00h
AEh	GNR_ACCESS Feature Register 1	03h
AFh- B0h	Reserved	00h
B1h	RSMGRP IRQ Register 2	00h
B2h	If AEh[7] = 0: Clock Source Register 3	00h
	If AEh[7] = 1: Clock Source Register 3A	00h
B3h	Chip Select Cycle Type Register	00h
B4h	HDU_TIMER Register	00h
B5h	COM1_TIMER Register	00h
B6h	COM2_TIMER Register	00h
B7h	If AEh[7] = 0: GNR2_TIMER Register	00h
	If AEh[7] = 1: GNR6_TIMER Register	00h
B8h	If AEh[7] = 0: GNR2 Base Address Register	00h
	If AEh[7] = 1: GNR6 Base Address Register	00h
B9h	If AEh[7] = 0: GNR2 Control Register	00h
	If AEh[7] = 1: GNR6 Control Register	00h
BAh	Chip Select 2 Base Address Register	00h\
BBh	Chip Select 2 Control Register	00h
BCh	Chip Select 3 Base Address Register	00h
BDh	Chip Select 3 Control Register	00h
BEh	If AEh[7] = 0: Idle Reload Event Enable Register 2	00h
	If AEh[7] = 1: Idle Reload Event Enable Register 2A	00h
BFh	Chip Select Granularity Register	0Fh
C0h- D4h	Reserved	00h
D5h	X Bus Positive Decode Register	00h
D6h	PMU Control Register 9	00h
D7h	Access Port Address Register 1	00h
D8h	If AEh[7] = 0: PMU Event Register 5	00h
	If AEh[7] = 1: PMU Event Register 5A	00h

Loc.	Register Name	Default
D9h	PMU Event Register 6	00h
DAh	Power Management Event Status Register (RO)	00h
DBh	If AEh[7] = 0: Next Access Event Generation Register 1	00h
	If AEh[7] = 1: Next Access Event Generation Register 1A	00h
DCh	If AEh[7] = 0: PMU SMI Source Register 1 (Write 1 to Clear)	00h
	If AEh[7] = 1: PMU SMI Source Register 1A (Write 1 to Clear)	00h
DDh	PMU SMI Source Register 2 (Write 1 to Clear)	00h
DEh	If AEh[7] = 0: Current Access Event Generation Register 1	00h
	If AEh[7] = 1: Current Access Event Generation Register 1A	00h
DFh	If AEh[7] = 0: Activity Tracking Register 1	00h
	If AEh[7] = 1: Activity Tracking Register 1A	00h
E0h	If AEh[7] = 0: Activity Tracking Register 2	00h
	If AEh[7] = 1: Activity Tracking Register 2A	00h
E1h	If AEh[7] = 0: GNR3 Base Address Register	00h
	If AEh[7] = 1: GNR7 Base Address Register	00h
E2h	If AEh[7] = 0: GNR3 Control Register	00h
	If AEh[7] = 1: GNR7 Control Register	00h
E3h	If AEh[7] = 0: GNR4 Base Address Register	00h
	If AEh[7] = 1: GNR8 Base Address Register	00h
E4h	If AEh[7] = 0: GNR4 Control Register	00h
	If AEh[7] = 1: GNR8 Control Register	00h
E5h	GNR_ACCESS Feature Register 2	03h
E6h	If AEh[7] = 0: Clock Source Register 4	70h
	If AEh[7] = 1: Clock Source Register 4A	70h
E7h	If AEh[7] = 0: GNR3_TIMER Register	00h
	If AEh[7] = 1: GNR7_TIMER Register	00h
E8h	If AEh[7] = 0: GNR4_TIMER Register	00h
	If AEh[7] = 1: GNR8_TIMER Register	00h
E9h	If AEh[7] = 0: PMU Event Register 7	00h
	If AEh[7] = 1: PMU Event Register 7A	00h
EAh	If AEh[7] = 0: PMU SMI Source Register 3 (Write 1 to Clear)	00h
	If AEh[7] = 1: PMU SMI Source Register 3A (Write 1 to Clear)	00h
EBh	Access Port Address Register 2	00h
ECh	Write Trap Register 1 (RO)	00h
EDh	Write Trap Register 2 (RO)	00h
EEh	Power Control Latch Register 4	0Fh
EFh	Hot Docking Control Register 1	00h
F0h	Hot Docking Control Register 2	00h
F1h	Low Order Start Address for ROM Window	00h

912-2000-015 Revision: 1.0

Table 5-19 SYSCFG 00h-FFh Register Summary (cont.)

Loc.	Register Name	Default
F2h	High Order Start Address for ROM Window	00h
F3h	Thermal Management Register 7	00h
F4h	Thermal Management Register 8	00h
F5h	PMU Event Register 8	00h
F6h	DMA Doze Reload Register 1	00h
F7h	DMA Doze Reload Register 2	00h
F8h	Compact ISA Control Register 1	00h

Loc.	Register Name	Default
F9h	Compact ISA Control Register 2	00h
FAh	Compact ISA Control Register 3	00h
FBh	DMA Idle Reload Register	00h
FCh	IDE Power Management Assignment Register 1	33h
FDh	IDE Power Management Assignment Register 2	33h
FEh	GPCS# Global Control Register	00h
FFh	Reserved	00h

Table 5-20 PCIDV0 00h-FFh Register Summary

Loc.	Register Name	Default
00h	Vendor Identification Register (RO) - Byte 0	45h
01h	Vendor Identification Register (RO) - Byte 1	10h
02h	Device Identification Register (RO) - Byte 0	01h
03h	Device Identification Register (RO) - Byte 1	C7h
04h	Command Register - Byte 0	07h
05h	Command Register - Byte 1	00h
06h	Status Register - Byte 0	80h
07h	Status Register - Byte 1	00h
08h	Revision Identification Register (RO)	10h
09h	Class Code Register (RO) - Byte 0	00h
0 A h	Class Code Register (RO) - Byte 1	00h
0Bh	Class Code Register (RO) - Byte 2	06h
0Ch	Reserved	00h
0Dh	Master Latency Timer Register (RO)	00h
0Eh	Header Type Register (RO)	00h
0Fh	Built-In Self-Test (BIST) Register (RO)	00h
10h- 2Bh	Reserved	00h
2Ch- 2Dh	Subsystem Vendor ID	00h

Loc.	Register Name	Default
2Eh- 2Fh	Subsystem ID	00h
30h- 3Fh	Reserved	00h
40h	Memory Control Register - Byte 0	00h
41h	Memory Control Register - Byte 1	00h
42h	Reserved	00h
43h	Internal Project Revision - Reserved	00h
44h	Data Path Register 1	00h
45h	Data Path Control Register 2	00h
46h	Data Path Control Register 3	00h
47h	Data Path Control Register 4	00h
48h	Data Path Control Register 5	00h
49h- 4Bh	Reserved	00h
4Ch	MCACHE Control Register	00h
4Dh	Delay Adjustment Register	00h
4Eh	SDRAM Control Register	00h
4Fh- FFh	Reserved	00h

Page 360 912-2000-015

Table 5-21 PCIDV1 00h-FFh Register Summary

Loc.	Register Name	Default
00h	Vendor Identification Register (RO) - Byte 0	45h
01h	Vendor Identification Register (RO) - Byte 1	10h
02h	Device Identification Register (RO) - Byte 0	00h
03h	Device Identification Register (RO) - Byte 1	C7h
04h	Command Register - Byte 0	07h
05h	Command Register - Byte 1	00h
06h	Status Register - Byte 0	80h
07h	Status Register - Byte 1	02h
08h	Revision Identification Register (RO)	10h
09h	Class Code Register (RO) - Byte 0	00h
0Ah	Class Code Register (RO) - Byte 1	00h
0Bh	Class Code Register (RO) - Byte 2	06h
0Ch	Reserved	00h
0Dh	Master Latency Timer Register (RO)	00h
0Eh	Header Type Register (RO)	00h
0Fh	Built-In Self-Test (BIST) Register (RO)	00h
10h- 2Bh	Reserved	00h
2Ch- 2Dh	Subsystem Vendor ID	00h
2Eh- 2Fh	Subsystem ID	00h
30h- 40h	Reserved	00h
41h	Keyboard Controller Select Register	00h
42h	Reserved	00h
43h	Feature Control Register	00h
44h- 45h	Reserved	00h
46h	PCI Control Register B - Byte 0	06h
47h	PCI Control Register B - Byte 1	00h
48h	Strap Option Readback Register - Byte 0	00h
49h	Strap Option Readback Register - Byte 1	00h
4Ah	ROM Chip Select Register 1	00h
4Bh	ROM Chip Select Register 2	00h
4Ch- 4Dh	Reserved	00h
4Eh	Miscellaneous Control Register 1	00h
4Fh	Miscellaneous Control Register 2	20h
50h- 51h	Reserved	00h
52h	Miscellaneous Controller Register 3	00h
53h	Miscellaneous Controller Register 4	00h
54h	IRQ Driveback Address Register - Byte 0: Address Bits [7:0]	00h

Loc.	Register Name	Default
55h	IRQ Driveback Address Register - Byte 1: Address Bits [15:8]	00h
56h	IRQ Driveback Address Register - Byte 2: Address Bits [23:16]	00h
57h	IRQ Driveback Address Register - Byte 3: Address Bits [31:24]	00h
58h	DRQ Remap Base Address Register - Byte 0: Address Bits [7:0]	00h
59h	DRQ Remap Base Address Register - Byte 1: Address Bits [15:8]	00h
5Ah	DRQ Remap Base Address Register - Byte 2: Address Bits [23:16]	00h
5Bh	DRQ Remap Base Address Register - Byte 3: Address Bits [31:24]	00h
5Ch	DMA Channel Selector Register	00h
5Dh	Reserved	00h
5Eh	IRQ Scheme Management Register	00h
5Fh	SYSCFG Base Select Register	00h
60h	IRQ Driveback Data Register - Byte 0: Data Bits [7:0]	00h
61h	IRQ Driveback Data Register - Byte 1: Data Bits [15:8]	00h
62h	IRQ Driveback Data Register - Byte 2: Data Bits [23:16]	00h
63h	IRQ Driveback Data Register - Byte 3: Data Bits [31:24]	00h
64h	PCI Master Control Register 1	10h
65h	PCI Master Control Register 2	01h
66h	Reserved	00h
67h	Miscellaneous Control Register 5	00h
68h	PCICLK Control Register 1	FFh
69h	PCICLK Control Register 2	00h
6Ah	PCICLK Skew Adjust Register for PCICLK 0, 1, 2	00h
6Bh	PCICLK Skew Adjust Register for PCICLK 3, 4, 5	00h
6Ch- 6Fh	Reserved	00h
70h	Leakage Control Register - Byte 0	00h
71h	Leakage Control Register - Byte 1	00h
72h	Leakage Control Register - Byte 2	00h
73h	Leakage Control Register - Byte 3	00h
74h	Leakage Control Register - Byte 4	00h
75h	Leakage Control Register - Byte 5	00h
76h	Hot Docking Leakage Control Register	00h
77h- 7Fh	Reserved	00h

912-2000-015 Revision: 1.0

Table 5-21 PCIDV1 00h-FFh Register Summary (cont.)

Loc.	Register Name	Default
80h	PIO0 Pin (CDOE#) Function Register	00h
81h	PIO1 Pin (TAGWE#) Function Register	00h
82h	PIO2 Pin (ADSC#) Function Register	00h
83h	PIO3 Pin (ADV#) Function Register	00h
84h	PIO4 Pin (RAS2#) Function Register	00h
85h	PIO5 Pin (RAS1#) Function Register	00h
86h	PIO6 Pin (CLKRUN#) Function Register	00h
87h	PIO7 Pin (REQ1#) Function Register	00h
88h	PIO8 Pin (REQ2#) Function Register	00h
89h	PIO9 Pin (DDRQ0) Function Register	00h
8Ah	PIO10 Pin (IRQ1) Function Register	00h
8Bh	PIO11 Pin (IRQ8#) Function Register	00h
8Ch	PIO12 Pin (IRQ12) Function Register	00h
8Dh	PIO13 Pin (IRQ14) Function Register	00h
8Eh	PIO14 Pin (SEL#/ATB#) Function Register	00h
8Fh	PIO15 Pin (RSTDRV) Function Register	00h
90h	PIO16 Pin (SA16) Function Register	00h
91h	PIO17 Pin (SA17) Function Register	00h
92h	PIO18 Pin (IO16#) Function Register	00h
93h	PIO19 Pin (M16#) Function Register	00h
94h	PIO20 Pin (SBHE#) Function Register	00h
95h	PIO21 Pin (SMRD#) Function Register	00h
96h	PIO22 Pin (SMWR#) Function Register	00h
97h	PIO23 Pin (ROMCS#) Function Register	00h
98h	PIO24 Pin (KBDCS#) Function Register	00h
99h	PIO25 Pin (DRQA) Function Register	00h
9Ah	PIO26 Pin (DRQB) Function Register	00h
9Bh	PIO27 Pin (DRQC) Function Register	00h
9Ch	PIO28 Pin (DRQD) Function Register	00h
9Dh	PIO29 Pin (DRQE) Function Register	00h
9Eh	PIO30 Pin (DRQF) Function Register	00h
9Fh	PIO31 Pin (DRQG) Function Register	00h
A0h	Logic Matrix Register 1	00h
A1h	Logic Matrix Register 2	00h
A2h	Logic Matrix Register 3	00h
A3h	Logic Matrix Register 4	00h
A4h	Logic Matrix Register 5	00h
A5h	Logic Matrix Register 6	00h
A6h	Logic Matrix Register 7	00h
A7h	Logic Matrix Register 8	00h
A8h	PIO Pin Current State Register 1	00h
A9h	PIO Pin Current State Register 2	00h
AAh	PIO Pin Current State Register 3	00h
ABh	PIO Pin Current State Register 4	00h

Loc.	Register Name	Default
ACh- ADh	Reserved	00h
AEh	DBE# Select Register 1	01h
AFh	DBE# Select Register 2	00h
B0h	IRQA Interrupt Selection Register	03h
B1h	IRQB Interrupt Selection Register	04h
B2h	IRQC Interrupt Selection Register	05h
B3h	IRQD Interrupt Selection Register	06h
B4h	IRQE Interrupt Selection Register	07h
B5h	IRQF Interrupt Selection Register	09h
B6h	IRQG Interrupt Selection Register	0Ah
B7h	IRQH Interrupt Selection Register	0Bh
B8h	PCI Interrupt Selection Register 1	00h
B9h	PCI Interrupt Selection Register 2	00h
BAh	Serial IRQ Control Register 1	00h
BBh	Serial IRQ Control Register 2	00h
BCh- BFh	Reserved	00h
C0h	DMA Channels A and B Selection Register	10h
C1h	DMA Channels C and D Selection Register	32h
C2h	DMA Channel E Selection Register	50h
C3h	DMA Channels F and G Selection Register	76h
C4h- CFh	Reserved	00h
	The registers located from PCIDV1 D0h through EE only to FS ACPI Version. Otherwise they are reserv	
D0h	FS ACPI: PM1_BLK Base Address Register - Byte 0: Address Bits [7:0]	00h
D1h	FS ACPI: PM1_BLK Base Address Register - Byte 1: Address Bits [15:8]	00h
D2h	FS ACPI: PM2_BLK Base Address Register - Byte 0: Address Bits [7:0]	00h
D3h	FS ACPI: PM2_BLK Base Address Register - Byte 1: Address Bits [15:8]	00h
D4h	FS ACPI: P_BLK Base Address Register - Byte 0: Address Bits [7:0]	00h
D5h	FS ACPI: P_BLK Base Address Register - Byte 1: Address Bits [15:8]	00h
D6h	FS ACPI: GPE0_BLK Base Address Register - Byte 0: Address Bits [7:0]	00h
D7h	FS ACPI: GPE0_BLK Base Address Register - (Byte 0: Address Bits [15:8]	
D8h	FS ACPI: ACPI Source Control Register - Byte 0	00h
D9h	FS ACPI: ACPI Source Control Register - Byte 1	00h
DAh	FS ACPI: ACPI Source Status Register - Byte 0	00h

Page 362 912-2000-015

Table 5-21 PCIDV1 00h-FFh Register Summary (cont.)

Loc.	Register Name	
DBh	FS ACPI: ACPI Source Status Register - Byte 1	00h
DCh	FS ACPI: ACPI Event Resume Control Register - Byte 0	00h
DDh	FS ACPI: ACPI Event Resume Control Register - Byte 1	00h
DEh- DFh	Reserved	00h
E0h	FS ACPI: SLP_TYP Control Register - Byte 0	00h
E1h	FS ACPI: SLP_TYP Control Register - Byte 1	00h
E2h	FS ACPI: SLP_TYP Control Register - Byte 2	00h
E3h	FS ACPI: SLP_TYP Control Register - Byte 3	00h
E4h	FS ACPI: SLP_TYP Control Register - Byte 4	00h
E5h	FS ACPI: SLP_TYP Control Register - Byte 5	00h
E6h	FS ACPI: SLP_TYP Control Register - Byte 6	00h
E7h	FS ACPI: SLP_TYP Control Register - Byte 7	00h
E8h	FS ACPI: Power Control Latch Set Register	00h
E9h	Reserved	00h
EAh	FS ACPI: Power Control Readback Register - Byte 0	FFh

Loc.	Register Name	Default
EBh	FS ACPI: Power Control Readback Register - Byte 1	FFh
ECh	FS ACPI: Power Control Readback Register - Byte 2	F0h
EDh	FS ACPI: Power Control Readback Register - Byte 3	F0h
EEh	FS ACPI: ACPI Thermal Control Register	00h
EFh- FDh	Reserved	00h
FEh	Stop Grant Cycle Generation Register (WO)	00h
FFh	Parity Error Cycle Generation Register	00h

Preliminary **82C700**

Table 5-22 PCIIDE 00h-47h Register Summary

Loc	Register Name	Default
00h	Vendor ID Register (RO) - Byte 0	45h
01h	Vendor ID Register (RO) - Byte 1	10h
02h	Device ID Register (RO) - Byte 0 (SYSCFG ADh[2] controls the value returned by this register.)	68h
03h	Device ID Register (RO) - Byte 1 (SYSCFG ADh[2] controls the value returned by this register.)	D5h
04h	Command Register - Byte 0	45h
05h	Command Register (RO) - Byte 1	00h
06h	Status Register (RO) - Byte 0	80h
07h	Status Register - Byte 1	02h
08h	Revision ID Register (RO)	00h
09h	Class Code Register - Byte 0	80h
0Ah	Class Code Register (RO) - Byte 1	01h
0Bh	Class Code Register (RO) - Byte 2	01h
0Ch- 0Dh	Reserved	00h
0Eh	Header Type Register (RO)	00h
0Fh	Built-In Self-Test Register (RO)	00h
10h- 13h	Primary IDE Command Block Base Address Register	1F1h with PCIIDE 09h[2] = 1 and 40h[2] = 1
14h- 17h	Primary IDE Control Block Base Address Register	3F5h with PCIIDE 09h[2] = 1 and 40h[2] = 1
18h- 1Bh	Secondary IDE Command Block Base Address Register	171h with PCIIDE 09h[2] = 1, 40h[2] = 1, and 40h[3] = 0
1Ch- 1Fh	Secondary IDE Control Block Base Address Register	375h with PCIIDE 09h[2] = 1, 40h[2] = 1, and 40h[3] = 0

Loc	Register Name	Default
20h- 23h	Bus Master IDE Base Address Register	0000001h
24h- 2Bh	Reserved	00h
2Ch- 2Dh	Subsystem Vendor ID (write one time only)	00h
2Eh- 2Fh	Subsystem ID (write one time only)	00h
30h- 3Ah	Reserved	00h
3Ch	Interrupt Line Register	00h
3Dh	Interrupt Pin Register (RO)	FFh
3Eh- 3Fh	Reserved	00h
40h	IDE Initialization Control Register	00h
41h	Reserved	00h
42h	IDE Enhanced Feature Register	00h
	FS ACPI: IDE Enhanced Feature Register	00h
43h	IDE Enhanced Mode Register	00h
44h	Emulated Bus Master Register	00h
	FS ACPI: Ultra DMA Configuration Register	00h
45h	IDE Interrupt Selection Register	00h
	FS ACPI: Ultra DMA Configuration Register	00h
46h	FS ACPI: Emulated IDE Configuration Register	00h
47h	FS ACPI: IDE Interrupt Selection Register	FAh

Page 364 912-2000-015

6.0 Electrical Ratings

Stresses above those listed in the following tables may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied.

6.1 Absolute Maximum Ratings

		5.0 Volt		3.3		
Symbol	Parameter	Min	Max	Min	Max	Unit
VCC	5.0V Supply Voltage		+6.5			V
VDD	3.3V Supply Voltage				+4.0	
VI	Input Voltage	-0.5	VCC + 0.5	-0.5	VDD + 0.5	V
VO	Output Voltage	-0.5	VCC + 0.5	-0.5	VDD + 0.5	V
TOP	Operating Temperature	0	+85	0	+85	°C
TSTG	Storage Temperature	-40	+125	-4 0	+125	°C

6.2 DC Characteristics:

VCC_PCI, VCC_DRAM, VCC_CPU = 3.3V±5%, VCC_ISA = 5.0V±5%, TA = 0°C to +85°C

Symbol	Parameter	Min	Max	Unit	Condition
VIL	Input low Voltage	-0.5	+0.8	V	
VIH	Input high Voltage	+2.0	VCC + 0.5	V	
VOL	Output low Voltage		+0.4	V	IOL = 4.0mA
VOH	Output high Voltage	+2.4		V	IOH = -1.6mA
IIL	Input Leakage Current		+10.0	μA	VIN = VCC
IOZ	Tristate Leakage Current		+10.0	μA	
CIN	Input Capacitance		+10.0	pF	
COUT	Output Capacitance		+10.0	pF	
ICC	Power Consumption		1	W	At 66MHz, full operation
θЈС	Junction to Case Thermal Resistance	<	<5		
θΑС	Case to Ambient Thermal Resistance	2	22	C°/W	

Note: Average power dissipation for a system running at 60/90MHz: less than 1.6W (estimated).

6.3 Data Buffer Controller Module AC Characteristics (66MHz - Preliminary)

Symbol	Parameter	Min	Max	Unit	Condition
t101	HD[63:0] to MD[63:32] bus valid	2	22	ns	
t102	HD[31:0] to MD[31:0]# bus valid	2	22	ns	
t107	MD[31:0] setup to DLE# low	5		ns	
t108	MD[63:32] setup to DLE# low	5		ns	
t110	HD[31:0] setup to DLE# low	5		ns	
t111	HD[63:32] setup to DLE# low	5		ns	
t115	MD[31:0] hold from DLE# high	5		ns	
t116	MD[63:32] hold from DLE# high	5		ns	
t118	HD[31:0] hold from DLE# high	8		ns	
t119	HD[63:32] hold from DLE# high	8		ns	

Note: DLE# is an internal signal (timing TBD).

6.4 CPU Interface Module AC Characteristics (66MHz - Preliminary)

Symbol	Parameter	Min	Max	Unit	Condition
t400	BOFF# valid delay from CPUCLKIN	5	15		
t401	HITM# setup time to CPUCLKIN	2			
t402	HITM# hold time to CPUCLKIN	1			
t406	INV valid delay from CPUCLKIN on (W/R#)/INV signal	5	15		
t407	WB/WT# valid delay from CPUCLKIN on EADS#/(WB/WT#) signal	5	15		
t201	CPUCLKIN to BRDY# active delay	5	15	ns	
t202	CPUCLKIN to BRDY# inactive delay	5	15	ns	
t205	CDOE# falling edge valid delay from CPUCLKIN rising	5	15	ns	
t207	ADS# setup to CPUCLKIN high	2		ns	
t208	ADS# hold time from CPUCLKIN high	1		ns	
t209	M/IO#, D/C#, W/R#, CACHE# setup to CPUCLKIN high	1		ns	Sampled one CPUCLKIN after ADS#
t408	M/IO#, D/C#, W/R#, CACHE# hold to CPUCLKIN high	1			Sampled one CPUCLKIN after ADS#
t212	CPUCLKIN to TAGWE# active delay	5	14	ns	
t213	CPUCLKIN to TAGWE# inactive delay	5	14	ns	
t214	CACS# falling edge valid delay from CPUCLKIN high	5	15	ns	
t215	BWE#, GWE# falling edge valid delay from CPUCLKIN high	5	15	ns	
t216	CPUCLKIN to NA# active delay	5	15	ns	

6.4 CPU Interface Module AC Characteristics (66MHz - Preliminary) (cont.)

Symbol	Parameter	Min	Max	Unit	Condition
t217	CPUCLKIN to NA# inactive delay	5	15	ns	
t218	TAG[7:0] data read to BRDY# low		5	ns	
t219	CPUCLKIN to ADSC# active delay	5	15	ns	
t220	CPUCLKIN to ADV# active delay	5	15	ns	
t223	HA[31:3] valid delay from PCICLK high	2	18	ns	
t224	HA[31:3] Float delay from PCICLK high	2	18	ns	
t225	AHOLD valid delay from CPUCLKIN high	5	15	ns	
t226	EADS# valid delay from CPUCLKIN high	5	15	ns	
t227	RESET rising edge valid from CPUCLKIN high	5	15	ns	
t228	RESET falling edge valid delay from CPUCLKIN high	5	15	ns	
t229	KEN# valid delay from CPUCLKIN high	5	15	ns	
t409	AHOLD Setup time to PCICLK	5			
t410	AHOLD Hold time to PCICLK	3			
t411	HLDA setup time to PCICLK	5			
t412	HLDA hold time to PCICLK	3			
t413	NMI valid delay from PCICLK	2	15		
t414	RESET setup time to PCICLK	5			
t415	RESET hold time to PCICLK	3			
t313	INIT valid delay from PCICLK rising	2	15	ns	
t315	SMI# valid delay from PCICLK rising	2 15 ns			

Note: BE[7:0]#, LOCK#, SMIACT#, and A[31:0] are not sampled with respect to CPUCLK. These inputs directly feed combinatorial inputs.

6.5 DRAM Controller Module AC Characteristics (66MHz - Preliminary)

Symbol	Parameter	Min	Max	Unit	Condition
t230	RAS[3:0]# valid delay from CPUCLK high/PCICLK high	2	15	ns	
t231	CAS[7:0]# valid delay from CPUCLK high/PCICLK high	2	15	ns	
t232	MA[11:0] valid delay from CPUCLK high/PCICLK high	2	15	ns	
t233	DWE# valid delay from CPUCLK high/PCICLK high	2	15	ns	
t234	MA[11:0] propagation delay from HA[28:3]	2	22	ns	

6.6 PCI Controller Module AC Characteristics (66MHz - Preliminary)

Symbol	Parameter	Min	Max	Unit	Condition
t235	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, PLOCK#, DEVSEL# valid delay from PCICLK rising	2	11	ns	
t236	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, PLOCK#, DEVSEL# active to float delay from PCICLK rising	2	15	ns	
t237	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, DEVSEL# setup time to PCICLK rising	7		ns	
t238	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, DEVSEL# hold time from PCICLK rising	0		ns	
t239	AD[31:0] valid delay from PCICLK high	2	11	ns	
t240	AD[31:0] setup time to PCICLK high	7		ns	
t241	AD[31:0] hold time from PCICLK high	0		ns	
t301	FRAME#, TRDY#, IRDY#, STOP#, DEVSEL#, PAR, SERR#, PERR# valid delay from PCICLK rising	2	11	ns	
t302	GNT[2:0]# valid delay from PCICLK rising	2	12	ns	
t303	PCIRQ[3:0]# valid delay from PCICLK rising	2	16	ns	
t304	MD[63:32] valid delay from PCICLK rising	2	20	ns	
t305	FRAME#, TRDY#, IRDY#, STOP#, DEVSEL#, PAR, SERR#, PERR# float delay from PCICLK rising	2	20	ns	
t306	C/BE[3:0]#, AD[31:0], FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, PLOCK#, PAR, SERR#, PERR# setup time to PCICLK rising	7		ns	
t307	C/BE[3:0]#, AD[31:0], FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, PLOCK#, PAR, SERR#, PERR# hold time from PCICLK rising	0		ns	
t308	PREQ[2:0]# setup time to PCICLK rising	12		ns	
t309	PREQ[2:0]# hold time from PCICLK rising	0		ns	
t310	PCIRQ[3:0]# setup time to PCICLK rising	5		ns	
t311	PCIRQ[3:0]# hold time from PCICLK rising	3		ns	

Page 368

6.7 ISA Controller Module AC Characteristics (66MHz - Preliminary)

Symbol	Parameter	Min	Max	Unit	Condition
t314	ATCLK rising edge delay from PCICLK rising edge	5	20	ns	
t416	A20M# valid delay from ATCLK	2	15	ns	
t316	IOR#, IOW# high valid delay from ATCLK rising		15	ns	
t317	MRD#, MWR#, SMRD#, SMWR# valid delay from ATCLK rising		15	ns	
t318	BALE low valid delay from ATCLK rising		15	ns	
t320	STPCLK# valid delay from ATCLK rising		15	ns	
t321	RTCAS, RTCRD#, RTCWR#, ROMCS#/KBDCS# valid delay from ATCLK rising		15	ns	
t322	BALE high valid delay from ATCLK falling		15	ns	
t323	IOR#, IOW#, MRD#, MWR#, SMRD#, SMWR# low valid delay from ATCLK falling		15	ns	
t324	PPWR0# valid delay from ATCLK falling		15	ns	
t325	NOWS# setup time to ATCLK falling	0		ns	
t326	NOWS# hold time from ATCLK falling	5		ns	
t327	IOCHRDY setup time to ATCLK falling	5		ns	
t328	IOCHRDY hold time from ATCLK falling	5 ns			

Note: FERR# from the CPU is not sampled with respect to any clock. The input directly feeds combinatorial circuits.

6.8 AC Timing Diagrams

Figure 6-1 Setup Timing Waveform

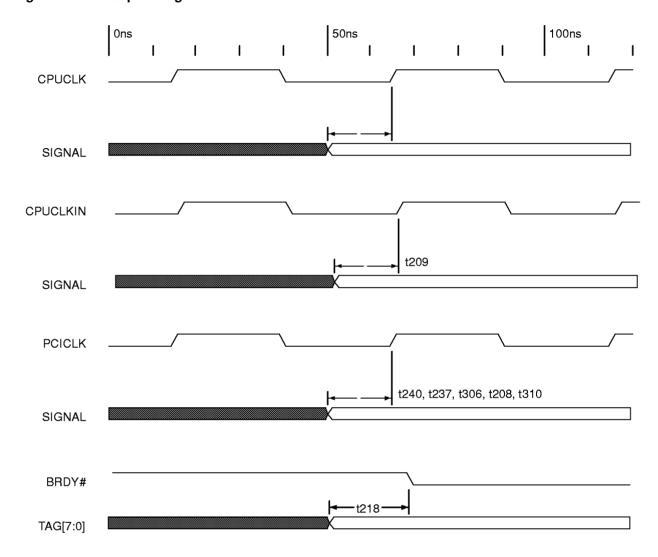


Figure 6-2 Hold Timing Waveform

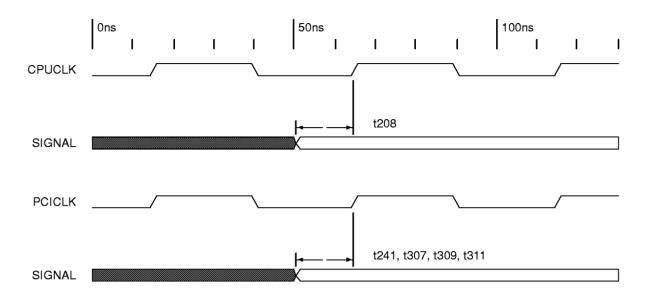


Figure 6-3 Output Delay Timing Waveform

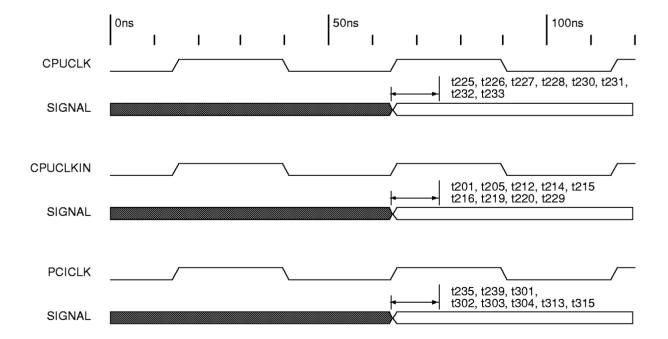
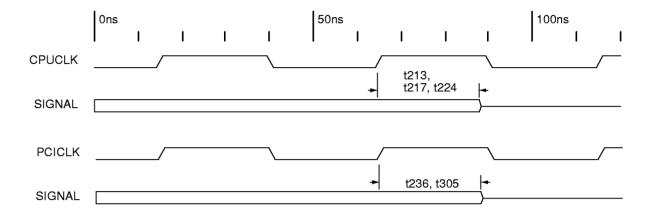



Figure 6-4 Float Delay Timing Waveform

7.0 Test Mode Information

FireStar can be forced into two types of test modes for board-level testing automatic test equipment (ATE).

- Test Mode 0: All output and bidirectional pins are tristated.
- Test Mode 1 (NAND tree test): All bidirectionals are tristated and the end of the input and bidirectional NAND chain is present on pin K22.

Pins AB5, B7, and A7 are used to select between normal and test mode operation. To enable normal operations, pin AB5

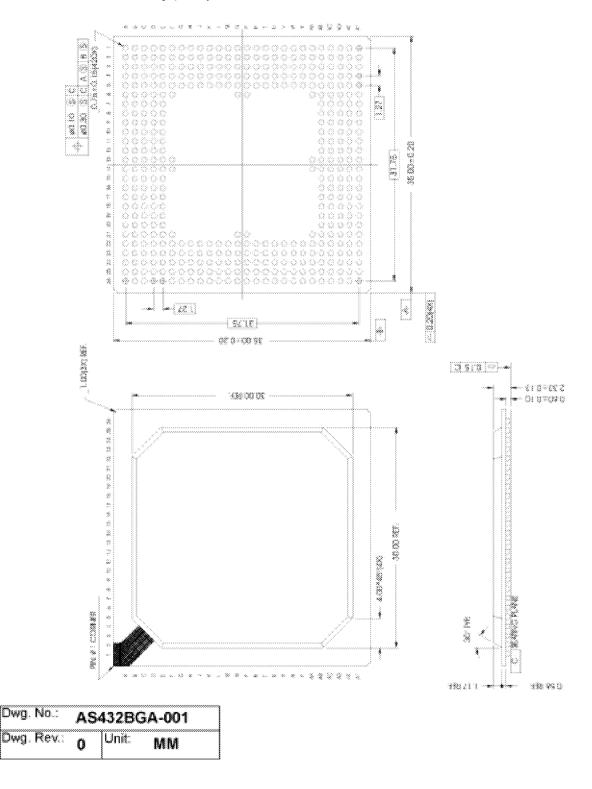
must be low. When AB5 is high, FireStar will enter the test mode. Pins B7 and A7 then control which test mode FireStar will enter. Table 7-1 summarizes the mode selection process.

The NAND tree mode is used to test input and bidirectional pins which will be part of the NAND tree chain. The NAND tree chain starts at pin G22 (MD0) and the output of the chain is pin K22 (DACKO#/DACKA#). Table 7-2 gives the pins of the NAND tree chain.

Table 7-1 FireStar Mode Selection

Mode	Pin AB5	Pin B7	Pin A7
Normal Operation (Default)	0	Х	Х
Test Mode 0 (Tristate Output and Bidirectional Pins)	1	0	0
Test Mode 1 (NAND Tree Test)	1	0	1
Reserved (For Factory Test)	1	1	0
Reserved (For Factory Test)	1	1	1

Table 7-2 NAND Tree Test Mode Pins


Pin #	Remark	Pin#	Remark	Pin #	Remark	Pin#	Remark	Pin #	Remark	Pin #	Remark
G22	MD0 (NAND	E16	MD57	H5	HD25	AB2	HA13	A B11	IRDY#	AA 24	XD6
	Input Start)	D16	MD58	H4	HD24	AB1	H A 14		TRDY#	AA25	XD5
G23	MD1	C16	MD59	H3	HD23	AC3	H A 15	AB14	PCICLK0	AA 26	XD4
G24 G25	MD2 MD3	B16	MD60	H2	HD22	AC2	H A 16	AE14	C/BE3#	Y23	XD3
G25	MD4	A16	MD61	H1	HD21	AC1	H A 17	AF14	C/BE2#	Y24	XD2
F22	MD5	E15	MD62	J5	HD20	AD2	H A 18	AC15	C/BE1#	Y25	XD1
F23	MD6	D15	MD63	J4	HD19	AD1	H A 19	AD15	C/BE0#	Y26	XD0
F24	MD7	E9	TAG0	J3	HD18	AE1	H A 20	AE15	PLOCK#	W23	IO16#
F25	MD8	D9	TAG1	J2	HD17	AB5	TMS	_	DEVSEL#	W24	M16#
F26	MD9	C9	TAG2	J1	HD16	AF1	HA21		STOP#	W25	SBHE#
E23	MD10	B9	TAG3	K4	HD15	AE2	HA22	_	REQ2#	W26	SMRD#
E24	MD11	A9 D8	TAG4	K3	HD14 HD13	AF2 AD3	H A 23	AF16 AC17	CLKRUN# CPAR	V22 V23	SMWR# SA23
E25	MD12	C8	TAG6	K1	HD12	AE3	H A 25	AD17	SERR#	V23	SA23
E26	MD13	B8	TAG7	L5	HD11	AF3	H A 26	AE17	PERR#	V24	SA21
D24	MD14	C7	OSC32	L4	HD10	AC4	H A 27	AF17	REQ0#	V25	SA20
D25	MD15	B7	RSVD	L3	HD9	AD4	H A 28		REQ1#	U23	SA19
D26	MD16	A7	SDCKE	L2	HD8	AE4	H A 29	_	REQ3#	U24	SA18
C25	MD17	E5	OSC 14MHZ	L1	HD7	AF4	H A 30	AE18	IRQSER	U25	SA17
C26	MD18	E6	HD63	M4	HD6	AC5	H A 31	AF18		U26	SA16
B26	MD19	D6	HD62	M3	HD5	AD5	NMI	AC19	IRQ3/IRQA	T22	SA15
A 26	MD20	C6	HD61	M2	HD4	AF5	INTR	AD19	IRQ4/IRQB	T23	SA14
B25	MD21	В6	HD60	M1	HD3	AB6	PCICLKIN	AE19	IRQ5/IRQC	T24	SA13
A 25	MD22	A 6	HD59	N4	HD2	AC6	IGERR#	AF19	IRQ6/IRQD	T25	SA12
C24	MD23	D5	HD58	N3	HD1	AF6	AD31	A B20	CMD#	T26	SA11
B24	MD24	C5	HD57	N2	HD0	AC7	AD30	AC20	SEL#/ATB#	R22	SA10
A24	MD25	B5	HD56	M5	CPUCLKIN	AD7	AD29	AD20	IRQ7/IRQE	R23	SA9
D23	MD26	A 5	HD55	P3	CACS#	AE7	AD28	AE20	IRQ8#	R24	SA8
C23	MD27	C4	HD54	R5	BOFF#	AF7	AD27	A F20	IRQ9/IRQF	R25	SA7
B23	MD28	B4	HD53	R4	HIT M#	AB8	AD26	A B22	IRQ10/IRQG	R26	SA6
A23	MD29	A 4	HD52	R3	A20M#	AC8	AD25	AC21	IRQ11/IRQH	P23	SA5
D22	MD30	В3	HD51	Т3	D/C#	AD8	AD24	AD21	IRQ12	P24	SA4
C22	MD31 MD32	A 3	HD50	T2	CACHE#	AE8	AD23	AE21	IRQ14	P25	SA3
B22 A22	MD33	A 2	HD49	T1	FERR#	AF8	AD22	AF21	IRQ15	P26	SA2
E21	MD34	A1	HD48	U2	LOCK#	AC9	AD21	AC22	SD15	N22	SA1
D21	MD35	B2	HD47	U1	SMIACT#	AD9	AD20	AD22	SD14	N23	SA0
C21	MD36	B1	HD46	V5	ADS#	AE9	AD19	AE22	SD13	N24	RTCAS
B21	MD37	C3	HD45	V4	BE7#	AF9	AD18	AF22	SD12	N25	RTCRD#
A21	MD38	C2	HD44 HD43	V3	BE6# BE5#	AC10	AD17	AD23 AE23	SD11 SD10	N26	RTCWR#
D20	MD39	C1 D4	HD42	V2 V1	BE4#	AD10 AE10	AD16 AD15	AF23		M22 M23	AEN TC
C20	MD40		HD41	W4			AD14	AE24			DRQ0/DRQA
-	MD41		HD40		BE2#		AD13	AF24			DRQ1/DRQB
A 20	MD42	D1	HD39		BE1#		AD12	AF25			DRQ2/DRQC
E19	MD43		HD38		BE0#	—	AD11	AF26			DRQ3/DRQD
D19	MD44		HD37		M/IO#		AD10	AE25			DRQ5/DRQE
C19	MD45	E2	HD36	Y4		AC12		AE26			DRQ6/DRQF
B19	MD46	E1	HD35	Y3		AD12		AD24			
A 19	MD47	F5	HD34	Y2	H A 5	AE12		AD25	SD1		DRQ7/DRQG
_	MD48	F4	HD33	Y1	H A 6	AF12	AD6	AD26	SD0		ROMCS#
	MD49	F3	HD32	AA5	W/R#	AC13	AD5	AC25	RSTDRV		RFSH#
\vdash	MD50	F2	HD31	AA4	H A 7	AD13	AD4	AC26	MRD#		KBDCS#
	MD51	F1	HD30	AA3	H A 8	AE13	AD3	AB23	MWR#		SPKOUT
	MD52	G4	HD29	AA2	H A 9	AF13	AD2	AB24	IOR#	H24	
	MD53	G3	HD28	AA1	H A 10	AC14	AD1	A B25	IOW#		DDRQ0
$\overline{}$	MD54	G2	HD27	AB4	H A 11	AD14	AD0	A B26	IOCHRDY		PWRGD
	MD55	G1	HD26	AB3	H A 12	AB9	FRAME#	AA23	XD7	K22	DACKA#
A17	MD56										(NAND Output)

Page 374 912-2000-015

8.0 Mechanical Package Outlines

Figure 8-1 432-Pin Ball Grid Array (BGA)

Preliminary **82C700**

Page 376 912-2000-015 Revision: 1.0

Appendix A. Compact ISA Specification

This document describes a new OPTi interface that will be used to interface the 82C852 PCMCIA Controller to OPTi system controller chipsets. This interface may also be used to interface OPTi peripheral products in the future. The interface is OPTi-proprietary, and may be licensed to others in the future.

A.1 Compact ISA Overview

The Compact ISA interface coexists with the standard ISA interface. Chips that support the Compact ISA interface enjoy a reduced ISA pin count because address signals and command information are strobed in on the SD[15:0] bus. ISA pins eliminated are:

- SA[23:0] (24 pins)
- IORD#, IOWR#, MRD#, MWR#, SMRD#, SMWR#, SBHE#, NOWS#, AEN, IO16#, M16# (11 pins)
- IRQ3, 4, 5, 6, 7, 10, 11, 12, 14, 15; DRQ/DACK#0, 1, 2, 3, 5, 6, 7, and TC (25 pins)

Compact ISA defines only two new signals, CMD# and SEL#/ATB#, for a total requirement of 22 pins. The pin count reduction over standard ISA is 58 pins. Compact ISA performance is comparable with that of 16-bit ISA bus peripheral devices. Moreover, Compact ISA does **not** interfere with standard ISA operations. The complete signal set of Compact ISA, referred to in the descriptions as CISA, is shown below.

Table A-1 Compact ISA (CISA) Interface Signals

Name	Type*	Description
MAD[15:0]	1/0	Multiplexed Bus: Used to transfer address, command, data, IRQ, DRQ, DACK information.
ATCLK	I	Standard ISA Clock: CISA device uses rising edge to clock in the first (address) phase.
ALE	I	Standard ISA Address Latch Enable: CISA peripheral device uses rising edge of ALE to latch the second (address and command) phase. CISA host uses falling edge of ALE to latch CMD# from peripheral device.
CMD#	I	Command Indication: Common to host and all devices on the CISA bus. The CISA host asserts CMD# during the data phase of the cycle to time the standard ISA command (IORD#/WR#, MRD#/WR#), and also asserts CMD# to acknowledge SEL#ATB#.
SEL#/ATB# (also CLKRUN#)	O Tristate	Device Selected / ISA Bus Backoff Request: Common to all peripheral devices on the CISA bus. When ALE is high, the CISA device asserts SEL# to indicate to the host that it is claiming the cycle. When ALE is low, the CISA device drives this signal to indicate that it has an interrupt and/or DMA request to make; the host acknowledges by asserting CMD#. After the host has preset the CISA device in a Stop Clock mode, the device can assert this signal asynchronously to restart the clock.
IOCHRDY	O Tristate	Standard ISA Cycle Extension Request: Used during memory and I/O cycles.
RSTDRV	I	Standard ISA Bus Reset

^{*}Peripheral side

A.2 Compact ISA Cycle Definition

The MAD[15:0] lines contain different information for each phase of the bus cycle. The use of these lines varies according to whether a memory cycle or an I/O cycle is being run. Certain cycle definition bits are common to all cycles, as shown in Table A-2.

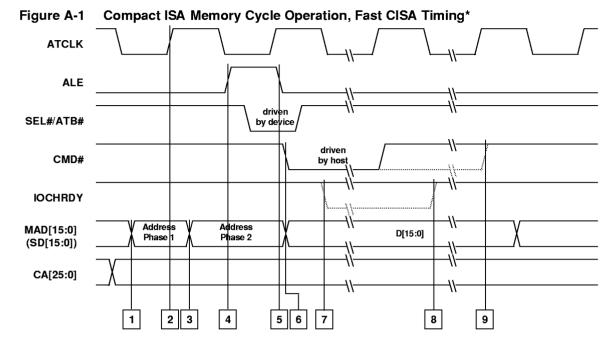
Retained Values

Entries marked "Same" retain the same value as in the previous phase, in order to reduce transitions where possible. However, the CISA peripheral device decode logic must not assume that these values will be stable. The bits may be reassigned in the future.

A.2.1 Memory Cycle

The MAD[15:0] bit meanings for each phase of a memory cycle are shown in Table A-3. The M/IO# bit is always 1 for memory cycles.

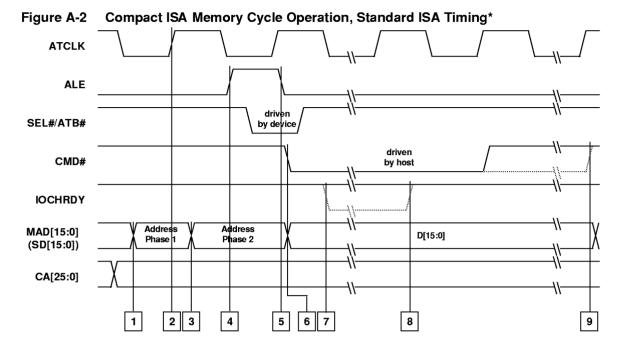
The general structure of Compact ISA memory cycles is shown in Figure A-1 and Figure A-2.


Common MAD Bit Usage Table A-2

Signal	Phase 1	Phase 2
MAD0	M/IO# indication bit; used to determine the cycle type.	W/R# indication bit
MAD1	I/D# indication bit. It is always 0 if $M/IO# = 1$, and selects between I/O and DMA cycles if $M/IO# = 0$.	SBHE# indication bit
MAD2	Usage varies.	ISA# timing indication bit; described in the "Performance Control" section of this document.

Table A-3 **MAD Bits During Memory Cycles**

				_												
Phase	MAD15	MAD14	MAD13	MAD12	MAD11	MAD10	MAD9	MAD8	MAD7	MAD6	MAD5	MAD4	MAD3	MAD2	MAD1	MAD0
1	SA23	S A 22	S A 21	S A 20	SA19	SA18	SA17	SA16	S A 15	SA14	S A 13	SA12	SA11	S A 10	I/D# = 0	M/IO# = 1
2	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	Same	Same	Same	ISA#	SBHE#	W/R#
3	SD15	SD14	SD13	SD12	SD11	SD10	SD9	SD8	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0


Page 378 912-2000-015

*Cycle optionally extended by IOCHRDY shown in gray.

- CISA host gets address from the CPU address lines and byte enable lines. The host then drives out A[23:10] + M/ IO# on MAD[15:0] with M/IO# high (memory).
- 2. CISA peripheral device latches address and M/IO# on the rising edge of ATCLK and decodes the information.
- Host drives out remaining address + Command on MAD[15:0].
- Host asserts ALE. If cycle belongs to CISA peripheral device, it asserts SEL# and latches the address and command from MAD[15:0] on the rising edge of ALE. Device latches ISA# = 1 at this time.
- Host and other CISA devices recognize the SEL# function of SEL#/ATB# by seeing ALE high when sampling SEL#/ATB# low on the rising edge of ATCLK. Host deasserts ALE and stops driving address on this rising ATCLK edge.

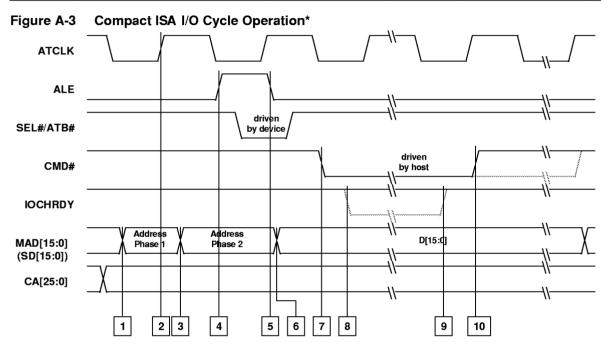
- 6. For reads, the host tristates the MAD[15:0] buffers. For writes, it drives the write data onto MAD[15:0]. Host asserts CMD# synchronous to the rising edge of ATCLK and can optionally inhibit its MRD#/MWR# lines.
- 7. Cycle is 0 wait states as indicated by ISA# = 1. CISA peripheral device can bring IOCHRDY low asynchronously after CDM# goes active to extend the cycle.
- 8. Device brings IOCHRDY high synchronous to the falling edge of ATCLK to allow cycle completion.
- Host de-asserts CMD# on the same rising edge where it samples IOCHRDY high.

*Cycle optionally extended by IOCHRDY shown in gray.

- CISA host gets address from the CPU address lines and byte enable lines. The host then drives out A]23:10] + M/ IO# on MAD[15:0] with M/IO# high (memory).
- CISA peripheral device latches address and M/IO# on the rising edge of ATCLK and decodes the information.
- Host drives out remaining address + Command on MAD[15:0].
- 4. Host asserts ALE. If cycle belongs to CISA peripheral device, it asserts SEL# and latches the address and command from MAD[15:0] on the rising edge of ALE. Device latches ISA# = 0 at this time.
- Host and other CISA devices recognize the SEL# function of SEL#/ATB# by seeing ALE high when sampling SEL#/ATB# low on the rising edge of ATCLK. Host deasserts ALE and stops driving address on this rising ATCLK edge.

- For reads, the host tristates the MAD[15:0] buffers. For writes, it drives the write data onto MAD[15:0]. Host asserts CMD# synchronous to the rising edge of ATCLK and can optionally inhibit its MRD#/MWR# lines.
- Cycle is not zero wait states, as indicated by ISA# = 0.
 CISA peripheral device can bring IOCHRDY low asynchronously after CDM# goes active to extend the cycle further.
- Device brings IOCHRDY high asynchronously to allow cycle completion.
- Host de-asserts CMD# on the next rising edge of ATCLK after the rising edge ATCLK edge on which it samples IOCHRDY high.

Page 380 912-2000-015 Revision: 1.0


A.2.2 I/O Cycle

The MAD[15:0] bit meanings for each phase of an I/O cycle are shown below. The M/IO# bit is always 0, and the I/D# bit is always 1, for an I/O cycle.

The general structure of Compact ISA I/O cycles is shown in Figure A-3.

Table A-4 MAD Bits During I/O Cycles

Phase	MAD15	MAD14	MAD13	MAD12	MAD11	MAD10	MAD9	MAD8	MAD7	MAD6	MAD5	MAD4	MAD3	MAD2	MAD1	MAD0
1	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA15	SA14	SA13	SA12	SA11	S A 10	I/D# = 1	M/IO# = 0
2	Same	Same	Same	Same	Same	Same	Same	Same	SA1	SA0	Same	Same	Same	ISA# = 0	SBHE#	W/R#
3	SD15	SD14	SD13	SD12	SD11	SD10	SD9	SD8	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0

- *Cycle optionally extended by IOCHRDY shown in gray.
- CISA host gets address from the CPU address lines and byte enable lines. The host then drives out A[15:2] + I/D# = 1 + M/IO# = 0 (I/O cycle).
- 2. CISA peripheral device latches address and M/IO# on the rising edge of ATCLK and decodes the information.
- 3. Host drives out remaining address + Command on MAD[15:0].
- 4. Host asserts ALE. If cycle belongs to CISA peripheral device, it asserts SEL# and latches the address and command from MAD[15:0] on the rising edge of ALE.
- Host and other CISA devices recognize the SEL# function of SEL#/ATB# by seeing ALE high when sampling SEL#/ATB# low on the rising edge of ATCLK. Host deasserts ALE and stops driving address on this rising ATCLK edge.
- For reads, the host tristates the MAD[15:0] buffers. For writes, it drives the write data onto MAD[15:0].

- Host asserts CMD# synchronous to the falling edge of ATCLK to run the command and can optionally inhibit its IOR#/IOW# lines.
- 8. Cycle is never zero wait state. CISA peripheral device can bring IOCHRDY low asynchronously after CDM# goes active, using standard ISA setup timing, to extend the cycle further. Note that if CISA peripheral device provides a bridge to another device (a PCMCIA slot, for example), the device on the secondary bus must be able to return IOCHRDY soon enough to meet setup timing on the CISA interface.
- Device brings IOCHRDY high asynchronously to allow cycle completion.
- Host de-asserts CMD# on the next falling edge of ATCLK after the rising edge ATCLK edge on which it samples IOCHRDY high.

A.2.3 DMA on the CISA/ISA Bus

DMA operations are handled very specifically for CISA peripheral devices. Both CISA memory devices and CISA DMA devices can be involved in a DMA transfer, possibly at the same time. The CISA host must handle each situation.

The central consideration is that the CISA host must be able to distinguish between the DMA channels that are on the ISA bus and those that are on the CISA bus. This is a simple matter when the host also incorporates the DMA controller: because the host is responsible for latching the DRQ driveback information, it can determine on a cycle-by-cycle basis whether the DMA device being serviced is on CISA or on ISA according to whether it latched DRQ active for that channel from a CISA driveback cycle.

Because the host has this knowledge, the CISA DMA device does **not** need to assert SEL# on a DACK# cycle. The host already knows the cycle belongs to a CISA DMA device and does not need to see SEL# for the I/O portion of the cycle. This inhibition of SEL# is most important when a CISA memory device is responding to the memory portion of the cycle: the CISA memory device must respond as always with SEL#, and there would be contention (on deassertion) if the CISA DMA device asserted SEL# as well.

The host must foresee the following two situations.

DMA transfer between ISA DMA device and any memory device (system DRAM, ISA memory, or CISA memory) - The host runs a standard CISA memory cycle (I/D# = 0, M/IO# = 1) along with the ISA memory-I/O cycle. If the selected memory is present on CISA, the device will

respond to the access with SEL# as usual. The host **must** drop ALE if SEL# is returned.

DMA transfer between CISA DMA device and memory—
The host runs a CISA DACK# cycle (I/D# = 0, M/IO# = 0).
If a CISA memory device claims this cycle it responds with
SEL# as usual. The memory device can drive IOCHRDY
low to extend the cycle if desired.

The CISA DACK# cycle is described below.

A.2.4 DACK# Cycle

The DACK# cycle is unique in that it has properties of a memory cycle but is directed to an I/O device. Basically, the DACK# cycle is a memory cycle whose address must be decoded by any CISA memory device on the bus. SBHE# and W/R# reference the memory device, not the I/O device; the I/O device must assume the opposite sense of W/R# for its portion of the cycle. Only the memory device responds with SEL#; the DMA (I/O) device never responds. The CMD# timing will be the wider pulse of MEMW#/IOR# or MEMR#/IOW#.

The MAD[15:0] bit meanings for each phase of a DMA acknowledge cycle are shown in Table A-5. The M/IO# bit is always 0, and the I/D# bit is always 0, for a DACK# cycle. DMX2-0 encode the number of the DACK#. For example, DMX2-0 = 010 indicate DACK2# active. TC is high if the DACK# is being returned with the Terminal Count indication. Note that there is no ISA# bit, since there is no fast cycle possible.

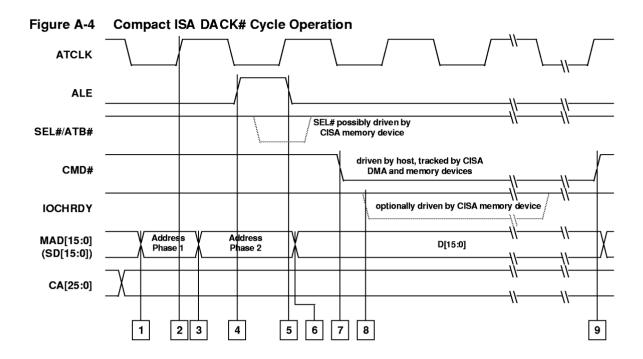

The general structure of Compact ISA DACK# cycles is shown in Figure A-4.

Table A-5 MAD Bits During DMA Acknowledge Cycles

Phase	MAD15	MAD14	MAD13	MAD12	MAD11	MAD10	MAD9	MAD8	MAD7	MAD6	MAD5	MAD4	MAD3	MAD2	MAD1	MAD0
1	SA23	SA22	SA21	S A 20	S A 19	SA18	SA17	SA16	SA15	S A 14	SA13	S A 12	S A 11	S A 10	I/D# = 0	M/IO# = 0
2	SA9	SA8	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	DMX2	DMX1	DMX0	TC	SBHE#	W/R#
3	SD15	SD14	SD13	SD12	SD11	SD10	SD9	SD8	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0

Page 382 912-2000-015

- CISA host gets address form the CPU address lines and byte enable lines. The host then drives out A[23:0] + I/D# = 0 + M/IO# = 0 (DACK# cycle).
- 2. CISA DAM device, and possibly CISA memory device, latches address and cycle type information on the rising edge of TACLK and decodes the information.
- Host drives out remaining command information on MAD[15:0].
- 4. Host asserts ALE. CIDA DMA device does not assert SEL# but latches the address and command from MAD[15:0] on the rising edge of ALE. Any CISA memory device present latches address and command, decodes them, and asserts SEL# if appropriate.
- 5. Host de-asserts ALE and stops driving address on this rising ATCLK edge. Note that in a normal ISA cycle the host would keep ALE high.
- For DMA I/O read, the host tristates the MAD[15:0] buffers. For DMA I/O write, it drives the write data onto MAD[15:0].
- 7. Host asserts CMD# synchronous to the falling edge of ATCLK to run the command and is required to inhibit its IOR#/IOW# lines.
- 8. Only CISA memory devices can extend the cycle with IOCHRDY.
- 9. DACK# cycle is minimum 1.5 ATCLK. Host de-asserts CMD# synchronous to the rising edge of ATCLK.

Configuration Cycle A.2.5

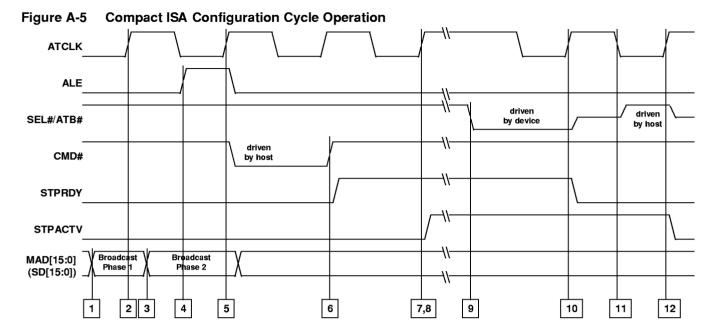
The CISA Configuration Cycle is a special cycle reserved for future expansion of CISA. The only configuration cycle currently defined is the Broadcast cycle; the only type of Broadcast cycle specified at this moment is the Stop Clock cycle.

The Stop Clock cycle indicates that the host will immediately put the CISA peripheral devices into a low-power mode in which they will no longer receive clocks. Therefore, the CISA peripheral device must enter into a state in which it can asynchronously signal that it needs the clocks restarted. CISA devices might need to generate an interrupt back to the system, which they cannot do if not receiving clocks.

The MAD[15:0] bit meanings for each phase of the Stop Clock configuration cycle are shown below.

In phase 1, the M/IO# bit is always 1, and the I/D# bit is always 1, for any configuration cycle. BRD is 1 to indicate a Broadcast cycle, and will always be zero for any other configuration cycle. The STP# bit is 0 to indicate a Stop Clock cycle, and will be 1 for all other cycles. Bits CC2:0 are the Clock Count bits that indicate to the CISA peripheral device how many rising clock edges to expect after CMD# goes high before the clock is actually stopped. The other bits of phase 1 are reserved and should not be decoded.

In phase 2, ISA# = 1 indicating that this will be a fast cycle. SBHE# = 0 to indicate 16 bits of data. W/R# = 1 because the Stop Clock Broadcast cycle is always a write cycle.


The data phase of the Stop Clock cycle contains no useful data and should not be latched.

The general structure of Compact ISA Broadcast cycles is shown in Figure A-5.

Table A-6 **MAD Bits During Stop Clock Configuration Cycles**

Phase	MAD15	MAD14	MAD13	MAD12	MAD11	MAD10	MAD9	MAD8	MAD7	MAD6	MAD5	MAD4	MAD3	MAD2	MAD1	MAD0
1	BRD = 1	STP# = 0	CC2	CC1	CC0	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	I/D# = 1	M/IO# = 1
2	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	ISA# = 1	SBHE#	W/R# = 1
3	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same	Same

912-2000-015 Page 384

This example describes the Broadcast configuration cycle

- CISA host initiates the Configuration cycle; it is not generate form ISA commands. The host drives out BRD = 1 + I/D# = 1 + M/IO# = 0 (Broadcast configuration cycle).
- 2. CISA peripheral latches the command data on the rising edge of ATCLK and decodes the information.
- 3. Host drives out Clock Count, Stop Clock cycle indicator, and remaining command information on MAD[15:0].
- 4. Host asserts ALE. CISA devices latch clock count. CISA peripheral devices must NOT respond with SEL#.
- Host asserts CMD# synchronous to the rising edge of ATCLK to run the command. The Broadcast configuration cycle is always zero wait states so it completes in one ATCLK.
- 6. After the host de-asserts CMD#, the CISA peripheral device is internally in STPRDY state.
- 7. After the number of clocks specified by CC[2:0], the host stops the clock in its high state. In the example, CC[2:0] = 001 (the minimum allowed) so the host will stop the clock on the next rising ATCLK edge. Each additional count requires the host to wait one more clock.

- 8. The CISA peripheral device is also counting clocks while in STPRDY state. On the specified ATCLK edge the device is in STPACTV state. In STPACTV state, the CISA peripheral device gives SEL#/ATB# a third meaning: CLKRUN#. The device can assert CLKRUN# asynchronously at any time while in this mode to get the host to restart its clocks.
- 9. CISA peripheral device asserts CLKRUN# (SEL#/ATB#) on receipt of an interrupt to restart the clocks.
- On next rising ATCLK clock edge, CISA peripheral device de-asserts CLKRUN# (SEL#/ATB#) but must not drive it high. Device has left STPRDY state but is still in STPACTV state and cannot initiate or respond to any cycle.
- 11. On next falling ATCLK edge, the host drives SEL#/ATB# high for ½ ATCLK.
- 12. On next rising ATCLK edge, the host stops driving SEL#/ ATB#. The CISA peripheral device leaves STPACTV state on this clock edge and can either generate an interrupt driveback cycle or can respond to cycles from the host.

OPTi

912-2000-015 Revision: 1.0

A.3 Interrupt and DMA Request Drive-Back

Compact ISA provides the signal SEL#/ATB# to give the CISA peripheral device limited ownership of the bus. The SEL#/ATB# signal acts as ATB# (AT backoff) when asserted with ALE low. When the device asserts ATB# to the host, the host inhibits further AT bus operations and asserts the CMD# line to the CISA peripheral device to acknowledge that the device now owns the bus. The peripheral device can only drive two types of information onto the bus: interrupt requests and DMA requests.

Figure A-6 illustrates the synchronous IRQ/DRQ driveback cycle.

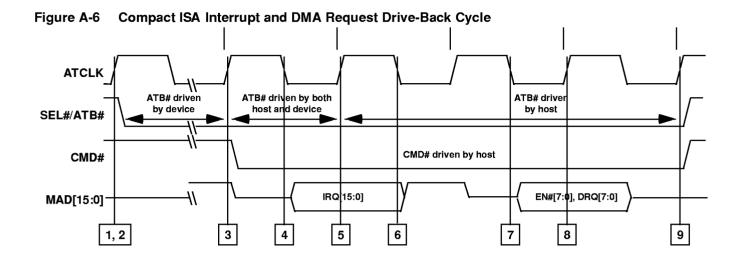
A.3.1 Interrupt Requests

To drive interrupt requests, the CISA peripheral device drives the MAD[15:0] lines low for each IRQ line it wishes to assert. The host side IRQ generation circuitry samples ATB# and CMD# active on the rising ATCLK edge and latches the IRQ information on MAD[15:0].

The IRQ generation circuitry, whether external or built into the host, determines how to treat IRQ information. For pulsetype interrupts it could latch the IRQs and enable tristate buffers to drive the lines low for 1-3 ATCLKs, for example.

A.3.2 DMA Requests

The CISA device must always precede the DRQ drive-back cycle with an IRQ drive-back cycle, even if no IRQs have changed state.


To make DMA requests, the CISA peripheral device drives the MAD[15:8] lines low for each DRQ it wishes to change. The device then sets the state of each MAD[7:0] line to correspond to the DRQ state desired. The host side DRQ generation circuitry samples ATB# and CMD# active on the next rising ATCLK edge after the edge on which IRQs were sampled, and latches the DRQ information on MAD[7:0] for the channels selected on MAD[15:8].

The desired DMA request line states are latched by the host and will remain in that state until cleared by another DRQ drive-back cycle. This scheme allows both DMA single transfer and DMA block transfer modes to be used. The CISA peripheral device must assert SEL#/ATB# immediately any time a DRQ line changes state (assuming the current cycle is finished). The CISA host, in turn, must immediately deassert all DRQ inputs to its DMA controller until the drive-back cycle is complete.

Table A-7 IRQ/DRQ Drive Back Cycle

Phase	MAD15	MAD14	MAD13	MAD12	MAD11	MAD10	MAD9	MAD8	MAD7	MAD6	MAD5	MAD4	MAD3	MAD2	MAD1	MAD0
IRQ	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
DRQ	EN7#	EN6#	EN5#	Rsvd	EN3#	EN2#	EN1#	EN0#	DRQ7	DRQ6	DRQ5	Rsvd	DRQ3	DRQ2	DRQ1	DRQ0

Page 386 912-2000-015

- CISA Peripheral device must sample SEL#/ATB# and CMD# high, and ALE low, on TWO consecutive rising edges of ATCLK.
- 2. CISA peripheral device asserts ATB# on rising edge of ATCLK to request AT backoff. If host was starting a cycle and was about to assert ALE on the next falling edge of ATCLK, it must abort the cycle and retry it later. Even if host is busy and cannot respond to drive back request immediately, it inhibits initiation of all I/O and DMA operations (EOI to PCI is blocked, for example).
- As soon as AT bus operations have been completed and bus is available, host drives MAD[15:0] high for ½ ATCLK from a falling edge of ATCLK, then asserts CMD# after the net rising edge of ATCLK. The host drives ATB# low at this time.
- 4. CISA peripheral device(s) can drive interrupt data onto bus on next falling edge of ATCLK, driving low only those lines with IRQ activity and not actively driving high the other lines. In this way, multiple CISA devices can drive the lines in parallel.
- 5. Host IRQ generation circuitry uses rising edge of ATCLK, qualified by ATB# and CMD# low, to latch IRQs. The CISA device stops driving ATB# at this time. The host controls ATB# throughout the rest of the cycle.
- CISA peripheral device drives any MAD[15:-0] lines it was driving low high for ½ ATCLK, then tristates the lines for ½ ATCLK.
- 7. CISA peripheral device drives DRQ information onto MAD[7:0] and at the same time drives low the corresponding lines MAD[15:8] to indicate which DRQ channels have a status change to be transferred.
- Host DRQ generation circuitry uses next rising edge of ATLCK, qualified by ATB# and CMD# low AND previous

- IRQ cycle, to latch DRQs. The host DRQ generation circuitry ORs the DRQs with other system DRQs.
- Host de-asserts CMD# and ATB# on rising edge of ATCLK.

A.4 Performance Control

Compact ISA performance is comparable with that of 16-bit ISA bus peripheral devices. In its simplest implementation, the CMD# signal is simply an AND of MRD#, MWR#, IOR#, and IOW# from the standard AT controller state machine.

Memory cycles are always assumed to be zero wait state. The CISA host detects a NOWS# command every time SEL# is generated. The CISA peripheral device can use its IOCHRDY line to extend the cycle and override the NOWS# status. All of this functionality is consistent with standard ISA operation.

I/O cycles cannot be made zero-wait-state cycles on the ISA bus, so by default are not zero-wait-state cycles on the CISA bus. However, performance improvement is possible if the CMD# duration is shortened to one ATCLK. Future PCMCIA I/O devices may be able to complete their cycles this quickly, for example. For zero-wait-state CISA I/O operation, the cycle timing would have to change from the standard ISA timing. The host can implement fast CISA timing as an option. However, all CISA slave devices are required to be able to accept fast CISA timing.

Fast CISA timing on the host side is defined as follows. If the CISA host is driving CMD# as derived from the logical AND of ISA command lines IOR#, IOW#, MRD#, and MWR#, it sets ISA# = 0 to indicate that the CISA peripheral device must assume ISA timing. If the host is capable of performing fast CISA cycles, it can set ISA# = 1. In this case, the CISA peripheral device must deassert IOCHRDY early to lengthen cycles.

Fast CISA timing on the device side is defined as follows. If the CISA host drives the ISA# bit low, the CISA peripheral device assumes normal ISA timing for CMD# and IOCHRDY. If the CISA host drives ISA# high, the CISA peripheral device must drop IOCHRDY low immediately upon receiving CMD# to lengthen the cycle; this is different from ISA timing.

The CISA peripheral device will have a programmable option to determine how IOCHRDY is deasserted. By default, the device might drop IOCHRDY on every cycle. For the example of a PCMCIA controller on the CISA bus, only when a fast PCMCIA card is inserted (as indicated in the CIS header of the card) would Card Services be allowed to enable the fast CISA timing option on the CISA peripheral device side.

A.5 Compatibility and Host Responsibilities

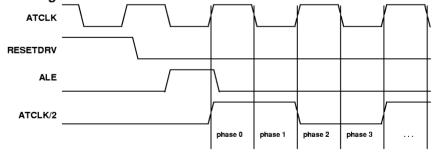
Compact ISA does **not** interfere with standard ISA operations or limit compatibility. This statement can be made with only the following restrictions:

- No device can drive the SD bus between ISA cycles.
 Devices capable of driving the SD bus must stay tristated at this time.
- ATCLK can be stopped only after a Stop Clock Broadcast configuration cycle. Slower-than-standard clock speeds are allowed if interrupt latency is not an issue.
- ISA bus masters cannot access CISA devices. Standard ISA masters are simply ignored by CISA devices since these masters cannot generate CMD# and so cannot run a CISA cycle. ISA bus masters can still take bus control and communicate with other ISA peripherals. CISA interrupt latency may be an issue if a bus master prevents the CISA host from responding to ATB# for an interrupt driveback cycle.
- No CISA bus master capability is currently defined. However, the presence of the SEL#/ATB# signal and its AT

- backoff feature leave open the possibility of future bus master capabilities.
- On receipt of an ATB# request, the CISA host must immediately inhibit all system DRQ activity (possibly by deasserting all DRQs to the DMA controller) until the drive-back cycle is complete. Otherwise, unwanted DMA cycles could occur.

A.6 Shared Speaker Signal Support (Optional)

Compact ISA provides a new scheme for the digital speaker output signal common to PCs and PCMCIA controllers. This scheme allows all digital audio outputs to be tied together without the XOR logic usually required.


The standard specification for the speaker data output is a signal driven in both the low-to-high and high-to-low directions. The output cannot simply be respecified as open-collector, since there is no guarantee that software will leave the speaker output line from the system chipset in a high or tristated condition. If it leaves the signal driven low, no other open-collector devices connected on the line could toggle the signal. Moreover, open collector outputs tend to consume excessive power.

Compact ISA provides an efficient solution to the problem as described in the following sections.

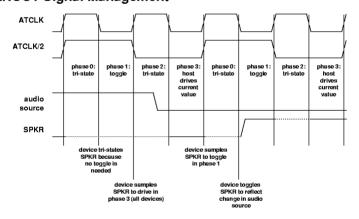
A.6.1 Initial Synchronization

All CISA slave devices must tristate their SPKR outputs at hard reset time and remain tristated until individually enabled. On the first ALE generated by the host, all participating CISA devices will synchronize to ATCLK and derive the signal ATCLK/2 that is in phase as shown in Figure A-7. Four distinct phases, 0 through 3, are the result. CISA slave SPKR outputs are still tristated at this point.

OPT1

Page 388 912-2000-015

A.6.2 SPKR Sharing During Active Mode


Figure A-8 illustrates the SPKR handling requirements.

The activities performed in each phase by the CISA host and the CISA slaves are as given in Table A-8.

Table A-8 SPKR Sharing During Active Mode

Phase	Slave	Host							
On the rising ATCLK edge starting phase 0	Sample the state of SPKR.	Sample the state of SPKR. Tristate SPKR output.							
During phase 0:	Maintain SPKR output tristated (as it was from previous phase).	Maintain SPKR output tristated.							
On the falling ATCLK edge starting phase 1:	Sample digital audio source input.								
During phase 1:	hase 1: If digital audio source input sampled on ATCLK edge has changed state since the previous phase 1 in which it was sampled, toggle SPKR. SPKR is toggled by driving the opposite the SPKR value sampled in phase 0 onto the SPKR output.								
On the rising ATCLK edge starting phase 2:	Tristate SPKR output.	Tristate SPKR output. Sample the state of SPKR.							
During phase 2:	Slave and host: Maintain SPKR output tristated.								
On the falling ATCLK edge starting phase 3:	No activity on this edge.	Drive SPKR pin to the value of SPKR sampled in phase 2.							
During phase 3:	Maintain SPKR output tristated (as it was from previous phase).	Maintain SPKR output driven.							

Figure A-8 Shared SPKROUT Signal Management

SPKR Sharing During Stop Clock Mode

During Stop Clock mode, CISA devices handle SPKR as follows.

Slave: Tristate SPKR. Referring to Figure A-5, the exact period during which CISA slaves keep SPKR

tristated is defined as the period during which both

STPACTV and STPRDY are high.

Host: Drive or tristate SPKR. It is recommended that the

host drive SPKR low.

Note that even while CISA slave devices are in Stop Clock mode, they must remain synchronized to the correct phase of ATCLK. They do not resynchronize on the next ALE.

Audio Output Circuit Recommendations

The SPKR output must never be connected directly to a speaker or other low-impedance transducer. The shared SPKR implementation depends on an R-C time constant large enough that the signal will never change its level any appreciable amount across a period of 1.5 ATCLKs, the maximum number of clocks for which no device will be driving the SPKR line.

Three ATCLKs last for approximately 188ns. The R-C time constant of the design must be significantly larger than this value. Connecting an 8 ohm speaker directly would cause the line to begin a transition when it was tristated. Therefore, either capacitive coupling or an amplifier circuit with a highimpedance input is recommended.

A.7 Automatic Voltage Threshold Detection

Compact ISA devices are intended to work on either a traditional 5.0V ISA bus or on a local 3.3V ISA bus. Compact ISA designs are very power-conscious, so using external strap options on each CISA device to select the input buffer threshold may not be the best option.

Therefore, the Compact ISA host is required to use the ALE pin at reset to indicate the ISA bus voltage to CISA slaves. The correspondence is as follows.

- For a 5.0V ISA bus, the host must assert the ALE signal high when RSTDRV goes high, and must keep it asserted for at least 1/2 ATCLK and at most 1 ATCLK after RST-DRV goes low.
- For a 3.3V ISA bus, the host must keep the ALE signal low when RSTDRV goes high, and must maintain ALE low for at least 1/2 ATCLK after RSTDRV goes low.

This performance is **required** for CISA hosts, but CISA slave devices are not required to use the feature.

912-2000-015 Page 390

Sales Information

HEADQUARTERS:

OPTi Inc.

888 Tasman Drive Milpitas, CA 95035 tel: 408-486-8000 fax: 408-486-8011

SALES OFFICES:

Japan

OPTi Japan KK

Murata Building 6F, 2-22-7 Ohhashi Meguro-ku Tokyo 153, Japan tel: 81-3-5454-0178 fax: 81-3-5454-0168

OPTi Inc.

9F. No 303. Sec 4. Hsin Yih Road Taipei, Taiwan, ROC

tel: 886-2-325-8520 fax: 886-2-325-6520

United Kingdom & Europe OPTi Inc.

30 Windmill Avenue Bicester, Oxon OX6 7DY

+ 44-1-869-369-161 fax: Same

United States

OPTi Inc.

4400 N. Federal Highway, Ste. #120 Boca Raton, FL 33431

tel: 561-395-4555 fax: 561-395-4554

OPTi Inc.

20405 State Highway 249, Ste. #220 Houston, TX 77070

tel: 281-257-1856 fax: 281-257-1825

REPRESENTATIVES:

United States

Alabama/Mississippi **Concord Component Reps**

190 Line Quarry Rd., Ste. #102

Madison, AL 35758 tel: 205-772-8883 fax: 205-772-8262

Engineered Solutions Ind., Inc.

1000 E. Atlantic Blvd., Ste. #202 Pompano Beach, FL 33060 305-784-0078

fax: 305-781-7722

Georgia

Concord Component Reps

6825 Jimmy Carter Blvd., Ste. #1303 Norcross, GA 30071

tel: 770-416-9597 fax: 770-441-0790 Illinois

Micro-Tex, Inc.

1870 North Roselle Rd., Ste. #107 Schaumburg, IL 60195-3100

708-885-8200 fax: 708-885-8210

Massachusetts

S-J Associates, Inc.

267 Boston Road Corporate Place, Ste. #3 N. Billerica, MA 01862 tel: 508-670-8899 fax: 508-670-8711

Michigan

Jay Marketing

44752 Helm Street., Ste. A Plymouth, MI 48170 313-459-1200 fax: 313-459-1697

New Jersey

S-J Associates, Inc. 131-D Gaither Dr. Mt. Laurel, NJ 08054 tel: 609-866-1234 fax: 609-866-8627

New York

S-J Associates, Inc.

265 Sunrise Highway Rockville Centre, NY 11570 516-536-4242

fax: 516-536-9638

S-J Associates, Inc.

735 Victor-Pittsford Victor, NY 14564 716-924-1720

North & South Carolina

Concord Component Reps

10608 Dunhill Terrace Raleigh, NC 27615 919-846-3441 fax: 919-846-3401

Ohio/W. Pennsylvania

Lyons Corp.

4812 Fredrick Rd., Ste. #101 Dayton, OH 45414 tel: 513-278-0714 fax: 513-278-3609

Lyons Corp. 4615 W. Streetsboro

Richfield, OH 44286 tel: 216-659-9224 fax: 216-659-9227

Lyons Corp. 248 N. State St. Westerville, OH 43081 tel: 614-895-1447

fax: Same

Texas

Axxis Technology Marketing, Inc. 701 Brazos, Suite 500 Austin, TX 78701 tel: 512-320-9130 fax: 512-320-5730

Axxis Technology Marketing, Inc.

6804 Ashmont Drive Plano, TX 75023 tel: 214-491-3577 fax: 214-491-2508

Virginia

S-J Associates, Inc.

900 S. Washington St., Ste. #307 Falls Church, VA 22046

tel: 703-533-2233 fax: 703-533-2236

Wisconsin

Micro-Tex, Inc.

22660 Broadway, Ste. #4A Waukesha, WI 53186 tel: 414-542-5352 fax: 414-542-7934

International

Australia

Braemac Pty. Ltd.

Unit 6, 111 Moore St., Leichhardt Sydney, 2040 Australia tel: 61-2-550-6600 fax: 61-2-550-6377

Legend Electronic Components. Ltd. Switzerland

Unit 413, Hong Kong Industrial Technology Centre 72 Tat Chee Avenue Kowloon Tong, Hong Kong tel: 852-2776-7708 fax: 852-2652-2301

France

Tekelec Airtronic, France

5. Rue Carle Vernet 92315 Sevres Cedex France

tel: 33-1-46-23-24-25 fax: 33-1-45-07-21-91

Germany Kamaka

Rheinsrasse 22 76870 Kandel Germany

tel: 49-7275-958211 fax: 49-7275-958220 India

Spectra Innovation

fax: 91-80-558-6872

Unit S-822 Manipal Centre 47 Dickenson Road Bangalore 560-042 Kamataka, India tel: 91-80-558-8323/3977

Israel

Ralco Components (1994) Ltd.

11 Benyamini St. 67443 Tel Aviv Israel

tel: 972-3-6954126 fax: 972-3-6951743

Korea

Woo Young Tech Co., Ltd.

5th Floor Koami Bldg 13-31 Yoido-Dong Youngduengpo-Ku Seoul, Korea 150-010 tel: 02-369-7099 fax: 02-369-7091

Singapore

Instep Microsolutions Pte Ltd.

629 Aljunied Road #05-15 Cititech Industrial Building Singapore 1438 65-741-7507 65-741-7530 fax: 65-741-1478

South America

Uniao Digital

Rua Guido Caloi Bloco B, Piso 3

Sao Paulo-SP, CEP 05802-140 Brazil tel: 55-11-5514-3355

fax: 55-11-5514-1088

Datacomp AG

Silbernstrasse 10 8953 Dietikon Switzerland

tel: 41-1-740-5140 fax: 41-1-741-3423

United Kingdom

Spectrum

2 Grange Mews, Station Road Launton, Bicester Oxfordshire,OX6 0DX

tel: 44-1869-325174 fax: 44-1869-325175

MMD

3 Bennet Court, Bennet Road Reading Berkshire, RG2 0QX IJК

tel: 44 1734 313232 fax: 44 1734 313255

(2/97a)

The information contained within this document is subject to change without notice. OPTi Inc. reserves the right to make changes in this manual at any time as well as in the products it describes, at any time without notice or obligation. OPTi Inc. assumes no responsibility for any errors contained within. In no event will OPTi Inc. be liable for any damages, direct, indirect, incidental or consequential resulting from any error, defect, or omission in this specification.

Copyright @ 1997 by OPTi Inc. All rights reserved. OPTi is a trademark of OPTi Incorporated. All other brand and product names are trademarks or copyrights of their respective owners

OPTi Inc.

888 Tasman Drive Milpitas, CA 95035 Tel: (408) 486-8000 Fax: (408) 486-8001

Hax: (408) 486-8001 WWW: http://www.opti.com/